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TRIDIAGONAL TOEPLITZ MATRIX WITH
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Abstract In this paper, tridiagonal Toeplitz matrix (type I, type II) with
opposite-bordered rows are introduced. Main attention is paid to calculate
the determinants, the inverses and the eigenpairs of these matrices. Specifi-
cally, the determinants of an n× n tridiagonal Toeplitz matrix with opposite-
bordered rows can be explicitly expressed by using the (n−1)th Fibonacci num-
ber, the inversion of the tridiagonal Toeplitz matrix with opposite-bordered
rows can also be explicitly expressed by using the Fibonacci numbers and
unknown entries from the new matrix. Besides, we give the expression of
eigenvalues and eigenvectors of the tridiagonal Toeplitz matrix with opposite-
bordered rows. In addition, some algorithms are presented based on these the-
oretical results. Numerical results show that the new algorithms have much
better computing efficiency than some existing algorithms studied recently.
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1. Introduction

We start by introducing the main research object of this paper. Two new spe-
cial matrices are introduced at beginning. Let A ∈ Cn×n be a square tridiagonal
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Toeplitz matrix with opposite-bordered rows type I,

A =



p bn−2 bn−3 bn−4 · · · b3 b2 b1 q

0 −d −d 0 · · · · · · · · · · · · 0

0 d −d −d 0 · · · · · · · · · 0

0 0
. . . . . . . . . . . . ...

...
... . . . . . . . . . . . . . . . ...

...
... . . . . . . . . . . . . . . . ...

...
... . . . d −d −d 0

0 0 · · · · · · · · · 0 d −d 0

s an−2 an−3 an−4 · · · a3 a2 a1 t


, (1.1)

where d (d ̸= 0), p, q, s, t and ai, bi (i = 1, 2, . . . , n − 2) are arbitrary complex
numbers.

An n × n tridiagonal Toeplitz matrix with opposite-bordered rows B (type II)
over a field C is

B = ÎnAÎn, (1.2)

where În is a “reverse unit matrix” of order n, having ones along the secondary
diagonal and zeros elsewhere.

The special banded matrices such as Toeplitz matrices [21–24,35,36], especially
tridiagonal matrices, etc. have been widely used in various application areas ranging
from engineering to economics [3,12] as well as in the computation of special func-
tions, number theory [26] and partial differential equations. The one-dimensional
linear hyperbolic equation

∂u(x, t)

∂t
+ v

∂u(x, t)

∂x
= g

considered by Holmgren and Otto [13] as an example to study certain matrices oc-
curred in discretized partial differential equations, where 0 < x ≤ 1, t > 0, u(0, t) =
f(−at), u(x, 0) = f(x), g = (v − a)f ′. Here v and a are positive constants and f is
a scalar function with derivative f ′. Let k and h denote the time step and spatial
step, respectively. The linear hyperbolic equations is discretized based on trape-
zoidal rule in time and center difference in space, respectively, whose coefficient
matrix is a tridiagonal matrix with perturbed last row [1]

T =



4 α 0 · · · · · · 0

−α
. . . . . . . . . ...

0
. . . . . . . . . . . . ...

... . . . . . . . . . . . . 0

... . . . −α 4 α

0 · · · · · · 0 −2α 4 + 2α


n×n

,

where α = vk/h. In addition, various features of tridiagonal matrices are employed
to solve the systems of linear equations that arise from these applications [11,25].
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In [5,7–10,30,31,33], the authors had studied LU decompositions, determinant,
inverse and eigen properties of various tridiagonal or periodic tridiagonal matri-
ces. The inverse formula for periodic tridiagonal Toeplitz matrices was proposed
by Shehawey in [6] who generalized the method proposed by Huang and McColl
in [14]. Based on the block diagonalization technique, Jia et al. put forward
some algorithms [18–20] for the k-tridiagonal matrix. Recently, Jia proposed a
new breakdown-free recursive algorithm for computing the determinants of peri-
odic tridiagonal matrices via a three-term recurrence in [16]. In addition, an ex-
plicit formula for the determinant of the periodic tridiagonal matrix with Toeplitz
structure is also discussed. More in [17], Jia and Li introduced the solution of
opposite-bordered tridiagonal (OBT) systems of linear equations. They present
two efficient algorithms which used reliable tridiagonal linear solver and column
operation, respectively. And the computational accuracy and efficiency of the pro-
posed algorithms are illustrated in the paper. Also, by using the Doolittle LU
factorization, El-Mikkawy and Atlan proposed a symbolic algorithm for comput-
ing the inverse of the k-tridiagonal matrix in [4]. In [29], Tim and Emrah used
backward continued fractions to obtain the LU factorization of periodic tridiagonal
matrix and then derived the explicit formula for its inverse. Furthermore, on the
basis of symbolic calculus for difference equations, many authors had done a lot
of research on the eigenvalues and eigenvectors of tridiagonal matrices or periodic
tridiagonal matrices, see [2,7,32]. In addition, some scholars were attracted by the
fact that one could view periodic tridiagonal Toeplitz matrices as a special case of
periodic tridiagonal matrices.

Unlike tridiagonal or periodic tridiagonal matrices which have received much at-
tention and obtained very mature theoretical results, a few researchers know about
the tridiagonal Toeplitz matrix with opposite-bordered rows. This motivates us
to attempt to study some problems, including the determinant, the inverse ma-
trix and the eigenpairs of the tridiagonal Toeplitz matrix with opposite-bordered
rows. In this paper, combining the Schur determinant formula, Fibonacci numbers,
the determinant of tridiagonal Toeplitz matrix with opposite-bordered rows can
be obtained easily. Using an additional circulant matrix, inverse of block matrix
and Fibonacci numbers, the explicit expression of inverse matrix can be obtained.
Based on an additional circulant matrix and some properties of the similar matri-
ces, eigenpairs of tridiagonal Toeplitz matrix with opposite-bordered rows can be
obtained. In addition, some efficient computational algorithms for these theoretical
results are given.

On the other hand, one kind of famous number that play an important role in
the new theoretical results is introduced. The Fibonacci sequence {Fn} satisfies the
following recurrence relation [28]

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n ≥ 2), F−n = (−1)n+1Fn. (1.3)

Notations. For convenience, let Dn be the n-order determinant of A, C represent
the complex set and Cn×n denote n × n complex matrices set. Let detA denote
the determinant of any matrix A, circ(x1, x2, . . . , xn) be a circulant matrix gener-
ated by vector (x1, x2, . . . , xn) as the first row entries, diag represent a diagonal
matrix composed by diagonal entries. (y1, y2, . . . , yn)

T is the transpose of vector
(y1, y2, . . . , yn).

The paper is organized as follows. Section 2 is devoted to computing the determi-
nants of the tridiagonal Toeplitz matrix with opposite-bordered rows. In addition,
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the corresponding algorithm of the main theoretical result is given. In Section 3,
the inverse matrices of the tridiagonal Toeplitz matrix with opposite-bordered rows
are presented. And also the algorithm is presented for main theorem. In Section 4,
the eigenvalues and eigenvectors of the tridiagonal Toeplitz matrix with opposite-
bordered rows are introduced. Two numerical experiments are given to show the
performance of the new algorithms in the following section. Finally, we end this
paper with some conclusions at Section 6.

2. The determinants
In this section, we introduce the determinants of the tridiagonal Toeplitz matrices
with opposite-bordered rows. The corresponding algorithm for main theoretical
result is given.

Theorem 2.1. Let an n × n (n ≥ 3) matrix A be defined in (1.1). Then the
determinant of A is

detA = (−d)n−2(pt− qs)Fn−1, (2.1)

where Fn−1 is the (n− 1)th Fibonacci number.

Proof. For n ≥ 3, consider an additional circulant matrix

C = circ(0, 1, 0, · · · , 0). (2.2)

Clearly,

detC = (−1)n−1, (2.3)

which means that C is nonsingular. Furthermore,{
C−1 = CT ,

detC−1 = detCT = detC = (−1)n−1.
(2.4)

Multiplying A by C−1 and C from the left and right, respectively and dividing
C−1AC into the following two by two blocks

C−1AC =



t s an−2 an−3 an−4 · · · a3 a2 a1
q p bn−2 bn−3 bn−4 · · · b3 b2 b1

0 0 −d −d 0 · · · · · · · · · 0

0 0 d −d −d
. . . ...

0 0 0
. . . . . . . . . . . . ...

...
...

... . . . . . . . . . . . . . . . ...
...

...
... . . . . . . . . . . . . 0

...
...

... . . . d −d −d

0 0 0 · · · · · · · · · 0 d −d


n×n

=

 A1 A2

A3 A4

 .

(2.5)
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Then by taking the determinants on both sides of (2.5) and using the theorem
in [34, p.10], we obtain

detC−1 detAdetC = det(C−1AC)

= detA1 detA4.
(2.6)

Now we turn to study the determinants of A1, A4. In (2.5), A1 =

(
t s
q p

)
,

obviously,

detA1 = pt− qs. (2.7)

Following, we evaluate the determinant of A4. From (2.5), we know that A4 is an
(n−2)×(n−2) tridiagonal Toeplitz matrix and A4 is invertible. If n = 3, obviously,
detA4 = −d, then by using (2.4), (2.6) and (2.7), we have detA = d(qs−pt) which
means that (2.1) is satisfied.

For n ≥ 4, denoting detA4 as Dn−2, then based on the Laplace expansion,
expanding A4 along the first column, we have

Dn−2 = −dDn−3 + d2Dn−4 (n ≥ 4). (2.8)

Combining the recurrence relations of Fibonacci numbers and (2.8), we can calculate
and simplify the determinant of A4 (i.e. Dn−2) as follows

Dn−2 = (−1)idiFi+1Dn−i−2 + (−1)i−1di+1FiDn−i−3 (1 ≤ i ≤ n− 4), (2.9)

where Fi and Fi+1 are the ith and the (i+ 1)th Fibonacci numbers, respectively.
Let i = n− 4. Then (2.9) can be written as

Dn−2 = (−1)n−4dn−4Fn−3D2 + (−1)n−5dn−3Fn−4D1, (2.10)

and it is easy to calculate that

D2 = 2d2, D1 = −d. (2.11)

Substituting (2.11) into (2.10) and according to the recurrence relations of Fibonacci
numbers, we get

detA4 = Dn−2 =(−1)n−4dn−2(2Fn−3 + Fn−4)

=(−d)n−2Fn−1, (2.12)

where Fn−1 is the (n − 1)th Fibonacci number. Finally, computing (2.6) by (2.4),
(2.7) and (2.12), we obtain the formula for the determinant of matrix A as (2.1),
i.e. the result holds.
Remark 2.1. The result of Theorem 2.1 is very interesting, the determinant of
A is just determined by p, q, s, t, d and the (n − 1)th Fibonacci number, but has
nothing to do with the unknown entries ai and bi (1 ≤ i ≤ n− 2).
Remark 2.2. From (2.1), we know that Fn−1 = detA

(−d)n−2(pt−qs) when pt − qs ̸= 0,

which implies that the Fibonacci number has infinite expression by the determinant
of A.
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The process of how to compute the determinant of the tridiagonal Toeplitz
matrix with opposite-bordered rows is introduced in the following algorithm.
Algorithm 1. Compute the determinant of the matrix A.
Step 1. Input the components ai, bi (1 ≤ i ≤ n − 2), p, q, s, t, and d, order n,
and generate the (n− 1)th Fibonacci number by (1.3).
Step 2. Compute the determinant of A by (2.1).
Step 3. Output the determinant of A: detA.

From the above algorithm, we know that Algorithm 1 requires 3n+2 operations
for computing the determinant of A. Based on the analysis in [27, p.226-227],
the complexity of our method can be reduced to O(logn). The comparison of the
computational cost between LU decomposition and Algorithm 1 is given in Table
1. Comparing the results in Table 1, we can see that the computational cost of our
algorithm is less than that of the LU decomposition algorithm.

Table 1. The complexity comparison of computing determinant for different algorithms.

Algorithm Complexity
LU decomposition n2 + 10n− 12

Algorithm 1 3n+ 2

Theorem 2.2. Let an n×n (n ≥ 3) matrix B defined in (1.2). Then the determinant
of B is

detB = (−d)n−2(pt− qs)Fn−1, (2.13)

where Fn−1 is the (n− 1)th Fibonacci number.

Proof. For n ≥ 3, from (1.2), it follows that

detB = det(ÎnAÎn) = det În detAdet În.

Then we can obtain (2.13) by using Theorem 2.1 and det În = (−1)
n(n−1)

2 .
Remark 2.3. The Theorem 2.2 is interesting that only p, q, s, t, d and the (n−1)th
Fibonacci number are enough to explicitly express the determinant of B.
Remark 2.4. From (2.13), we know that Fn−1 = detB

(−d)n−2(pt−qs) when pt− qs ̸= 0,

which means that the Fibonacci number has infinite expression by the determinant
of B.

The corresponding algorithm for computing the determinant of B can be easily
obtained according to the Theorem 2.2 and Algorithm 1. And the operation for
computing the determinant of B is the same with the Algorithm 1, i.e. 3n+ 2.

3. The inverse matrices
We now turn our attention to compute the inverse matrices of the tridiagonal
Toeplitz matrix with opposite-bordered rows A and B.
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Theorem 3.1. Let an n× n (n ≥ 3) matrix A be defined in (1.1). Assuming that
pt− qs ̸= 0, then we have

A−1 =



t
pt−qs h1 h2 · · · · · · · · · hn−2

−q
pt−qs

0 a1,1 a1,2 · · · · · · · · · a1,n−2 0

0 a2,1 a2,2 · · · · · · · · · a2,n−2 0

...
...

...
...

...
...

...
...

...
...

0 an−3,1 an−3,2 · · · · · · · · · an−3,n−2 0

0 an−2,1 an−2,2 · · · · · · · · · an−2,n−2 0

−s
pt−qs k1 k2 · · · · · · · · · kn−2

p
pt−qs


n×n

, (3.1)

where

ai,j =

−FjFn−i−1

dFn−1
, 1 ≤ j ≤ i ≤ n− 2,

− (−1)j−iFiFn−j−1

dFn−1
, 1 ≤ i < j ≤ n− 2,

(3.2)

Fk (k = 1, 2, . . . , n− 1) are Fibonacci numbers. Andhj =
∑n−2

i=1 [(sbn−i−1−pan−i−1)ai,j ]

pt−qs , 1 ≤ j ≤ n− 2,

kj =
∑n−2

i=1 [(qan−i−1−tbn−i−1)ai,j ]

pt−qs , 1 ≤ j ≤ n− 2.
(3.3)

Proof. Firstly, the following equation holds

A−1 = CC−1A−1CC−1 = C(C−1AC)−1C−1, (3.4)

where C and C−1 are the same as that given in (2.2) and (2.4). From (3.4), we
know that calculating the inverse of A means calculating the inverse of C−1AC.

For n ≥ 3, from (2.5) and the theorem in [34, p.13], we have

(C−1AC)−1 =

 A−1
1 −A−1

1 A2A−1
4

0 A−1
4

 . (3.5)

Now, we turn our attention to calculate A−1
1 , A−1

4 , −A−1
1 A2A−1

4 . It is obvious that

A−1
1 =

 p
pt−qs

−s
pt−qs

−q
pt−qs

t
pt−qs

 . (3.6)

Based on the equation (2.1)-(2.6) in [5, p.713] and Fibonacci numbers, we can
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calculate and simplify A−1
4 as follows

A−1
4 =



a1,1 a1,2 · · · · · · a1,n−2

a2,1 a2,2 · · · · · · a2,n−2

...
...

...
...

...
...

an−2,1 an−2,2 · · · · · · an−2,n−2


(n−2)×(n−2)

, (3.7)

where ai,j (1 ≤ i, j ≤ n− 2) are the same as that given in (3.2). Then using (2.5),
(3.6) and (3.7), we obtain

−A−1
1 A2A−1

4 =

 h1 h2 h3 · · · hn−3 hn−2

k1 k3 k3 · · · kn−3 kn−2


2×n−2

, (3.8)

where the expression of hj and kj (1 ≤ j ≤ n− 2) are the same with (3.3).
Substituting (3.6), (3.7) and (3.8) into (3.5), we obtain

(C−1AC)−1 =

p
pt−qs

−s
pt−qs h1 h2 · · · · · · · · · hn−2

−q
pt−qs

t
pt−qs k1 k2 · · · · · · · · · kn−2

0 0 a1,1 a1,2 · · · · · · · · · a1,n−2

0 0 a2,1 a2,2 · · · · · · · · · a2,n−2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 an−2,1 an−2,2 · · · · · · · · · an−2,n−2


n×n

. (3.9)

Finally, computing (3.4) by (2.2), (2.4) and (3.9), we get A−1 and the proof is
completed.
Remark 3.1. The result of Theorem 3.1 is amazing, when ai and bi (1 ≤ i ≤ n−2)
are changed, the inverse of A is only changed 2n − 4 entries, i.e. hj and kj (1 ≤
j ≤ n− 2).

The process of how to calculate the inverse of the tridiagonal Toeplitz matrix
with opposite-bordered rows is presented in the following algorithm.
Algorithm 2. Compute the inverse of the matrix A.
Step 1. Input order n, the components ai, bi (1 ≤ i ≤ n− 2), p, q, s, t, and d.
Step 2. Compute the entries of A−1

(1) Generate Fibonacci numbers Fk (k = 1, 2, . . . , n− 1) by (1.3);
(2) Compute ai,j (1 ≤ i, j ≤ n− 2) via (3.2);
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(3) Compute hj and kj (1 ≤ j ≤ n− 2) via (3.3);
(4) Compute the remaining entries of A−1 by (3.1).

Step 3. Output the inverse matrix A−1.

The computational cost (i.e., the number of basic arithmetic operations) for Al-
gorithm 2 is 13n2−49n+60. The comparison of the algorithmic complexity between
Algorithm 2 and LU decomposition algorithm is showed in Table 2. Comparing the
results in Table 2, we can see that the computational cost of our algorithm is less
than that of the LU decomposition algorithm.

Table 2. The complexity comparison of computing inverse for different algorithms.

Algorithm Complexity
LU decomposition 5n3

6 + n2

2 + 53n
3 + 18

Algorithm 2 13n2 − 49n+ 60

Theorem 3.2. Let an n×n (n ≥ 3) B be tridiagonal Toeplitz matrix with opposite-
bordered rows given in (1.2). If pt− qs ̸= 0, we have

B−1 =



p
pt−qs hn−2 hn−3 · · · · · · h2 h1

−s
pt−qs

0 an−2,n−2 an−2,n−3 · · · · · · an−2,2 an−2,1 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 a1,n−2 a1,n−3 · · · · · · a1,2 a1,1 0

−q
pt−qs kn−2 kn−3 · · · · · · k2 k1

t
pt−qs


n×n

,

(3.10)

where ai,j, hj and kj (1 ≤ i, j ≤ n − 2) are same as that given in (3.2) and (3.3),
respectively.

Proof. For n ≥ 3, we prove (3.10) by using

B−1 = Î−1
n A−1Î−1

n = ÎnA−1În

and Theorem 2.2.
Remark 3.2. The inverse of B is amazing, only 2n− 4 entries, i.e. hj and kj (1 ≤
j ≤ n− 2) are changed when we change ai and bi (1 ≤ i ≤ n− 2).

One could obtain the corresponding algorithm of the inverse matrix of B by
using Theorem 3.2 and Algorithm 2. We can see that the computational cost for
computing the inverse matrix of B is also 13n2 − 49n + 60, since just the position
is changed of the inverse matrix of B.
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4. The eigenvalues and eigenvectors
In this section, our attention is devoted to computing eigenvalues and eigenvectors
of tridiagonal Toeplitz matrix with opposite-bordered rows A and B. The corre-
sponding algorithm for the main theorem is given.

Theorem 4.1. Supposed that an n× n (n ≥ 6) matrix A is the same as that given
in (1.1), then the eigenvalues of A are

λ1 =
p+t+

√
(p−t)2+4sq

2 ,

λ2 =
p+t−

√
(p−t)2+4sq

2 ,

λj = −d− 2di cos (j−2)π
n−1 , j = 3, 4, . . . , n,

(4.1)

where i is the imaginary unity (i2 = −1). And the corresponding eigenvectors are
uj, where 

u1 =

[
1, 0, . . . , 0,

t−p+
√

(p−t)2+4qs

2q

]T
,

u2 =

[
1, 0, . . . , 0,

t−p−
√

(p−t)2+4qs

2q

]T
,

uj = (v2,j , v3,j , . . . , vn,j , v1,j)
T , j = 3, 4, . . . , n,

(4.2)

vn,j is free, and

v1,j =
d(λj−p)−ds[−2 cos

(j−2)π
n−1 ixn−4,j+xn−5,j ]

(λj−p)(λj−t)−qs vn,j ,

v2,j =
qd−d(λj−t)[−2 cos

(j−2)π
n−1 ixn−4,j+xn−5,j ]

(λj−p)(λj−t)−qs vn,j ,

vl,j = xl,jvn,j , l = 3, 4, . . . , n− 1,

xl,j =


−2 cos (j−2)π

n−1 i, l = n− 1,

−4[cos (j−2)π
n−1 ]2 + 1, l = n− 2,

−2 cos (j−2)π
n−1 ixl+1,j + xl+2,j , l = n− 3, n− 2, . . . , 3.

(4.3)

Proof. Let λ and u be the corresponding eigenvalue and eigenvector of matrix A,
B be given in (2.5), i.e.

B = C−1AC.

Let µ and v = (v1, . . . , vn)
T be the corresponding eigenvalue and eigenvector of B,

respectively, we know that Bv = µv. And CBv = µCv implies that ACv = µCv,
hence µ and Cv is the corresponding eigenvalue and eigenvector of A, respectively,
i.e.

λ = µ, u = Cv.

From the above discussion, we just need to compute µ and v. It is easy to see that
the eigenvalues of B are the union of the eigenvalues of A1 and A4.

Upon simple calculation, we find the eigenvalues of A1 are

µ1 =
p+ t+

√
(p− t)2 + 4sq

2
,

µ1 =
p+ t−

√
(p− t)2 + 4sq

2
.
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From the equation (1) in [15], the eigenvalues of A4 are

µj = −d− 2di cos
(j − 2)π

n− 1
, j = 3, 4, . . . , n.

Next, we compute the corresponding eigenvector vj of B. We just need to
compute such a equation that (µjI − B)vj = 0 for all eigenvalues µj . For µ1 and
µ2, we have

(µ1I − B)v1 = 0,

(µ2I − B)v2 = 0.

Performing a series of elementary transformations on µ1I −B and µ2I −B, respec-
tively, we get

v1 =

[
t− p+

√
(p− t)2 + 4qs

2q
, 1, 0, . . . , 0

]T
,

v2 =

[
t− p−

√
(p− t)2 + 4qs

2q
, 1, 0, . . . , 0

]T
,

then

u1 = Cv1 =

[
1, 0, . . . , 0,

t− p+
√
(p− t)2 + 4qs

2q

]T
,

u2 = Cv2 =

[
1, 0, . . . , 0,

t− p−
√

(p− t)2 + 4qs

2q

]T
.

For µj = −d − 2di cos (j−2)π
n−1 , (µjI − B)vj = 0, j = 3, 4, . . . , n. Let vj =

(v1,j , v2,j , . . . , vn,j)
T be the corresponding eigenvector of µj , then performing a series

of elementary transformations on µjI − B, we have

v1,j =
d(λj − p)− ds[−2 cos (j−2)π

n−1 ixn−4,j + xn−5,j ]

(λj − p)(λj − t)− qs
vn,j ,

v2,j =
qd− d(λj − t)[−2 cos (j−2)π

n−1 ixn−4,j + xn−5,j ]

(λj − p)(λj − t)− qs
vn,j ,

vl,j = xl,jvn,j , l = 3, 4, . . . , n− 1,

xl,j =


−2 cos (j−2)π

n−1 i, l = n− 1,

−4[cos (j−2)π
n−1 ]2 + 1, l = n− 2,

−2 cos (j−2)π
n−1 ixl+1,j + xl+2,j , l = n− 3, n− 2, . . . , 3,

vn,j is free, then

uj = Cvj = (v2,j , v3,j , . . . , vn,j , v1,j)
T
, j = 3, 4, . . . , n.

Thus we complete the proof.
The process of how to calculate the eigenvalue and eigenvector of the tridiagonal

Toeplitz matrix with opposite-bordered rows is presented in the following algorithm.
Algorithm 3. Compute the eigenvalue and eigenvector of the matrix A.
Step 1. Input the components ai, bi (1 ≤ i ≤ n− 2), p, q, s, t, and d, order n.
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Step 2. Calculate λk and uj

(1) Calculate eigenvalues λ1, λ2 . . . , λn according to (4.1);
(2) Calculate v1,j , v2,j , . . . , vn−1,j by using the formulae (4.3);
(3) Calculate eigenvectors u1, u2, . . . , un based on the formulae (4.2).

Step 3. Output eigenvalue λ and eigenvector u.
From the above algorithm, we can see that Algorithm 3 involves a total of

5n2 − 3n− 6 arithmetic operations.

Theorem 4.2. Let an n × n (n ≥ 6) matrix B be the same as the matrix that
given in (1.2), νj and ûj (j = 1, 2, . . . , n) are the corresponding eigenvalues and
eigenvectors of B, then νj = λj, ûj = Înuj, λj and uj given in (4.1) and (4.2),
respectively, where În is the “reverse unit matrix” of order n, having ones along the
secondary diagonal and zeros elsewhere.

Proof. In fact, we have Au = λu. Note that B = ÎnAÎn, i.e. A = ÎnBÎn, and
ÎnAu = λÎnu implies that BÎnu = λÎnu, hence λ is the corresponding eigenvalue
of B and Înu is the corresponding eigenvector of B. According to the Theorem 4.1,
we complete the proof.

We can also propose the corresponding algorithm for computing the eigenvalues
and eigenvectors of B by using the Theorem 4.2 and Algorithm 3.

5. Numerical example
In this section, two numerical examples are given to prove the superiority of the new
methods, and all the experiments are performed on a double-precision PC with a
MATLAB (R2018b) and a central processor of 3.40 GHz [Intel(R) Core(TM)i7-3770
CPU], 8GB Microsoft Windows 10 operating system.
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Figure 1. The CPU times comparison of calculating the determinant.

Example 5.1. We consider such a tridiagonal Toeplitz matrix with opposite-bordered
rows that the variable entries are selected randomly in (1.1).

In this example, we compare the CPU times of the determinant of matrix A with
different orders among the method in MATLAB, LU decomposition and Algorithm
1 in Figure 1. And as shown in Figure 1, the CPU times of MATLAB(det) and LU
decomposition is much higher than Algorithm 1. The result is reasonable because
the complexity of Algorithm 1 is much lower than other methods.
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Figure 2. The CPU times comparison of calculating the inverse.

Example 5.2. We consider such a tridiagonal Toeplitz matrix with opposite-bordered
rows that the variable entries are selected randomly in (1.1) and ensure that pt−qs ̸=
0.

For example 5.2, the comparison of CPU times for the inverse of the matrix A
between LU decomposition and Algorithm 2 is showed in Figure 2. From Figure 2,
we can see that the CPU times of Algorithm 2 is much less than that of the LU
decomposition, especially for the large problem. However, when the order of the
matrix A is much more than 1476, we can not get the Fibonacci number because
the memory of MATLAB, thus the inverse of matrix A can not obtain accurately.

6. Conclusions
In this paper, we firstly give a new class of tridiagonal Toeplitz matrix with opposite-
bordered rows. Then we study the determinant, the inverse matrix and the eigen-
pairs of the tridiagonal Toeplitz matrix with opposite-bordered rows and the cor-
responding algorithms based on theoretical results are presented. Finally, two nu-
merical examples are given to demonstrate the effectiveness of our algorithms and
its competitiveness with other existing algorithms.
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