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Abstract The global analysis of the shadow Gierer-Meinhardt system with
multiplicative white noise and general linear boundary conditions is investi-
gated in this paper. For this reaction-diffusion system, we employ a fixed
point argument to prove local existence and uniqueness. Our results on global
existence are based on a priori estimates of solutions.
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1. Introduction

In 1744, Trembley’s discovery in developmental biology pointed out that fragments
of the small, fresh water animal called hydra can regenerate into a complete animal
[22]. Based on Turing’s (1952) idea of “diffusion-driven instability” [23], Gierer
and Meinhardt [8] in 1972 proposed a theory of biological pattern formation that
placed special emphasis on certain striking features on developmental biology, in
particular, they proposed a system to model the head formation in the hydra.
Mathematical modeling of biological spatial pattern formation has become one of
the most popular areas of investigation in applied mathematics in recent times.
Many models involved in these biological phenomena are of the general reaction-
diffusion type considered in [17, 23]. Several researchers have been able to provide
great insights into the underlying mechanisms of biological processes realized by the
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Gierer-Meinhardt system of the following form.

At = ϵ2∆A−A+
Ap

Hq + b
in D × (0, T ),

τHt = d∆H −H +
Ar

Hs
in D × (0, T ),

ϵ
∂A

∂ν
+ aA = 0 =

∂H

∂ν
on ∂D × (0, T ),

H(x, 0) = H0(x) > 0, A(x, 0) = A0(x) ≥ 0 in D,

(1.1)

where ϵ > 0, d > 0, τ > 0, a ≥ 0, b > 0 and D ⊂ RN (N ≥ 1) is a bounded
domain with a smooth boundary ∂D, and A and H are activator and inhibitor,
respectively; ∆ is the Laplace or diffusion operator in RN acting on A and H; ν(x)
is the unit outer normal vector at x ∈ ∂D, ∂/∂ν := ∇·ν is the directional derivative
in the direction of the vector ν. The reaction exponents p, q, r, and s are positive,
and satisfy (p− 1)(s+ 1) < qr. The constants ϵ and d are the diffusion coefficients
for the activator and inhibitor respectively. The constant b provides additional
support to the inhibitor and may be thought of as a measure of the effectiveness of
the inhibitor in suppressing the production of the activator. The time relaxation
constant τ plays a significant role on the stability of the system. The two chemical
substances A and H, representing the concentrations of certain biochemicals, are
initially produced by an outside source. Then they interact as represented by the
coupled nonlinear terms in the system (see e.g. [16] and references therein).

There are several results for equation (1.1) with homogeneous linear Neumann
boundary conditions (i.e., a = 0 and b = 0) in [5, 10, 16, 21, 25] and references
therein. Chen et al. [4] studied the generalized (singular) Gierer-Meinhardt system
with Dirichlet boundary conditions. Recently, Antwi-Fordjour and Nkashama [2]
studied the global existence of (1.1). It is well known that it is quite challenging
to study the solvability of the equation (1.1) since it does not have a standard
variational structure. In [1], we observe another interesting problem that attracts
attention to explain the influence of the Robin boundary conditions to the Gierer-
Meinhardt system.

One way to initiate the study of (1.1) is to first examine the shadow system
suggested by Keener [11]. Shadow systems are mostly employed to approximate the
reaction-diffusion systems when one of the diffusion coefficients is large. Indeed,
when the diffusion coefficient of the second equation in (1.1) is sufficiently large;
that is, d → ∞, and γ(t) is the formal limit of H(x, t), then the system (1.1) can
be reduced to the shadow Gierer-Meinhardt system:

At = ϵ2∆A−A+
Ap

γq + b
in D × (0, T ),

τγ′ = −γ +
Ar

γs
in (0, T ),

ϵ
∂A

∂ν
+ aA = 0 on ∂D × (0, T ),

γ(0) = γ0 > 0 in R, A(x, 0) = A0(x) ≥ 0 in D,

(1.2)

where we define

γ(t) :=
1

|D|

∫
D

H(x, t)dx, Ar(t) :=
1

|D|

∫
D

Ar(x, t)dx,
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and |D| is the (Lebesgue) measure of D. It is important to note here that, the
second equation is a nonlocal ordinary differential equation.

Global existence and finite-time blow-up for equation (1.2) have been investi-
gated by Li and Ni [13] when a = b = 0, provided we have p−1

r < 2
N+2 . Phan [19]

studied the global existence of solutions for a = b = 0 in (1.2) provided p−1
r = 2

N+1 .
Maini et al. [15] studied the stability of spikes for (1.2) with b = 0.

Physical and biological systems are inevitably affected by random fluctuations
from the environment. It is therefore important to incorporate the random effects
from the environment into (1.2). In stochastic modeling, these random effects are
conceived as stochastic fluctuations.

Motivated by the work of Kelkel and Surulescu [12] and Winter et al. [24], we
consider the following stochastic shadow Gierer-Meinhardt system:

At = ϵ2∆A−A+
Ap

γq + b
in D × (0, T ),

τdγ = −γdt+
Ar

γs
dt+

√
ηγdBt in (0, T ),

ϵ
∂A

∂ν
+ aA = 0 on ∂D × (0, T ),

γ(0) = γ0 > 0 in R, A(x, 0) = A0(x) ≥ 0 in D,

(1.3)

where η > 0 is small and represents the noise intensity, and Bt is a white noise (or
statistically Brownian motion at time t).

Analytical results for the equation (1.3) were obtained with Neumann boundary
conditions (a = 0) but there is a lack of theoretical considerations for the problem
with general linear boundary conditions (see e.g. [14, 24]). Thus, investigating the
equation (1.3) with general linear boundary conditions of Robin-Neumann type
plays an important role in understanding various kinds of biological phenomena.

To the best of our knowledge, this appears to be the first paper on stochastic
shadow Gierer-Meinhardt system with general linear boundary conditions of Robin-
Neumann type. In this paper, motivated by [24] and the above considerations, we
shall prove the following main result on the global existence of strong positive solu-
tions for the problem with general linear boundary conditions of Robin-Neumann
type.

Theorem 1.1. Suppose that D ⊂ RN is a bounded domain with a smooth boundary
∂D, and assume that the exponents satisfy the inequality

p− 1

r
< min

{ 2

N + 2
,

q

s+ 1

}
.

Let A0 ∈ W 2,l(D) where l > max{N, 2}, and γ0 ∈ R with γ0 > 0. Then, with
probability 1, there is a unique solution (A(x, t), γ(t)) of the stochastic shadow
equation (1.3) which exists globally. Moreover, the component γ satisfies the estimate

γ(t) ≥
(η
τ

) 1
s+1

e
− 3

2η t− 1√
η |Bt|γ0. (1.4)

The paper is organized as follows. In Section 2 we show the unique local existence
of solutions. In Section 3 we prove global existence of positive solutions.
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2. Unique Local Existence
In this section, we use several concepts from probability theory and semigroup of
linear operators theory (see e.g. [3, 6, 7, 9, 18, 20]) along with estimates obtained
herein and a fixed point argument to prove the unique local existence of positive
solutions. Let us consider the (standard) probability space (Ω,F,P) where Ω is the
sample space, F is the σ-algebra, P is the probability measure and define

B∗
t := sup

0≤s≤t
|Bs|, ∀t > 0, and τK(ω) := inf{t > 0 : |Bt(ω)| ≥ K}, ω ∈ Ω. (2.1)

Note that τK(ω) denotes an optional stopping time (see e.g. [6] for background). It
is easy to see that

Ec := {ω ∈ Ω : τK(ω) ≤ t} = {ω ∈ Ω : B∗
t (ω) ≥ K}. (2.2)

Since the distribution of B∗
t is a normal distribution function, we can ascertain that

for sufficiently large K > 0, we have that

P(Ec) <
C

K2
≪ 1, C > 0;

which means that we can think of the complement Ec as a negligible set. Next, we
define the following operators;

S(t) := e−(−ϵ2∆+I)t and R(t, Bt) := e
− 3

2η t+ 1√
ηBt . (2.3)

Notice that here S(t) denotes the semigroup associated with the Laplace operator
subject to homogeneous Robin-Neumann boundary conditions where (−ϵ2∆+ I) is
a strongly elliptic operator.

Consider the function space

C(D,R) = {f : D → R| f is a continuous function}

endowed with the sup-norm

∥f∥C = sup
x∈D

|f(x)|. (2.4)

It follows that

∥S(t)f∥C ≤ ∥f∥C , ∥|f |p∥C ≤ ∥f∥pC , p ≥ 1, f ∈ C(D,R). (2.5)

We also consider the following operator norm (on the appropriate space):

∥(A, γ)∥C([0,T ];C×R) := ∥A∥C([0,T ];C) + ∥γ∥C([0,T ];R). (2.6)

Finally, we define

x ∧ y := min{x, y} and x ∨ y := max{x, y} for x, y ∈ R.

Based on the aforementioned preliminaries, we shall prove the following result on
local existence and uniqueness of solutions to equation (1.3).



1984 K. Antwi-Fordjour, S. Kim & M. Nkashama

Proposition 2.1 (Itô’s Lemma). Suppose that f = f(t, Bt) ∈ C2, i.e., it has
continuous partial derivatives up to order two. Then with probability 1, for all t > 0
and x = Bt,

df(t, x) =
(∂f
∂t

+
1

2

∂2f

∂x2

)
dt+

∂f

∂x
dBt. (2.7)

Proposition 2.2. For every K > 0 there exists T = T (K) > 0 such that for
all ω in E ⊂ Ω as defined in (2.2), equation (1.3) has a unique solution (A, γ) ∈
C([0, T ∧ τK ];C(D,R) × R) such that for all t ∈ [0, T ∧ τK ], with γ(t) defined by
γ(t) := τ

ηγ(t),

A(t) = S(t)A0 +

∫ t

0

S(t− u)
( Ap(u)

γq(u) + b

)
du, (2.8)

γ(t) = R(t, Bt)γ0 +
1

η

∫ t

0

R(t− u,Bt −Bu)
(Ar(u)

γs(u)

)
du. (2.9)

Proof. Without loss of generality, we assume in what follows that the constants
τ = η = 1; which implies that γ(t) reads γ(t). Via application of the product rule,
it is easy to see from (2.3) that for x = Bt,

∂γ

∂t
=− 3

2
R(t, Bt)γ0 +

∂

∂t

∫ t

0

R(t− u,Bt −Bu)
(Ar(u)

γs(u)

)
du

=− 3

2
R(t, Bt)γ0 −

3

2

∫ t

0

R(t− u,Bt −Bu)
(Ar(u)

γs(u)

)
du+

Ar(t)

γs(t)

=− 3

2
γ +

Ar(t)

γs(t)
, (2.10)

and

∂γ

∂x
= γ,

∂2γ

∂x2
= γ. (2.11)

It follows from Itô’s derivative (see (2.7)) that

dγ =
(∂γ
∂t

+
1

2

∂2γ

∂x2

)
dt+

∂γ

∂x
dBt

=
(
− 3

2
γ +

Ar(t)

γs(t)
+

1

2
γ
)
dt+ γdBt

=− γdt+
Ar(t)

γs(t)
dt+ γdBt. (2.12)

Thus, (2.9) implies (1.3). Next, for every ω ∈ E ⊂ Ω, we first define the space

D(T,K,L, ω) :=
{
(A(ω), γ(ω) ∈ C

(
[0, T ∧ τK(ω)], C(D,R)× (0,∞)

)
:

γ(ω, t) ≥ e−
3
2−Kγ0, A(0) = A0, γ(0) = γ0,

∥(A, γ)(ω)∥C([0,T∧τK(ω),C×(0,∞)]) ≤ L
}
, (2.13)
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where T ∈ (0, 1] depends on K,L,A0, γ0 with

L > 2 + ∥A0∥C + eKγ0. (2.14)

We simply denote D(T,K,L, ω) by D (and drop all ω). Next, we define the distance
between (A1, γ1), (A2, γ2) ∈ C

(
[0, T ∧ τK(ω)], C(D,R)× R

)
by

d
(
(A1, γ1), (A2, γ2)

)
:=
∥∥(A1 −A2, γ1 − γ2)

∥∥
C
(
[0,T∧τK(ω)],C×R

). (2.15)

It is clear that the D is a closed metric space with the metric d; that is, D is a
complete metric space. Now, consider

F1(A, γ)(t) := S(t)A0 +

∫ t

0

S(t− u)
( Ap(u)

γq(u) + b

)
du, (2.16)

F2(A, γ)(t) := R(t, Bt)γ0 +

∫ t

0

R(t− u,Bt −Bu)
(Ar(u)

γs(u)

)
du, (2.17)

and

F (A, γ)(t) :=
(
F1(A, γ)(t), F2(A, γ)(t)

)
. (2.18)

In order to use the Banach fixed point theorem (i.e., the contraction mapping the-
orem) which guarantees the existence of a local unique pair of solutions (i.e., a
fixed-point) to (2.8) and (2.9), we shall prove the following:

1. There exists T := T (K,L, ∥A0∥C , γ0) > 0 such that

F (A, γ)(t) ∈ D whenever (A, γ) ∈ D. (2.19)

2. There exists T := T (K,L, ∥A0∥C , γ0) > 0 such that

d
(
F (A1, γ1), F (A2, γ2)

)
≤ 1

2
d
(
(A1, γ1), (A2, γ2)

)
, (Ai, γi) ∈ D, i = 1, 2.

(2.20)

We first show (1). It is clear that

F (A, γ)(0) = (A0, γ0). (2.21)

Now, let (A, γ) ∈ D be given. By using (2.4) and (2.16), we get

∥F1(A, γ)∥C([0,t];C) ≤∥A0∥C + b−1

∫ t

0

∥A(u)∥pCdu

≤∥A0∥C + b−1Lpt (2.22)

and by (2.17), we obtain

∥F2(A, γ)∥C([0,t];R) ≤e−
3
2 t+Btγ0 + γ−s

0

∫ t

0

e−
3
2 (t−u)+Bt−Bu∥A(u)∥pCdu

≤eKγ0 + e
3
2 s+Ks+2KLpt. (2.23)
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Setting
T1 := bL−p, T2 := e−

3
2 s−Ks−2KL−p and T̂ := min{T1, T2},

it follows from (2.14), (2.22) and (2.23) that

∥F (A, γ)∥C([0,T∧τK ,C×(0,∞)]) ≤ 2 + ∥A0∥C + eKγ0 ≤ L,

which implies immediately that F (A, γ) ∈ D.
Next, let us show (2). Indeed, for all (A1, γ1), (A2, γ2) ∈ D,

∥F1(A1, γ1)− F1(A2, γ2)∥C([0,t];C)

≤
∫ t

0

∥∥∥∥∥ Ap
1(u)

γq
1(u) + b

− Ap
2(u)

γq
2(u) + b

∥∥∥∥∥
C

du

≤
∫ t

0

∥Ap
1(u)−Ap

2(u)∥C
γq
1(u) + b

du+

∫ t

0

∥Ap
2(u)∥C

∣∣∣∣∣ 1

γq
1(u) + b

− 1

γq
2(u) + b

∣∣∣∣∣du. (2.24)

Now, let us estimate the first term. Considering the convex combination

Aλ(t) := λA1(t) + (1− λ)A2(t), λ ∈ [0, 1],

we have by (2.5) that

∥Ap
1(u)−Ap

2(u)∥C ≤ p

∫ 1

0

∥Aλ(u)∥p−1
C ∥A1(u)−A2(u)∥C dλ

≤ pLp−1∥A1(u)−A2(u)∥C ; (2.25)

which implies that∫ t

0

∥Ap
1(u)−Ap

2(u)∥C
γq
1(u) + b

du ≤ tpb−1Lp−1∥A1 −A2∥C([0,1],C). (2.26)

Similarly, considering the convex combination

γλ(t) := λγ1(t) + (1− λ)γ2(t), λ ∈ [0, 1],

we have that ∫ t

0

∥Ap
2(u)∥C

∣∣∣∣∣ 1

γq
1(u) + b

− 1

γq
2(u) + b

∣∣∣∣∣du
≤pLpb−2

∫ t

0

∫ 1

0

|γλ(u)|p−1|γ1(u)− γ2(u)|dλdu

≤tpL2p−1b−2∥γ1 − γ2∥C([0,t],R). (2.27)

Combining (2.26) and (2.27), we get that

∥F1(A1, γ1)− F1(A2, γ2)∥C([0,t],C)

≤tpLp−1b−1(1 + Lpb−1)∥(A1, γ1)− (A2, γ2)∥C([0,t],C×R). (2.28)

By a similar argument as above, we ascertain that

∥F2(A1, γ1)− F2(A2, γ2)∥C([0,t],R)

≤te2K+( 3
2+K)sγ−s

0 Lp−1(1 + e
3
2+KLγ−1

0 )∥(A1, γ1)− (A2, γ2)∥C([0,t],C×R). (2.29)

It now follows from (2.28) and (2.29) that there exists T̃ = T̃ (K,L, γ0) > 0 such
that the inequality (2.20) holds. The proof is complete.
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3. Global Existence
In this section, we shall establish existence and uniqueness of global positive solu-
tions. To prove the global existence and uniqueness result; i.e., Theorem 1.1, we
assume that (A(t), γ(t))0≤t≤t̃ is a solution of (1.3) such that for all ω ∈ E,

A(ω) ∈ C([0, t̃];C(D,R)), γ(ω) ∈ C([0, t̃];R),

and then we prove an a priori estimate for (A(t), γ(t)) almost surely.
First, we need the following results.

Lemma 3.1. For the function γ(t), we have the following estimates:

γ(t) ≥
(η
τ

) 1
s+1

e
− 3

2η t+ 1√
ηBtγ0 t > 0, (3.1)

inf
0≤s≤t

γ(s) ≥
(η
τ

) 1
s+1

e
− 3

2η t− 1√
ηB∗

t γ0 t > 0. (3.2)

Proof. Using Itô’s Lemma and the identity (2.10), we have that, for x = Bt,

∂

∂t
γs+1(t)dt = (s+ 1)γs(t)

∂γ(t)

∂t
dt

= (s+ 1)γs(t)

(
− 3

2τ
γ(t)dt+

1

τ

Ar(t)

γs(t)
dt

)

= − 3

2τ
(s+ 1)γs+1(t)dt+

1

τ
(s+ 1)Ar(t)dt,

(3.3)

∂

∂x
γs+1(t)dBt = (s+ 1)γs(t)

∂γ(t)

∂x
dBt =

√
η

τ
(s+ 1)γs+1(t)dBt, (3.4)

∂2

∂x2
(γ(t))s+1dt =

∂

∂x

(√η

τ
(s+ 1)(γ(t))s+1

)
dt =

1

τ
(s+ 1)2γs+1(t)dt. (3.5)

It follows from (3.3) – (3.5) that

τdγs+1(t) = τ
( ∂

∂t
γs+1(t) +

1

2

∂2

∂x2
γs+1(t)

)
dt+ τ

∂

∂x
γs+1(t)dBt

=
1

2
(s+ 1)(s− 2)γs+1(t)dt+

√
η(s+ 1)γs+1(t)dBt + (s+ 1)Ar(t)dt;

(3.6)

which implies that

τγs+1(t) =ηe
− 3

2η (s+1)t+ 1√
η (s+1)Btγ1+s

0

+ η(s+ 1)

∫ t
η

0

e
− 3

2η (s+1)(t−u)+ 1√
η (s+1)(Bt−Bu)Ar(u)du

≥ηe
− 3

2η (s+1)t+ 1√
η (s+1)Btγ1+s

0 ; (3.7)

from which we derive the estimates (3.1) and (3.2). The proof is complete.

Lemma 3.2. For every constant δ > 0, define the function

hδ(x, t) :=
Ar(x, t)

γs+1+δ(t)
, (x, t) ∈ D × [0, T ). (3.8)
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Then, hδ ∈ L1 (D × [0, T )) almost surely, and one has that∫ t̃

0

∫
D

hδ(x, t)dxdt ≤
τ

δγδ
0

+
δ − 3

2γδ
0

t̃
(η
τ

)− δ
s+1

e
3δ
2η+ δ

ηK +
√
η sup
0≤t≤t̃

∣∣∣∣∣
∫ t

0

1

γδ(s)
dBs

∣∣∣∣∣.
(3.9)

Proof. By using a similar argument as in Lemma 3.1, we have that

τ
∂

∂t
γ−δ(t)dt = −3δ

2
γ−δ(t)dt− δ

Ar(t)

γs+1+δ(t)
dt, (3.10)

τ
∂

∂x
γ−δ(t)dBt = −δ

√
ηγ−δ(t)dBt, (3.11)

τ
∂2

∂x2
γ−δ(t)dt = δ2γ−δ(t)dt. (3.12)

It follows from (3.10) – (3.12) that

τdγ−δ(t) =
1

2
δ(δ − 3)γ−δ(t)dt− δ

√
ηγ−δ(t)dBt − δ

Ar(t)

γs+1+δ(t)
dt. (3.13)

This implies by (3.2) that∫ t̃

0

Ar(t)

γs+1+δ(t)
dt ≤τ

δ
γ−δ
0 +

1

2
(δ − 3)

∫ t̃

0

γ−δ(t)dt+
√
η sup
0≤t≤t̃

∣∣∣∣∣
∫ t

0

1

γδ(s)
dBs

∣∣∣∣∣
≤ τ

δγδ
0

+
δ − 3

2
t̃
(η
τ

)− δ
s+1

e
3δ
2 + δ

ηKγ−δ
0 +

√
η sup
0≤t≤t̃

∣∣∣∣∣
∫ t

0

1

γδ(s)
dBs

∣∣∣∣∣.
Now, it suffices to show that

sup
0≤t≤t̃

∣∣∣∣∣
∫ t

0

1

γδ(s)
dBs

∣∣∣∣∣ < ∞ almost surely.

Indeed, using Hölder’s inequality, martingale inequality and Itô’s isometry, we have
by (3.2) that

E sup
0≤t≤t̃

∣∣∣∣∣
∫ t

0

1

γδ(s)
dBs

∣∣∣∣∣ ≤
(
E sup

0≤t≤t̃

∣∣∣∣∣
∫ t

0

1

γδ(s)
dBs

∣∣∣∣∣
2)1/2

≤
√
2

(
E

∣∣∣∣∣
∫ t

0

1

γδ(s)
dBs

∣∣∣∣∣
2)1/2

≤
√
2

(
E
∫ t

0

1

γ2δ(s)
dBs

)1/2

≤
√
2γ−δ

0

(η
τ

)− δ
s+1

(∫ t̃

0

Ee
3
η t− 2√

ηB∗
t dt

)1/2

< ∞.

The proof is complete.
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Lemma 3.3. For any two constants α > 1, β ≥ 0, define the function

hα,β(t, Bt) :=

∫
D

Aα(x, t)

γβ(t, Bt)
dx, 0 ≤ t < T.

p− 1

r
< min

{
2

N + 2
,

q

s+ 1

}
,

it follows that for all ω ∈ E defined in (2.2) up to negligible set,

dhα,β ≤
( 1

2τ
(3β + β2)− α

)
hα,βdt−

(√ηβ

τ
+ β

)
hα,βdBt + v(t)hα,β , (3.14)

where v(t) is an integrable function on (0, T ), almost surely.

Proof. Let α > 1 and β ≥ 0. Using Itô’s Lemma, we have that for s = Bt,

dhα,β(t, s) =
(∂hα,β

∂t
+

1

2

∂2hα,β

∂s2

)
dt+

∂hα,β

∂s
dBt.

By using similar arguments as in (3.4) – (3.5) and (3.13), we get

∂hα,β

∂t
dt

=

∫
D

[
α
Aα−1

γβ
Atdt− β

Aα

γβ+1

∂γ

∂t
dt

]
dx

=

∫
D

[
α
Aα−1

γβ

(
ϵ2∆A−A+

Ap

γq + b

)
dt− β

Aα

γβ+1

(
− 3

2τ
γdt+

1

τ

Ar(t)

γs
dt

)]
dx

=

(
3β

2τ
− α

)
hα,βdt+ αϵ2

∫
D

Aα−1

γβ
∆Adxdt+ α

∫
D

Aα+p−1

γβ (γq + b)
dxdt

− β

τ

∫
D

AαAr

γβ+s+1
dxdt,

(3.15)
∂2hα,β

∂s2
dt =

β2

τ

∫
D

Aα

γβ
dxdt =

β2

τ
hα,β , (3.16)

and

∂hα,β

∂s
dBt = −

√
ηβ

τ

∫
D

Aα

γβ
dxdBt = −

√
ηβ

τ
hα,βdBt. (3.17)

Therefore, (3.15) – (3.17) imply that

dhα,β(t, s) =
( 1

2τ
(3β + β2)− α

)
hα,β(t, s)dt−

√
ηβ

τ
hα,β(t, s)dBt

+

(
αϵ2

∫
D

Aα−1

γβ
∆Adx+ α

∫
D

Aα+p−1

γβ (γq + b)
dx− β

τ

∫
D

AαAr

γβ+s+1
dx

)
dt.

Since

αϵ2
∫
D

Aα−1

γβ
∆Adx = αϵ2

∫
∂D

Aα−1

γβ
∇A · νdS − αϵ2(α− 1)

∫
D

Aα−2

γβ
|∇A|2dx
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= αϵ2
∫
∂D

Aα−1

γβ

(
−aA

ϵ

)
dS − αϵ2(α− 1)

∫
D

Aα−2

γβ
|∇A|2dx

= −αϵa

∫
∂D

Aα

γβ
dS − αϵ2(α− 1)

∫
D

Aα−2

γβ
|∇A|2dx

≤ −αϵ2(α− 1)

∫
D

Aα−2

γβ
|∇A|2dx,

we obtain the following inequality,

dhα,β(t, s) ≤
( 1

2τ
(3β + β2)− α

)
hα,β(t, s)dt−

√
ηβ

τ
hα,β(t, s)dBt + E1 + E2,

(3.18)

where

E1 = −αϵ2(α− 1)

∫
D

Aα−2

γβ
|∇A|2 dxdt, (3.19)

and

E2 = α

∫
D

Aα+p−1

γβ (γq + b)
dxdt. (3.20)

Now, we concentrate on estimates of E1 and E2. To do so, let us define the
number 0 < κ < 1 by

κ =:
p− 1

r
=

q

s+ 1 + δ
for some δ > 0 and (p− 1) < κr, q = κ(s+ 1 + δ).

Then we obtain

Aα+p−1

γq
=

(
Ar

γs+1+δ

)κ

Aα = (hδ)
κz2, (3.21)

where hδ =
Ar

γs+1+δ
is defined in the statement of Lemma 3.2 and

z := Aα/2. (3.22)

Notice that (3.22) implies that

|∇z|2 =
α2

4
Aα−2|∇A|2. (3.23)

By Hölder’s inequality, it follows from (3.21) – (3.22) that∫
D

Aα+p−1

γq
dx =

∫
D

(hδ)
κz2 ≤ ∥hδ∥κL1(D)∥z∥

2

L
2

1−κ (D)
. (3.24)

Since 0 < κ ≤ 2
N+2 < 2

N , it follows from Gagliardo-Nirenberg inequality (see
e.g. [18]) that there is a constant C = C(D,N, κ) > 0 such that for θ := Nκ

2 ∈ (0, 1),

∥z∥2
L

2
1−κ (D)

≤ C
[
∥∇z∥θL2(D)∥z∥

1−θ
L2(D) + ∥z∥L2(D)

]2
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≤ 4C
[
∥∇z∥2θL2(D)∥z∥

2(1−θ)
L2(D) + ∥z∥2L2(D)

]
. (3.25)

It follows from (3.24) and (3.25) that∫
D

Aα+p−1

γq
dx ≤ 4C∥hδ∥κL1(D)

[
∥∇z∥2θL2(D)∥z∥

2(1−θ)
L2(D) + ∥z∥2L2(D)

]
. (3.26)

Since by Young’s inequality one has that, for λ > 0,

∥hδ∥κL1(D)∥∇z∥2θL2(D)∥z∥
2(1−θ)
L2(D) ≤ θλ1/θ∥∇z∥2L2(D) +

1− θ

λ
1

1−θ

∥hδ∥
κ

1−θ

L1(D)∥z∥
2
L2(D),

(3.27)

then by choosing λ > 0 sufficiently small such that

4αθCλ1/θ <
ϵ2(α− 1)

α
,

one has that, by using (3.23) and (3.26) – (3.27),

E1 + E2 ≤ γ−β
(
− α−1ϵ2(α− 1)∥∇z∥2L2(D) + 4αC∥hδ∥κL1(D)∥∇z∥2θL2(D)∥z∥

2(1−θ)
L2(D)

+ 4αC∥hδ∥κL1(D)∥z∥
2
L2(D)

)
dt

≤ γ−β
(
− α−1ϵ2(α− 1)∥∇z∥2L2(D) + 4αθCλ1/θ∥∇z∥2L2(D)

+
[1− θ

λ
1

1−θ

∥hδ∥
κ

1−θ

L1(D) + 4αC∥hδ∥κL1(D)

]
∥z∥2L2(D)

)
dt

≤ C1

[
∥hδ∥

κ
1−θ

L1(D) + ∥hδ∥κL1(D)

]
hα,βdt, C1 > 0. (3.28)

Therefore, by using (3.18),

dhα,β ≤
( 1

2τ
(3β+β2)−α

)
hα,β(t, s)dt−

√
κβ

τ
hα,β(t, s)dBt+C1v(t)hα,βdt, (3.29)

where
v(t) = ∥hδ(t)∥

κ
1−θ

L1(D) + ∥hδ(t)∥κL1(D).

Since κ
1−θ ≤ 1, it follows from Lemma 3.2 that v(t) is integrable on (0, T ) almost

surely. The proof is complete.

Lemma 3.4. Under the conditions in Lemma 3.3 and the set E defined in (2.2)
up to negligible set, there exists a constant C(T ) := Cα,β(T ) ≤ ∞ such that for all
t ∈ [0, T ) and ω ∈ E ⊂ Ω,

hα,β(t, ω) ≤ C(T ). (3.30)

Proof. Using Ito’s Lemma and inequality (3.14) in Lemma 3.3, it follows that for
all t ∈ [0, T ) and ω ∈ E ⊂ Ω,

d

[
exp

(
−
( 1

2τ
(3β + β2)− α

)
t+ C1

∫ t

0

v(s)ds+

√
ηβ

τ
Bt(ω)

)
hα,β(t, ω)

]
≤ 0.

(3.31)
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Integrating from 0 to t, we get from (3.31) that

hα,β(t, ω) ≤ C2 exp

(
− C1

∫ T

0

v(s)ds

)
hα,β(0, ω),

where

C2 = exp

(( 1

2τ
(3β + β2)− α

)
T

)
exp

(√
ηβ

τ
sup

0≤t≤T
|Bt|

)
.

The proof is complete.
From Lemma 3.1 and Lemma 3.4, we deduce the Corollary below.

Corollary 3.1. Let ℓ ≥ 1 and all other assumptions in Theorem 1.1, Lemma 3.3
and Lemma 3.4 hold true. Define

g1(A, γ) =
Ap

γq + b
,

g2(A, γ) =
Ar

γs
,

then there exist positive constant Cℓ(T ), such that

∥gj(A, γ)∥Lℓ(Ω) ≤ Cℓ(T ) j = 1, 2

for all 0 ≤ t < T .

Proof. The proof to this Corollary follows from Lemma 3.4.
Proof of Theorem 1.1. Under the conditions in Lemma 3.3 and the set E defined
in (2.2) up to negligible set, using (2.5), (2.8) and Corollary 3.1, we have that for
all 0 ≤ t ≤ T ,

∥A(t)∥L2(D) ≤∥S(t)A0∥L2(D) +

∫ t

0

∥∥∥S(t− u)
( Ap(u)

γq(u) + b

)∥∥∥
L2(D)

du

≤∥A0∥L2(D) + T
∥∥∥ Ap(u)

γq(u) + b

∥∥∥
L2(D)

≤∥A0∥L2(D) + TC2(T ) (3.32)

In addition, one is able to obtain the estimate (1.4) from (3.2). With these esti-
mates, the unique local solution obtained in Proposition 2.2 may now be continued
indefinitely to obtain a global solution. The proof is complete.
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