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Abstract In this paper, we construct a two-step modulus-based multisplit-
ting iteration method based on multiple splittings of the system matrix for
the nonlinear complementarity problem. And we prove its convergence when
the system matrix is an H-matrix with positive diagonal elements. Numerical
experiments show that the proposed method is efficient.
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1. Introduction
For a given matrix A ∈ Rn×n and vector q ∈ Rn, the nonlinear complementarity
problem NCP (A, q) consists of finding a vector z ∈ Rn which satisfies the conditions

z ≥ 0, Az + q + φ(z) ≥ 0, zT (Az + q + φ(z)) = 0. (1.1)

If φ(z) = 0, then the problem (1.1) reduces to a linear complementarity problem
(LCP).

By using the matrix splitting method to LCP, Bai [1]presented the modulus-
based matrix splitting iteration method. This method proved to be very efficient
and attracted much attention [4, 7, 11,12,14,15]. Especially, Ke, Ma and Zhang [7]
established two classes of modulus-based matrix splitting iteration methods for
the second-order cone linear complementarity problems. Applications to nonlinear
complementarity problems(NCP) have been also considered [5, 8, 10, 13]. Xia and
Li [13] presented some modulus-based matrix splitting iteration methods for a class
of nonlinear complementarity problem, such as the modulus-based Gauss-Seidel it-
eration method (MGS) and the modulus-based SOR iteration method (MSOR). In
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papers [5] and [10], the authors presented accelerated modulus-based matrix split-
ting iteration methods to solve a class of nonlinear complementarity problems. Ke,
Ma and Zhang [8] established a class of relaxation modulus-based matrix splitting
iteration methods for circular cone nonlinear complementarity problems.

In addition, Ke and Ma [6] analyzed the convergence of the two-step modulus-
based matrix splitting iteration method for LCP and they presented the convergence
conditions. Bai and Zhang [2] constructed modulus-based multisplitting iteration
methods for LCP based on multiple splittings of the system matrix and they pre-
sented the convergence theory. Li, Wang and Yin [9] gave the two-step modulus-
based matrix splitting iteration method for a restricted class of NCP. In this paper,
we construct a two-step modulus-based multisplitting iteration method based on
multiple splittings of the system matrix for NCP.

This paper is organized as follows. Section 2 is the preliminaries. In Section 3,
the two-step modulus-based multisplitting iteration method for NCP is introduced.
The convergence of this method for H-matrices is considered in Section 4. One
numerical example is given in Section 5.

2. Preliminaries
For convenience, we first briefly describe the notations.

Let A ∈ Rn×n be an n×n matrix, for A,B ∈ Rn×n, we write A ≤ B if aij ≤ bij .
Calling A nonnegative if A ≥ 0. By |A| = (|aij |) we define the absolute value of
A ∈ Rn×n. ⟨A⟩ denotes the comparison matrix of A. ρ(A) denotes the spectral
radius of A.

Lemma 2.1 ( [3]). (1) If A ∈ Rn×n is an M -matrix, B ∈ Rn×n is a Z-matrix,
and A ≤ B, then B is an M -matrix. (2) If A ∈ Rn×n is an M -matrix, then there
is a positive vector x such that Ax > 0.

Lemma 2.2 ( [3]). Let A ∈ Rn×n be an H-matrix, then A is nonsingular and∣∣A−1
∣∣ ≤ ⟨A⟩−1.

Lemma 2.3 ( [12]). Let A ∈ Rn×n be nonnegative. If there is a positive vector x
such that Ax < x, then ρ(A) < 1.

Lemma 2.4 ( [3] ). Let A ∈ Rn×n be an H-matrix, then ρ
(
|D|−1|B|

)
< 1, where

D = diag(A), B = D −A.

3. Two-step modulus-based multisplitting method
Lemma 3.1 ( [14]). Let A = M −N be a splitting of A, h be a positive constant,
and Ω be a positive diagonal matrix. Then:

(1) If z is a solution of (1.1), then x = h
2

(
z − Ω−1φ(z)

)
satisfies the implicit

fixed-point equation

(Ω +M)x = Nx+ (Ω−A)|x| − h

[
q + φ

(
1

h
(|x|+ x)

)]
. (3.1)

(2) If x satisfies (3.1), then z = 1
h (|x|+ x) is a solution of (1.1).
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To suit computational requirements of the modern high-speed multiprocessor
systems, by Lemma 3.1, we establish the following two-step modulus-based multi-
splitting(TMM) iteration method and its several special explicit forms.

Step 1. Choose an initial vector x(0) ∈ Rn and set m := 0;
Step 2. For k = 1, 2, · · · , l, we solve the subsystem

(Ω +M ′
k)x

(m+ 1
2 ,k) =N ′

kx
(m) + (Ω−A)

∣∣∣x(m)
∣∣∣

− h

[
q + φ

(
1

h

(∣∣∣x(m)
∣∣∣+ x(m)

))]
,

(3.2)

(Ω +M ′′
k )x

(m+1,k) =N ′′
k x

(m+ 1
2 ,k) + (Ω−A)

∣∣∣x(m+ 1
2 ,k)

∣∣∣
− h

[
q + φ

(
1

h

(∣∣∣x(m+ 1
2 ,k)

∣∣∣+ x(m+ 1
2 ,k)

))]
;

(3.3)

Step 3. x(m+1) =
∑l

k=1Ekx
(m+1,k) and z(m+1) = 1

h

(∣∣x(m+1)
∣∣+ x(m+1)

)
;

Step 4. If z(m+1) satisfies a prescribed stopping rule, then stop. Otherwise, set
m := m+ 1 and return to Step 2.

The TMM method provides a general framework of two-step modulus-based
multisplitting iteration methods for solving nonlinear complementarity problems.
Such iteration methods have a convenient parallel structure and can be implemented
on parallel computers. In this method, taking

M ′
k =

1

α
(D − βL′

k) , N
′
k =

1

α
[(1− α)D + (α− β)L′

k + αU ′
k] ,

M ′′
k =

1

α
(D − βL′′

k) , N
′′
k =

1

α
[(1− α)D + (α− β)L′′

k + αU ′′
k ] ,

we can get the two-step modulus-based multisplitting accelerated overrelaxation
iteration method (TMMAOR). For α = 1, β = 0, it becomes the two-step modulus-
based multisplitting Jacobi method (TMMJ), for α = β = 1, the two-step modulus-
based multisplitting Gauss-Seidel method (TMMGS) and for α = β, the two-step
modulus-based multisplitting SOR method (TMMSOR). When l = 1, TMMAOR,
TMMSOR, TMMGS and TMMJ becomes TMAOR, TMSOR, TMGS and TMJ,
respectively.

4. Main Results
To present the following discussion, we assume that

φ(z) = (φ1 (z1) , φ2 (z2) , · · · , φn (zn))
T

is differentiable, satisfying that 0 ≤ dφi(zi)
dzi ≤ ψi, where ψi ∈ R, i = 1, 2, · · · , n.

By the differential mean value theorem, there exists ξ(m)
i ∈ R, such that

φi

(
z
(m)
i

)
− φ (z∗i ) =

dφi

(
ξ
(m)
i

)
dzi

(
z
(m)
i − z∗i

)
, i = 1, 2, · · · , n.

Let ψ(m) = diag

(
dφ1

(
ξ
(m)
1

)
dz1 ,

dφ2

(
ξ
(m)
2

)
dz2 , · · · , dφn(ξ(m)

n )
dzn

)
and ψ = diag(ψ1, ψ2, · · · , ψn),

then we have
φ
(
z(m)

)
− φ (z∗) = ψ(m)

(
z(m) − z∗

)
and ψ(m) ≤ ψ.
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Theorem 4.1. Let A ∈ Rn×n be an H-matrix with positive diagonal elements
and let (M ′

k, N
′
k, Ek), (M ′′

k , N
′′
k , Ek) be two multisplittings of A. Assume that A =

M ′
k −N ′

k =M ′′
k −N ′′

k are H-splittings, ψk ≤ ψ, h > 0 and Ω is a positive diagonal
matrix satisfying Ω ≥ D + ψ, then for any initial vector x(0) ∈ Rn the iterative
sequence

{
z(m)

}∞
m=0

generated by the TMM method convergences to the unique
solution z∗ of the NCP (A, q).

Proof. Let z∗ be a solution of (1.1), then x∗ = h
2

(
z∗ − Ω−1φ (z∗)

)
satisfies

(Ω +M)x∗ = Nx∗ + (Ω−A) |x∗| − h

[
q + φ

(
1

h
(|x∗|+ x∗)

)]
. (4.1)

To prove lim
m→∞

z(m) = z∗, we need only to prove that lim
m→∞

x(m) = x∗.
By (3.2) and (4.1), we have∣∣∣x(m+ 1

2 ,k) − x∗
∣∣∣

=
∣∣∣(Ω +M ′

k)
−1

{
N ′

k

(
x(m) − x∗

)
+ (Ω−A)

(∣∣∣x(m)
∣∣∣− |x∗|

)
−h

[
φ

(
1

h

(∣∣∣x(m)
∣∣∣+ x(m)

))
− φ

(
1

h
(|x∗|+ x∗)

)]}∣∣∣∣
=
∣∣∣(Ω +M ′

k)
−1

{
N ′

k

(
x(m) − x∗

)
+ (Ω−A)

(∣∣∣x(m)
∣∣∣− |x∗|

)
−ψ(m)

[(
|x(m)| − |x∗|

)
+ x(m) − x∗

]}∣∣∣
=
∣∣∣(Ω +M ′

k)
−1

[(
N ′

k − ψ(m)
)(

x(m) − x∗
)
+
(
Ω−A− ψ(m)

)(∣∣∣x(m)
∣∣∣− |x∗|

)]∣∣∣
≤
∣∣∣(Ω +M ′

k)
−1

∣∣∣ (∣∣∣N ′
k − ψ(m)

∣∣∣+ ∣∣∣Ω−A− ψ(m)
∣∣∣) ∣∣∣x(m) − x∗

∣∣∣ .
Since ⟨M ′

k⟩ − |N ′
k| is an M -matrix, by Lemma 2.1, ⟨M ′

k⟩ is also an M -matrix,
so M ′

k and Ω+M ′
k are H-matrices. By Lemma 2.2, we know that

∣∣∣(Ω +M ′
k)

−1
∣∣∣ ≤

(Ω + ⟨M ′
k⟩)

−1, so∣∣∣x(m+ 1
2 ,k) − x∗

∣∣∣ ≤ ∣∣∣(Ω +M ′
k)

−1
∣∣∣ (∣∣∣N ′

k − ψ(m)
∣∣∣+ ∣∣∣Ω−A− ψ(m)

∣∣∣) ∣∣∣x(m) − x∗
∣∣∣

≤ (Ω + ⟨M ′
k⟩)

−1
(∣∣∣N ′

k − ψ(m)
∣∣∣+ ∣∣∣Ω−A− ψ(m)

∣∣∣) ∣∣∣x(m) − x∗
∣∣∣

= l′k

∣∣∣x(m) − x∗
∣∣∣ ,

where
l′k = (Ω + ⟨M ′

k⟩)
−1

(∣∣∣N ′
k − ψ(m)

∣∣∣+ ∣∣∣Ω−A− ψ(m)
∣∣∣) .

Similarly, we have ∣∣∣x(m+1,k) − x∗
∣∣∣ ≤ l′′k

∣∣∣x(m+ 1
2 ,k) − x∗

∣∣∣ ,
where

l′′k = (Ω + ⟨M ′′
k ⟩)

−1
(∣∣∣N ′′

k − ψ(m+ 1
2 )
∣∣∣+ ∣∣∣Ω−A− ψ(m+ 1

2 )
∣∣∣) .

So the error formula of the TMM iteration method is∣∣∣x(m+1)−x∗
∣∣∣ ≤ l∑

k=1

Ek

∣∣∣x(m+1,k)−x∗
∣∣∣ ≤ l∑

k=1

Ekl
′′
k l

′
k

∣∣∣x(m)−x∗
∣∣∣ = lTMM

∣∣∣x(m) − x∗
∣∣∣ ,
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where lTMM =
∑l

k=1Ekl
′′
k l

′
k.

It is obvious that l′k is nonnegative, and

l′k = (Ω + ⟨M ′
k⟩)

−1
(∣∣∣N ′

k − ψ(m)
∣∣∣+ ∣∣∣Ω−A− ψ(m)

∣∣∣)
= I−(Ω+⟨M ′

k⟩)
−1

(Ω+⟨M ′
k⟩)+(Ω+⟨M ′

k⟩)
−1

(∣∣∣N ′
k−ψ(m)

∣∣∣+∣∣∣Ω−A−ψ(m)
∣∣∣)

= I − (Ω + ⟨M ′
k⟩)

−1
(
Ω+ ⟨M ′

k⟩ −
∣∣∣N ′

k − ψ(m)
∣∣∣− ∣∣∣Ω−A− ψ(m)

∣∣∣)
= I − (Ω + ⟨M ′

k⟩)
−1

(
⟨M ′

k⟩ −
∣∣∣N ′

k − ψ(m)
∣∣∣+Ω−

∣∣∣Ω−A− ψ(m)
∣∣∣)

= I − (Ω + ⟨M ′
k⟩)

−1
(
⟨M ′

k⟩ −
∣∣∣N ′

k − ψ(m)
∣∣∣+Ω−

∣∣∣Ω−D − ψ(m)
∣∣∣− |B|

)
= I − (Ω + ⟨M ′

k⟩)
−1

(
⟨M ′

k⟩ −
∣∣∣N ′

k − ψ(m)
∣∣∣+D + ψ(m) − |B|

)
≤ I − (Ω + ⟨M ′

k⟩)
−1

(⟨M ′
k⟩ − |N ′

k|+D − |B|) .

Since ⟨M ′
k⟩ − |N ′

k| is an M -matrix, by Lemma 2.1, there exists a positive vector
u > 0 such that (⟨M ′

k⟩ − |N ′
k|)u > 0.

It is obvious that

aii = |aii| ≥ |m′
ii| − |n′ii| , |aij | ≤

∣∣m′
ij

∣∣+ ∣∣n′ij∣∣ ,
thus, the ith component of (D − |B|)u satisfies

aiiui −
∑
j ̸=i

|aij |uj ≥ (|m′
ii| − |n′ii|)ui −

∑
j ̸=i

(∣∣m′
ij

∣∣+ ∣∣n′ij∣∣)uj > 0,

so (D − |B|)u > 0, l′ku ≤ u− (Ω + ⟨M ′
k⟩)

−1
(⟨M ′

k⟩ − |N ′
k|+D − |B|)u < u.

Similarly, l′′ku < u. So l′′k l
′
ku < l′′ku < u, and Ekl

′′
k l

′
ku < Eku,

∑l
k=1Ekl

′′
k l

′
ku <∑l

k=1Eku, i.e., lTMMu < u.
Since lTMM is nonnegative, by Lemma 2.3, we have ρ (lTMM) < 1.
The proof is completed.
From Theorem 4.1, we can obtain the following theorem easily.

Theorem 4.2. Let A ∈ Rn×n be an H-matrix with positive diagonal elements,
D = diag(A), B = D − A, and let (D − L′

k, U
′
k, Ek), (D − L′′

k , U
′′
k , Ek) be two

multisplittings of A, where Lk is a strictly lower-triangular matrix and U ′
k = D −

L′
k−A, U ′′

k = D−L′′
k −A. Assume that ψk ≤ ψ, h > 0 and Ω is a positive diagonal

matrix satisfying Ω ≥ D + ψ, then for any initial vector x(0) ∈ Rn, the iterative
sequence

{
z(m)

}∞
m=0

generated by the TMMAOR method convergences to the unique
solution z∗ of the NCP (A, q), provided that 0 < β ≤ α ≤ 1.

5. Numerical example
One numerical example is given in this section to illustrate the efficiency of the
proposed method and to verify the convergence theory established above. In all
the following numerical experiments, the initial vector is chosen to be zero and
h = 1. And set A = D − L − U , where D,−L,−U are the diagonal, the strictly
lower-triangular and the strictly upper-triangular matrices of A, respectively. Let
M ′

1 = M ′′
1 = 1

αD − L, N ′
1 = N ′′

1 = 1
α [(1 − α)D + αU ], and M ′

2 = M ′′
2 = 1

αD − U,
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N ′
2 = N ′′

2 = 1
α [(1−α)D+αL], then A =M ′

1−N ′
1 =M ′

2−N ′
2 =M ′′

1 −N ′′
1 =M ′′

2 −N ′′
2

are two H-compatible splittings of A.
Since the complementarity condition zT (Az + q + φ(z)) = 0 is equivalent to∥∥min
(
Az(k) + q + φ

(
z(k)

)
, z(k)

)∥∥
2
= 0, iterations are terminated when the norm

of the residual vector (denoted by ‘RES’)

RES
(
z(k)

)
:=

∥∥∥min
(
Az(k) + q + φ

(
z(k)

)
, z(k)

)∥∥∥
2

satisfies RES ≤ 10−5, or k reaches the maximal number of iteration steps, which is
1000 in our paper. All the computations are performed in MATLAB® with double
machine precision where the CPU is 2.40 GHz and the memory is 4.00 GB.

Example 5.1 ( [9]). Let m be a given positive integer, n = m2. Choose A in (1.1)
to be a block upper tridiagonal matrix as follows:

A =



S − I − I

S −I
. . .

S
. . . −I
. . . − I

S


∈ Rn×n

where S = tridiag(−1, 4,−1) ∈ Rm×m is a tridiagonal matrix. Let q = (1,−1, · · · ,
1, (−1)n−1)T ∈ Rn and

φ(z) =

(√
z21 + 0.25,

√
z22 + 0.25, · · · ,

√
z2n + 0.25

)T

∈ Rn.

The matrix A in Example 5.1 is an H+-matrix. In actual implementation, the
parameter matrix Ω is chosen to be D + I in Example 5.1 for both the two-step
modulus-based multisplitting successive overrelaxation method and the two-step
modulus-based successive overrelaxation method, where D is the diagonal matrix
of A, I is the identity matrix. For TMMSOR, we choose E1 = diag(1, 0, 1, 0, · · · , n
mod 2) ∈ Rn×n and E2 = I − E1.

Table 1. The optimal parameters α∗ for TMSOR and TMMSOR in Example 5.1.
m α 0.8 0.9 1.0 1.1∗ 1.2 1.3 1.4

256
TMSOR IT 10 9 8 8∗ 8 8 9

CPU 0.188 0.172 0.156 0.141∗ 0.156 0.156 0.172

TMMSOR IT 7 6 6 6∗ 7 8 8
CPU 0.112 0.085 0.076 0.074∗ 0.108 0.123 0.120

In Table 1, the number of iteration steps (denoted by ‘IT’) and the elapsed
CPU time in seconds (denoted by ‘CPU’) are listed for the two-step modulus-based
multisplitting successive overrelaxation iteration method and the two-step modulus-
based successive overrelaxation iteration method when parameter α varies from 0.8
to 1.4 with m = 256. The optimal parameters α∗ is chosen firstly to minimize the
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Table 2. Numerical results for Example 5.1.
m MGS MSOR TMSOR TMMSOR

IT 20 19 8 6
256 CPU 0.203 0.187 0.141 0.074

RES 9.26e-06 8.51e-06 3.30e-06 1.62e-06
IT 20 19 8 6

512 CPU 0.890 0.860 0.688 0.594
RES 9.26e-06 8.51e-06 4.78e-06 3.17e-06
IT 21 20 8 6

1024 CPU 3.798 3.625 2.782 2.644
RES 7.76e-06 6.36e-06 6.84e-06 6.27e-06
IT 22 21 8 7

2048 CPU 19.096 18.096 14.064 13.942
RES 6.49e-06 4.78e-06 9.76e-06 1.65e-06

number of iteration steps. When the number of iteration steps are the same, then
we choose α∗ to minimize the elapsed CPU time.

From Table 1, it is seen that for Example 5.1, the optimal parameter α∗ = 1.1 for
both the two-step modulus-based multisplitting successive overrelaxation iteration
method and the two-step modulus-based successive overrelaxation iteration method
when m = 256. In the following, we choose α∗ = 1.1 for both the two-step modulus-
based multisplitting successive overrelaxation iteration method and the two-step
modulus-based successive overrelaxation iteration method.

In Table 2, the number of iteration steps, the elapsed CPU time in seconds and
the residual for four methods are listed respectively when m is varying.

From Table 2, it is observed that with the same dimension, the number of
iteration steps for two-step modulus-based multisplitting method is less than that
for modulus-based matrix splitting method and two-step modulus-based matrix
splitting method, and the two-step modulus-based multisplitting method costs less
CPU time. Meanwhile, the CPU time increases when the problem size n = m2

increases for all methods, while the number of the iteration steps changes few.

6. Conclusions
In this paper, the two-step modulus-based multisplitting iteration method for a
class of nonlinear complementarity problems was proposed and its convergence the-
ories were studied when the system matrix is an H-matrix with positive diagonal
elements. Numerical experiments showed the new method is more effective than
modulus-based matrix splitting method and two-step modulus-based matrix split-
ting method.
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