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Abstract In this paper, we study the solvability for Riemann-Stieltjes in-
tegral boundary value problems of Bagley-Torvik equations with fractional
derivative under resonant conditions. Firstly, the kernel function is presented
through the Laplace transform and the properties of the kernel function are
obtained. And then, some new results on the solvability for the boundary
value problem are established by using Mawhin’s coincidence degree theory.
Finally, two examples are presented to illustrate the applicability of our main
results.
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1. Introduction
Since the viscoelastic medium damping could not be well described through the
forced vibration equation of integer order, many researchers use fractional integral
or fractional derivative to describe the properties of viscoelastic materials. There-
fore, fractional differential equation is playing an important role in describing vis-
cous damping model, see [13, 14, 20, 22, 25]. In [25], Torvik and Bagley established
generalized constitutive relation for viscoelastic materials in which the customary
time derivatives of integer order are replaced by derivatives of fractional order and
homogeneous Bagley-Torvik equation was also obtained

Ay′′(t) +B0D
3
2
t y(t) + Cy(t) = 0.

In [20], Podlubny studied the initial value problems for the inhomogeneous
Bagley-Torvik equation{

Ay′′(t) +B0D
3
2
t y(t) + Cy(t) = f(t), t > 0,

y(0) = 0, y′(0) = 0,

and the numerical solutions are presented (see [20], page 229). After that, there are
many research results on this model, see [1, 5, 24] and the references therein.
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As it well known that fractional differential equations have been studied for a
long time. In the recent decades, a lot of research results have been published
on the theory of boundary value problems of fractional differential equations, see
[1–3, 5, 7–9, 15–18, 23, 26–28]. As far as we know, the resonance problem has to be
considered in the theoretical study of vibration equation. In [4, 10, 12, 19, 24], the
authors have studied the solvability of the fractional vibration equation under the
resonant conditions. In [24], Stanek investigated the nonlocal fractional boundary
value problems at resonance{

u′′ = AcDαu+ f(t, u,cDµu, u′),

u′(0) = u′(T ), Λ(u) = 0,

where α ∈ (1, 2), µ ∈ (0, 1). The existence of solutions of the problem are given by
using the Leray-Schauder degree method. Since Riemann-Stieltjes integral bound-
ary conditions not only contain the classical Riemann integral boundary conditions
but also two-point boundary value and multi-point boundary conditions, Riemann-
Stieltjes integral boundary value problems have much wider application.

Motivated by the above works, we study the following Riemann-Stieltjes inte-
gral boundary value problems of Bagley-Torvik equation with Caputo fractional
derivative under the resonant condition{

x′′(t) + bcDα
0+x(t) + ax(t) = f(t, x(t), x′(t)), t ∈ (0, 1),

x(0) = 0, x(1) =
∫ 1

0
x(t)dA(t),

(1.1)

where 0 < α ≤ 1, 0 ≤ a ≤ 1 and 0 ≤ b ≤ min{1, Γ(5−α)
2((3−α)2+1−α)} are real constants,

cDα
0+ is the Caputo fractional derivative of order α,

∫ 1

0
x(t)dA(t) is the Riemann-

Stieltjes integral of x with respect to A and A(t) is a monotone increasing function
and not a constant on t ∈ [0, 1], f : [0, 1]× R2 → R is continuous.

By using the Laplace transform, the kernel function is obtained. And then,
by using Mawhin’s coincidence degree theory, we establish some new results of
the solvability for boundary value problem (1.1) under the resonance condition
g1(1) =

∫ 1

0
g1(t)dA(t), where the definition of g1(t) see (2.2). In order to illustrate

the applicability of our main results, two examples are presented.

2. Preliminaries
The definitions of fractional integral, fractional derivative and Laplace transform
and the related lemmas can be found in [6, 11,20].

Definition 2.1 (See [6], P68). Let δ, β, z ∈ C and Re(δ) > 0. The function
Eδ,β(z) is defined by

Eδ,β(z) =

∞∑
k=0

zk

Γ(kδ + β)
,

whenever the series converges is called the two-parameter Mittag-Leffler function
with parameters β and δ.

Lemma 2.1 (See [6], P68). Let δ, β > 0. The power series Eδ,β(z) is convergent
for all z ∈ C. In other words, Eδ,β is an entire function.



BVPs of Bagley-Torvik equations at resonance 1939

Let
E

(k)
δ,β (z) =

dk

dzk
Eδ,β(z), k = 0, 1, 2, · · · .

Lemma 2.2. Let z ∈ R, k = 0, 1, 2, · · · . Then

E
(k)
δ,β (z) =

∞∑
j=0

zjΓ(k + j + 1)

Γ(j + 1)Γ(δ(k + j) + β)
.

Proof. By Definition 2.1 and Lemma 2.1, we can get

E
(k)
δ,β (z) =

∞∑
j=0

dk

dzk

( zj

Γ(jδ + β)

)
=

∞∑
j=k

Γ(j + 1)zj−k

Γ(j − k + 1)Γ(δj + β)

=

∞∑
j=0

zjΓ(k + j + 1)

Γ(j + 1)Γ(δ(k + j) + β)
.

Thus, the lemma can be obtained.

Lemma 2.3 (See [11]). Let n− 1 < δ ≤ n, n ∈ N. The Laplace transform formula
for cDδ

0+g(t) is

L[cDδ
0+g(t)](p) = pδL[g(t)](p)−

n−1∑
j=0

pδ−1−jg(j)(0), p > 0.

Lemma 2.4 (See [20]). Let δ > 0, β > 0, Eδ,β(z) be a two-parameter Mittag-Leffler
function. Then

L[tδk+β−1E
(k)
δ,β (±at

δ)](p) =
k!pδ−β

(pδ ∓ a)k+1
, p > |a| 1δ .

Lemma 2.5. The function E
(n)
2−α,γ+αn(−bt2−α) has the following properties, where

n = 0, 1, 2, · · · , t ∈ [0, 1].
(1) 0 < E

(n)
2−α,γ+αn(−bt2−α) ≤ eb if γ ≥ 1 and n ≥ 0, or γ = 0 and n ≥ 1;

(2) E
(n)
2−α,γ+αn(−bt2−α) is monotone decreasing with respect to n if γ ≥ 2 and

n ≥ 0, γ = 1 and n ≥ 2, or γ = 0 and n ≥ 3.

Proof. (1) Denote

E
(n)
2−α,γ+αn(−bt2−α) =

∞∑
j=0

(−1)j(bt2−α)jΓ(k + j + 1)

Γ(j + 1)Γ
(
(2− α)(k + j) + (γ + αn)

)
:=

∞∑
j=0

(−1)juj . (2.1)

From (2.1), we have

uj+1

uj
= bt2−α Γ((2− α)j + γ)

Γ((2− α)j + γ + 2− α)
< 1, γ ≥ 1 and n = 0,

and
uj+1

uj
≤ (n+ j + 1)Γ((2− α)j + γ + 2n)

((2− α)j + γ + 2n+ 1− α)Γ((2− α)j + γ + 2n+ 1− α)
≤ 1,
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γ ≥ 1 and n ≥ 1.

So {uj} is monotone decreasing. In addition, by Lemma 2.1, uj → 0 as j → ∞.
Therefore, E(n)

2−α,γ+αn(−bt2−α) > 0 by Leibniz test for alternating series.

Since 0 < α ≤ 1, |(−1)juj | ≤ (bt2−α)j

j! and
∞∑
j=0

(bt2−α)j

j! = ebt
2−α , then

E
(n)
2−α,γ+αn(−bt2−α) ≤ eb.

Similarly, (1) holds if γ = 0 and n ≥ 1.
(2) Since

(
((2−α)j+γ+2n)2+(1−α)j+γ+n−1

)
> 0 if γ ≥ 2 and n ≥ 0, γ = 1

and n ≥ 2, or γ = 0 and n ≥ 3, then

E
(n)
2−α,γ+αn(−bt2−α)− E

(n+1)
2−α,γ+α(n+1)(−bt

2−α)

=

∞∑
j=0

(−1)j(bt2−α)jΓ(n+j+1)

Γ(j+1)Γ((2−α)j+2+γ+2n)

(
((2− α)j + γ + 2n)2 + (1− α)j + γ + n− 1

)
:=

∞∑
j=0

(−1)jvj

is alternating series and

vj+1
vj

<
(n+j+1)

((
(2−α)j+γ+2−α+2n

)2
+n+(1−α)j+γ−α

)
Γ((2−α)j+2+γ+2n)((

(2−α)j+γ+2n
)2
+n+(1−α)j+γ−1

)(
(2−α)j+γ+3−α+2n

)
Γ((2−α)j+γ+3−α+2n)

≤ (n+ j + 1)(((2− α)j + γ + 2− α+ 2n)2 + n+ (1− α)j + γ − α)

(((2− α)j + γ + 2n)2 + n+ (1− α)j + γ − 1)((2− α)j + γ + 3− α+ 2n)

≤ (n+ j + 1)(((2− α)j + γ + 2− α+ 2n)

(((2− α)j + γ + 2n)2 + n+ (1− α)j + γ − 1)

=
(n+j+1)(((2−α)j+γ+2n)+(n+j+1)(2−α)

((2−α)j+γ+2n)(j+n+1)+(2−α)j+γ+2n)((1−α)j + γ + n− 1)+n+(1−α)j+γ− 1

≤1.

We have {vj} is monotone decreasing. Besides, by Lemma 2.1, we obtain vj → 0
as j → ∞. Thus,

E
(n)
2−α,γ+αn(−bt2−α)− E

(n+1)
2−α,γ+α(n+1)(−bt

2−α) > 0,

by Leibniz test for alternating series. Namely, E(n)
2−α,γ+αn(−bt2−α) is monotone

decreasing with respect to n.
Denote

g1(t) =

∞∑
n=0

(−a)n

n!
t2n+1E

(n)
2−α,2+αn(−bt2−α), (2.2)

g2(t) =

∞∑
n=0

(−a)n

n!
t2n+2−αE

(n)
2−α,3−α+αn(−bt2−α).

Lemma 2.6. The functions g1 and g2, defined above, have the following properties.
(1) g1(t) and g2(t) are represented by absolutely and uniformly convergent series

and |g1(t)|, |g2(t)| ≤ ea+b on t ∈ [0, 1];
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(2) g′1(t) is represented by absolutely and uniformly convergent series on [0, 1],

g′1(t) =

∞∑
n=0

(−at2)n

n!
E

(n)
2−α,1+αn(−bt2−α),

|g′1(t)| ≤ ea+b for t ∈ [0, 1] and g′1(0) = 1;
(3) g1(t), g2(t) > 0 and g′1(t) > 0 for t ∈ (0, 1];
(4) g′′1 (t) ≤ 0 for t ∈ [0, 1].

Proof. (1) By Lemma 2.5, we have∣∣∣ (−a)n
n!

t2n+1E
(n)
2−α,2+αn(−bt2−α)

∣∣∣ ≤ teb
(at2)n

n!
.

Furthermore,
∞∑

n=0

(at2)n

n! = eat
2

, t ∈ (−∞,+∞). So
∞∑

n=0

(−a)n

n! t2n+1E
(n)
2−α,2+αn(−bt2−α) is a absolutely and uniformly convergent series

on [0, 1], that is, g1(t) is represented by absolutely and uniformly convergent series
on [0, 1] and |g1(t)| ≤ ea+b.

Similarly, g2(t) is also represented by absolutely and uniformly convergent series
on [0, 1] and |g2(t)| ≤ ea+b.

(2) In view of
∞∑

n=0

( (−a)n
n!

t2n+1
∞∑
j=0

(−bt2−α)jΓ(n+ j + 1)

Γ(j + 1)Γ((2− α)j + 2 + 2n)

)′

=

∞∑
n=0

(−a)n

n!

(
(2n+ 1)t2n

∞∑
j=0

(−bt2−α)jΓ(n+ j + 1)

Γ(j + 1)Γ((2− α)j + 2 + 2n)

+ t2n+1
∞∑
j=1

(2− α)
(−b)j(t(2−α)j−1Γ(n+ j + 1)

Γ(j)Γ((2− α)j + 2 + 2n)

)
=

∞∑
n=0

(−at2)nΓ(n+1)

n!Γ(2n+1)
+

∞∑
n=0

(−at2)n

n!

∞∑
j=1

(−bt2−α)jΓ(n+j+1)

Γ((2−α)j+2+2n)

( 2n+1

Γ(j + 1)
+

2− α

Γ(j)

)
=

∞∑
n=0

(−at2)nΓ(n+ 1)

n!Γ(2n+ 1)
+

∞∑
n=0

(−at2)n

n!

∞∑
j=1

(−bt2−α)jΓ(n+ j + 1)

Γ(j + 1)Γ((2− α)j + 1 + 2n)

=

∞∑
n=0

(−at2)n

n!

∞∑
j=0

(−bt2−α)jΓ(n+ j + 1)

Γ(j + 1)Γ((2− α)j + 1 + 2n)

=

∞∑
n=0

(−at2)n

n!
E

(n)
2−α,1+αn(−bt2−α).

Similar to the proof of (1), we can get (2) holds.
(3) From Lemma 2.5, we can get E(n)

2−α,2+αn(−bt2−α) > 0 and E(n)
2−α,2+αn(−bt2−α)

is monotone decreasing with respect to n ∈ N+. Then g1(t) is alternating series.
Furthermore, an

n! t
2n+1 is monotone decreasing with n ∈ N+. Thus,

an

n!
t2n+1E

(n)
2−α,2+αn(−bt2−α)
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is monotone decreasing with n ∈ N+ and converges to 0 as n→ ∞.

Therefore, according to Leibniz test for alternating series, we have g1(t) > 0 for
t ∈ (0, 1].

Similar to the proof above, we can get g2(t) > 0 for t ∈ (0, 1].
By Lemma 2.5, we can get E(n)

2−α,1+αn(−bt2−α) > 0 and g′1(t) is alternating series
for t ∈ (0, 1].

Similar to the proof above, we can get

∞∑
n=2

(−at2)n

n!
E

(n)
2−α,1+αn(−bt2−α) > 0.

Since

E2−α,1(−bt2−α)−E(1)
2−α,1+α(−bt2−α) =

∞∑
j=0

(−bt2−α)j
(
((2− α)j + 1)2 + (1− α)j

)
Γ((2− α)j + 3)

:=

∞∑
j=0

(−1)jwj .

Then for j ≥ 1, we can get

wj+1

wj
≤ ((2− α)j + 3− α)2 + (1− α)j + 1− α(

((2− α)j + 1)2 + (1− α)j
)
((2− α)j + 4− α)

≤ ((2− α)j + 3− α)((2− α)j + 4− α)(
((2− α)j + 1)2 + (1− α)j

)
((2− α)j + 4− α)

<1.

Thus, {wj} is monotone decreasing. By Lemma 2.1, wj → 0 as j → ∞. Therefore,
according to Leibniz test for alternating series, we have

∞∑
j=2

(−bt2−α)j
(
((2− α)j + 1)2 + (1− α)j

)
Γ((2− α)j + 3)

> 0.

On the other hand, since 0 ≤ b ≤ min{1, Γ(5−α)
2((3−α)2+1−α)}, we have

1∑
j=0

(−bt2−α)j
(
((2− α)j + 1)2 + (1− α)j

)
Γ((2− α)j + 3)

=
1

2
− b

t2−α((3− α)2 + 1− α)

Γ(5− α)

≥1

2
− b((3− α)2 + 1− α)

Γ(5− α)

≥0.

Thus, E2−α,1(−bt2−α)− E
(1)
2−α,1+α(−bt2−α) ≥ 0. Moreover, for t ∈ (0, 1],

g′1(t) ≥E2−α,1(−bt2−α)−E(1)
2−α,1+α(−bt2−α) +

∞∑
n=2

(−at2)n

n!
E

(n)
2−α,1+αn(−bt2−α) > 0.
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(4) By Lemma 2.6 (2), we can show that

g′′1 (t)=

∞∑
j=1

(−b)jt(2−α)j−1

Γ((2−α)j)
+

∞∑
n=1

(−a)n

n!

(
2nt2n−1

∞∑
j=0

(−bt2−α)jΓ(n+j+1)

Γ(j+1)Γ((2−α)j+1+2n)

+ (2− α)t2n
∞∑
j=1

(−b)jt(2−α)j−1Γ(j + n+ 1)

Γ(j(2− α) + 1 + 2n)Γ(j)

)
=

∞∑
j=1

(−b)jt(2−α)j−1

Γ((2− α)j)
+

∞∑
n=1

(−a)n

n!
t2n−1

(
2n

Γ(n+ 1)

Γ(1 + 2n)

+

∞∑
j=1

(−bt2−α)jΓ(n+ j + 1)

Γ(j + 1)Γ((2− α)j + 1 + 2n)

(
2n+ (2− α)j

))
=−

∞∑
j=1

(−1)j−1bjt(2−α)j−1

Γ((2−α)j)
−

∞∑
n=1

(−1)n−1an

n!
t2n−1

∞∑
j=0

(−bt2−α)jΓ(n+ j + 1)

Γ(j + 1)Γ((2− α)j + 2n)

=−
∞∑
j=1

(−1)j−1bjt(2−α)j−1

Γ((2− α)j)
−

∞∑
n=1

(−1)n−1an

n!
t2n−1E

(n)
2−α,αn(−bt2−α). (2.3)

Because 0 < α ≤ 1 and 0 ≤ b ≤ min{1, Γ(5−α)
2((3−α)2+1−α)}, according to Leibniz

test for alternating series, we have
∞∑
j=1

(−1)j−1bjt(2−α)j−1

Γ((2− α)j)
≥ 0.

On the other hand, by Lemma 2.5, similar to the proof of (3), we can show that
∞∑

n=3

(−1)n−1an

n!
t2n−1E

(n)
2−α,αn(−bt2−α) ≥ 0.

Let

E
(1)
2−α,α(−bt2−α)−E

(2)
2−α,2α(−bt2−α) =

∞∑
j=0

(−bt2−α)j(j+1)
(
((2−α)j+2)2+(1−α)j

)
Γ((2−α)j+4)

:=

∞∑
j=0

(−1)jzj .

If j ≥ 1, we have

zj+1

zj
≤

(j + 2)
(
((2− α)j + 4− α)2 + (1− α)j + 1− α

)
Γ((2− α)j + 4)

(j + 1)
(
((2− α)j + 2)2 + (1− α)j

)
((2− α)j + 5− α)Γ((2− α)j + 5− α)

≤
(j + 2)

(
((2− α)j + 4− α)2 + (1− α)j + 1− α

)
(j + 1)

(
((2− α)j + 2)2 + (1− α)j

)
((2− α)j + 5− α)

≤ (j + 2)((2− α)j + 2− α) + 2(j + 2)

(j + 1)
(
((2− α)j + 1 + 1)2 + (1− α)j

)
=

(j + 1)((2− α)j + 2− α) + (2− α)j + 4− α+ 2(j + 1)

(j + 1)((2− α)j + 2)(2− α)j + (j + 1)((2− α)j + 2) + (j + 1)((2− α)j + 2) + (j + 1)(1− α)j

≤1.
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Thus, {zj} is monotone decreasing. By Lemma 2.1, we have zj → 0 as j → ∞.
Therefore, according to Leibniz test for alternating series,

∞∑
j=2

(−bt2−α)j(j + 1)
(
((2− α)j + 2)2 + (1− α)j

)
Γ((2− α)j + 4)

≥ 0.

In addition,
1∑

j=0

(−bt2−α)j(j + 1)
(
((2− α)j + 2)2 + (1− α)j

)
Γ((2− α)j + 4)

=
2

3
− 2b

t2−α((4− α)2 + 1− α)

Γ(6− α)

≥2

3
− (4− α)2 + 1− α

Γ(6− α)
· Γ(5− α)

(3− α)2 + 1− α

=
2

3
− (4− α)2 + 1− α

(5− α)
(
(3− α)2 + 1− α

)
>0.

Hence,
E

(1)
2−α,α(−bt2−α)− E

(2)
2−α,2α(−bt2−α) ≥ 0.

We can obtain
∞∑

n=1

(−1)n−1an

n!
t2n−1E

(n)
2−α,αn(−bt2−α)

≥at
(
E

(1)
2−α,α(−bt2−α)−E

(2)
2−α,2α(−bt2−α)

)
+

∞∑
n=3

(−1)n−1ant2n−1

n!
E

(n)
2−α,αn(−bt2−α)

≥0.

Therefore, by (2.3), g′′1 (t) ≤ 0 for t ∈ [0, 1].
Let

G(t, s) =

{
g1(t)g1(1−s)

g1(1)
− g1(t− s), 0 ≤ s ≤ t ≤ 1,

g1(t)g1(1−s)
g1(1)

, 0 ≤ t < s ≤ 1.
(2.4)

Lemma 2.7. The function G(t, s) is continuous on (t, s) ∈ [0, 1] × [0, 1] and
G(t, s) > 0 in (t, s) ∈ (0, 1)× (0, 1).

Proof. By Lemma 2.6, G(t, s) is continuous for (t, s) ∈ [0, 1] × [0, 1] and if 0 <
t < s < 1, we can also have G(t, s) > 0.

If 0 < s ≤ t ≤ 1, it follows

∂

∂t

( g1(t)

g1(t− s)

)
=
g′1(t)g1(t− s)− g1(t)g

′
1(t− s)

g21(t− s)
< 0

from Lemma 2.6, which implies g1(t)
g1(t−s) is monotone decreasing with respect to t.

So, g1(t)
g1(t−s) >

g1(1)
g1(1−s) and G(t, s) > 0.

Hence, G(t, s) > 0 for (t, s) ∈ (0, 1)× (0, 1).
By Lemma 2.7, we can obtain the following Lemma 2.8 holds.
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Lemma 2.8. Let the function G be defined by (2.4), then∫ 1

0

∫ 1

0

G(t, s)dsdA(t) ̸= 0. (2.5)

Lemma 2.9 (See [4, 21]). Let X and Y be Banach spaces and let Ω ⊂ X be a
bounded open symmetric set with 0 ∈ Ω. Let L : DomL ⊂ X → Y be a Fredholm
operator of index zero with DomL ∩ Ω ̸= ∅ and N : X → Y be an L-compact
operator on Ω. Assume that

Lx−Nx ̸= −λ(Lx+N(−x))

for all x ∈ DomL∩∂Ω and all λ ∈ (0, 1], where ∂Ω is the boundary of Ω with respect
to X. Then the equation Lx = Nx has at least one solution on DomL ∩ Ω.

3. The existence of the solutions
Throughout this paper, we always suppose that the following resonance condition
is satisfied

g1(1) =

∫ 1

0

g1(t)dA(t). (3.1)

Lemma 3.1. For y ∈ C[0, 1], the equation

x′′(t) + bcDα
0+x(t) + ax(t) = y(t) (3.2)

has general solution

x(t) = x′(0)g1(t) + x(0)(g′1(t) + bg2(t)) +

∫ t

0

g1(t− s)y(s)ds. (3.3)

Proof. By Lemma 2.3, we have

L[x′′(t)](p) =p2L[x(t)](p)− x(0)p− x′(0),

and

L[cDα
0+x(t)](p) =p

αL[x(t)](p)− x(0)pα−1.

Apply Laplace transform to both sides of the equation (3.2), we can easily obtain

L[x(t)](p) = x(0)p+ x′(0) + bx(0)pα−1 + L[y(t)](p)
p2 + a+ bpα

. (3.4)

If 0 ≤ a
p2+bpα < 1, we have

1

p2 + a+ bpα
=

p−α

p2−α + b
· 1

1 + ap−α

p2−α+b

=
p−α

p2−α + b

∞∑
n=0

(
−ap−α

p2−α + b
)n

=

∞∑
n=0

(−a)np−α(n+1)

(p2−α + b)n+1
.
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By virtue of Lemma 2.4, we can show

1

p2 + a+ bpα
=

∞∑
n=0

(−a)np−α(n+1)

(p2−α + b)n+1
= L[g1(t)](p), p > a

1
2−α ,

p

p2+a+bpα
=

∞∑
n=0

(−a)np1−α(n+1)

(p2−α + b)n+1
= L[g′1(t)](p), 0 ≤ a

p2 + bpα
< 1 and p > a

1
2−α ,

pα−1

p2 + a+ bpα
=

∞∑
n=0

(−a)np−αn−1

(p2−α + b)n+1
= L[g2(t)](p), 0 ≤ a

p2 + bpα
< 1 and p > a

1
2−α .

So (3.4) is equivalent to

L[x(t)](p)=x′(0)L[g1(t)](p)+L[y(t)](p)L[g1(t)](p)+x(0)L[g′1(t)](p)+bx(0)L[g2(t)](p).
(3.5)

On the other hand,

L[y(t)](p)L[g1(t)](p) = L[
∫ t

0

g1(t− s)y(s)ds](p),

then we can get the inverse Laplace transform for (3.5) is (3.3).
By Lemma 3.1, we can obtain the following Lemma 3.2 holds.

Lemma 3.2. Boundary value problem (1.1) is equivalent to the following problem{
x(t) = x′(0)g1(t) +

∫ t

0
g1(t− s)f(s, x(s), x′(s))ds, t ∈ (0, 1),

x(1) =
∫ 1

0
x(t)dA(t).

(3.6)

Let X = C1[0, 1], with the norm ∥x∥ = max{∥x∥∞, ∥x′∥∞} where ∥x∥∞ =
max
t∈[0,1]

|x(t)|. Obviously, (X, ∥ · ∥) is a Banach space.
We denote
(H1) There exist nonnegative functions ϕ, φ, ψ ∈ C[0, 1] such that

|f(t, x, y)| ≤ ϕ(t) + φ(t)|x|+ ψ(t)|y|, t ∈ [0, 1], and (x, y) ∈ R× R.

(H2) There exists a constant M0 > 0 such that if |y| > M0, then f(t, x, y) −
λf(t,−x,−y) > 0 or f(t, x, y) − λf(t,−x,−y) < 0, where λ ∈ (0, 1], t ∈ [0, 1] and
(x, y) ∈ R× R.

Define the operators

L : DomL ⊂ X → X, Lx = x′′ + bcDα
0+x+ ax, (3.7)

N : X → X, Nx(t) = f(t, x(t), x′(t)), t ∈ [0, 1], (3.8)

where DomL = {x ∈ X ∩ C2[0, 1] : x(0) = 0, x(1) =
∫ 1

0
x(t)dA(t)}.

Theorem 3.1. Suppose (H1) and (H2) hold. If
∫ 1

0
(φ(s)+ψ(s))ds+ b

Γ(3−α)+a < 1,
then boundary value problem (1.1) has at least one solution.

Proof. Step 1: L is a Fredholm operator of index zero.
It is easy to see that

KerL = {x ∈ X : x = cg1(t), c ∈ R}.
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For y ∈ ImL, there exists x ∈ DomL such that x(0) = 0 and Lx = y. By Lemma
3.1, we have

x(t) = x′(0)g1(t) +

∫ t

0

g1(t− s)y(s)ds, t ∈ [0, 1],

and x(1) =
∫ 1

0
x(t)dA(t). Since g1(1) =

∫ 1

0
g1(t)dA(t), then∫ 1

0

g1(t)

g1(1)

∫ 1

0

g1(1− s)y(s)dsdA(t) =

∫ 1

0

∫ t

0

g1(t− s)y(s)dsdA(t).

Thus,
∫ 1

0

∫ 1

0
G(t, s)y(s)dsdA(t) = 0. We can show

ImL ⊆ {y ∈ X :

∫ 1

0

∫ 1

0

G(t, s)y(s)dsdA(t) = 0}.

If y ∈ {y ∈ X :
∫ 1

0

∫ 1

0
G(t, s)y(s)dsdA(t) = 0}, let

x(t) =

∫ t

0

g1(t− s)y(s)ds, (3.9)

then x ∈ X ∩ C2[0, 1] and x(0) = 0. Since g1(1) =
∫ 1

0
g1(t)dA(t), we have

x(1) =

∫ 1

0

g1(1− s)y(s)ds =

∫ 1

0

g1(1− s)y(s)ds

∫ 1

0

g1(t)

g1(1)
dA(t)

=

∫ 1

0

∫ 1

0

g1(t)g1(1− s)

g1(1)
y(s)dsdA(t).

On the other hand,∫ 1

0

x(t)dA(t) =

∫ 1

0

∫ t

0

g1(t− s)y(s)dsdA(t).

Because
∫ 1

0

∫ 1

0
G(t, s)y(s)dsdA(t) = 0, we can show

0 =

∫ 1

0

∫ 1

0

G(t, s)y(s)dsdA(t)

=

∫ 1

0

(∫ t

0

(g1(t)g1(1−s)
g1(1)

−g1(t−s)
)
y(s)ds+

∫ 1

t

g1(t)g1(1− s)

g1(1)
y(s)ds

)
dA(t)

=

∫ 1

0

∫ 1

0

g1(t)g1(1− s)

g1(1)
y(s)dsdA(t)−

∫ 1

0

∫ t

0

g1(t− s)y(s)dsdA(t)

=x(1)−
∫ 1

0

x(t)dA(t).

Thus,
x ∈ DomL, Lx = y. (3.10)

Hence,

ImL ⊇ {y ∈ X :

∫ 1

0

∫ 1

0

G(t, s)y(s)dsdA(t) = 0}.
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Therefore,

ImL = {y ∈ X :

∫ 1

0

∫ 1

0

G(t, s)y(s)dsdA(t) = 0}.

Define linear continuous projector operators P : X → X and Q : X → X by

Px(t) = x′(0)g1(t), Qx(t) =

∫ 1

0

∫ 1

0
G(t, s)x(s)dsdA(t)∫ 1

0

∫ 1

0
G(t, s)dsdA(t)

.

We can easily obtain that ImP = KerL, X = KerP ⊕ KerL, ImL = KerQ, X =
ImL⊕ ImQ. So

1 = dimKerL = dim ImQ = codimImL,

that is, L is a Fredholm operator with index zero.
Step 2: The operator N is L-compact on any bounded open set Ω ⊂ X.
Let KP : ImL→ X,

KP y(t) =

∫ t

0

g1(t− s)y(s)ds.

In views of (3.9) and (3.10), we can get KP : ImL → DomL ∩ KerP and for
y ∈ ImL,

LKP y(t) = L(

∫ t

0

g1(t− s)y(s)ds) = y(t).

For x ∈ DomL ∩KerP , KPLx(t) := KP y(t) = x(t).
Then KP is the inverse mapping of L|DomL∩KerP . Hence,

QNx(t) =
1∫ 1

0

∫ 1

0
G(t, s)dsdA(t)

∫ 1

0

∫ 1

0

G(t, s)f(s, x(s), x′(s))dsdA(t),

and

KP (I −Q)Nx(t) =

∫ t

0

g1(t− s)f(s, x(s), x′(s))ds

−
∫ 1

0

∫ 1

0
G(τ, s)f(s, x(s), x′(s))dsdA(τ)∫ 1

0

∫ 1

0
G(τ, s)dsdA(τ)

∫ t

0

g1(t− s)ds.

Since f is measurable, G and g1 are continuous, we can easily get that QN :
Ω → X and KP (I −Q)N : Ω → X are continuous and compact operators, that is,
the operator N is L-compact on any bounded open set Ω ⊂ X.

Step 3: Boundary value problem (1.1) has at least one solution.
Let x ∈ DomL and satisfy

Lx−Nx = −λ(Lx+N(−x)), λ ∈ (0, 1].

We have
Lx =

1

1 + λ
(Nx− λN(−x)).

Hence, 1
1+λ (Nx− λN(−x)) ∈ ImL and∫ 1

0

∫ 1

0

G(t, s)
1

1 + λ
(Nx− λN(−x))dsdA(t)
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=
1

1 + λ

∫ 1

0

∫ 1

0

G(t, s)
(
f(s, x(s), x′(s))− λf(s,−x(s),−x′(s))

)
dsdA(t)

=0.

By (H2) and Lemma 2.7, there exists t0 ∈ [0, 1] such that |x′(t0)| ≤M0.
By (H1) and x(0) = 0, we have∫ 1

0

|f(s, x(s), x′(s))|ds ≤
∫ 1

0

ϕ(s)ds+

∫ 1

0

φ(s)|x(s)|ds+
∫ 1

0

ψ(s)|x′(s)|ds

≤
∫ 1

0

ϕ(s)ds+

∫ 1

0

φ(s)|x(s)− x(0)|ds+
∫ 1

0

ψ(s)|x′(s)|ds

≤
∫ 1

0

ϕ(s)ds+ ∥x′∥∞
(∫ 1

0

(
φ(s) + ψ(s)

)
ds

)
,

(3.11)

|x(t)| = |x(0) +
∫ t

0

x′(s)ds| = |
∫ t

0

x′(s)ds| ≤
∫ t

0

|x′(s)|ds ≤ ∥x′∥∞

and
∥x∥∞ ≤ ∥x′∥∞. (3.12)

We can also get∣∣∣ ∫ t

t0

cDα
0+x(s)ds

∣∣∣ = 1

Γ(1− α)

∣∣∣ ∫ t

t0

∫ s

0

(s− r)−αx′(s)drds
∣∣∣

≤ ∥x′∥∞
Γ(1− α)

∫ 1

0

∫ s

0

(s− r)−αdrds

=
∥x′∥∞

Γ(3− α)
, (3.13)

and ∫ t

t0

x′′(s)ds = x′(t)− x′(t0). (3.14)

Then, from t0 to t, integrate both sides of

x′′(t) + bcDα
0+x(t) + ax(t) = f(t, x(t), x′(t)),

it follows

|x′(t)| ≤|x′(t0)|+
∫ 1

0

|f(s, x(s), x′(s))|ds+ b
∣∣∣ ∫ t

t0

cDα
0+x(s)ds

∣∣∣+ a

∫ 1

0

|x(s)|ds

≤M0 +

∫ 1

0

ϕ(s)ds+
(∫ 1

0

(
φ(s) + ψ(s)

)
ds+

b

Γ(3− α)
+ a

)
∥x′∥∞

from (3.11), (3.12), (3.13) and (3.14). Thus,

∥x′∥∞ ≤
M0 +

∫ 1

0
ϕ(s)ds

1−
( ∫ 1

0

(
φ(s) + ψ(s)

)
ds+ b

Γ(3−α) + a
) .
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Hence, there exists a constant B > 0 such that ∥x∥ ≤ B. Thus, there exists a
bounded open set Ω = {x ∈ X : ∥x∥ < B + 1} ⊂ X such that

Lx−Nx ̸= −λ(Lx+N(−x)), x ∈ ∂Ω, λ ∈ (0, 1].

Then, Lemma 2.9 holds. Therefore, boundary value problem (1.1) has at least
one solution.

Remark 3.1. The result of Theorem 3.1 is obtained under the parameters a and
b satisfy the conditions 0 ≤ a ≤ 1 and 0 ≤ b ≤ min{1, Γ(5−α)

2((3−α)2+1−α)} which proves
that G(t, s) > 0. In fact, if only a ∈ R and |b| ≤ 1 are required, then g1(t) is
represented by absolutely and uniformly convergent series on [0, 1] and g1 ∈ C[0, 1],
but G(t, s) may be sign-changing in (t, s) ∈ (0, 1)× (0, 1). In this case, if we assume
that

∫ 1

0

∫ 1

0
G(t, s)dsdA(t) ̸= 0 and

∫ 1

0
(φ(s) + ψ(s))ds + |b|

Γ(3−α) + |a| < 1, then
Theorem 3.1 is also valid.

4. Illustration
In order to illustrate the applicability of our main results, we give out the following
examples.
Example 4.1. We consider the boundary value problem{

x′′(t) + 0.1662cD0.5
0+ x(t) + 0.5x(t) = t3

2 sinx(t) + 1
26x

′(t) + t, t ∈ (0, 1),

x(0) = 0, x(1) =
∫ 1

0
(1.1785801t2 + 1)x(t)dt,

(4.1)

where α = 0.5, a = 0.5, b = 0.1662, A(t) = 0.595267t3 + t + 1 and f(t, x, y) =
t3

2 sinx+ 1
26y + t.

Through calculation, we have
∫ 1

0
g1(t)dA(t) = 0.872904 = g1(1), b = 0.1662 <

Γ(5−0.5)
2((3−0.5)2+1−0.5) ≈ 0.86161.

Let ϕ(t) = 2t, φ(t) = t3, ψ(t) = 1
13 , then

|f(t, x, y)| ≤ ϕ(t) + φ(t)|x|+ ψ(t)|y|, for t ∈ [0, 1], (x, y) ∈ R× R,

and
∫ 1

0
(φ(s) + ψ(s))ds+ b

Γ(3−α) + a ≈ 0.951947 < 1.
If y > 60, then for any λ ∈ [0, 1],

f(t, x, y)− λf(t,−x,−y) = (1 + λ)t3

2
sinx+

1 + λ

26
y + (1− λ)t > 0,

and if y < −60, then for any λ ∈ [0, 1],

f(t, x, y)− λf(t,−x,−y) = (1 + λ)t3

2
sinx+

1 + λ

26
y + (1− λ)t < 0.

It follows from Theorem 3.1 that boundary value problem (4.1) has at least one
solution.
Example 4.2 We consider the boundary value problem{
x′′(t)+0.25cD0.5

0+ x(t)+0.5x(t)=0.05 et sin e−2tx(t)+0.4 e−t arctanx′(t), t ∈ (0, 1),

x(0) = 0, x(1) = g1(1)

g1(
1
2 )
x( 12 ),

(4.2)
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where α = 0.5, a = 0.5, b = 0.25, f(t, x, y) = 0.05 et sin e−2tx+ 0.4 e−t arctan y and

A(t) =

{
0, 0 ≤ t < 1

2 ,
g1(1)

g1(
1
2 )
, 1

2 ≤ t < 1
=

{
0, 0 ≤ t < 1

2 ,

1.78428, 1
2 ≤ t < 1.

Through calculation, we have∫ 1

0

g1(t)dA(t) =
g1(1)

g1(
1
2 )
g1(

1

2
) = g1(1),

b = 0.25 < Γ(5−0.5)
2((3−0.5)2+1−0.5) ≈ 0.86161.

Let ϕ(t) = 0, φ(t) = 0.05 e−t, ψ(t) = 0.4 e−t, then

|f(t, x, y)| ≤ ϕ(t) + φ(t)|x|+ ψ(t)|y|, for t ∈ [0, 1], (x, y) ∈ R× R,

and
∫ 1

0
(φ(s) + ψ(s))ds+ b

Γ(3−α) + a ≈ 0.972517 < 1.
If y > 100, then for any λ ∈ [0, 1],

f(t, x, y)− λf(t,−x,−y) = (1 + λ)(0.05 et sin e−2tx+ 0.4 e−t arctan y) > 0,

and if y < −100, then for any λ ∈ [0, 1],

f(t, x, y)− λf(t,−x,−y) = (1 + λ)(0.05 et sin e−2tx+ 0.4 e−t arctan y) < 0.

It follows from Theorem 3.1 that boundary value problem (4.2) has at least one
solution.
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