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ON THE EIGENVALUES OF SECOND-ORDER
BOUNDARY-VALUE PROBLEMS

Ekin Uğurlu1,†

Abstract In this paper we investigate the properties of eigenvalues of some
boundary-value problems generated by second-order Sturm-Liouville equation
with distributional potentials and suitable boundary conditions. Moreover,
we share a necessary condition for the problem to have an infinitely many
eigenvalues. Finally, we introduce some ordinary and Frechet derivatives of
the eigenvalues with respect to some elements of the data.
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1. Introduction
The problem of existence of eigenvalues of a boundary-value problem has been
attacted by the authors extensively for years. The special attempt has been applied
for the following problem

−(p(x)y′)′ + q(x)y = λw(x)y, x ∈ [a, b],

y(a) cosα− (py′)(a) sinα = 0,

y(b) cosβ − (py′)(b) sinβ = 0,

(1.1)

where p, p′, q, w are real-valued and integrable functions, p > 0, w > 0 and α, β are
some real numbers. One of the tools is the Prüfer’s transformation. Indeed, with
the following new variables

y(x) = r(x) sin θ(x), p(x)y′(x) = r(x) cos θ(x),

the differential equation in (1.1) is transformed into the equations [1, 3, 7, 8, 18]

r′ =

(
1

p
− g

)
r sin θ cos θ,

and
θ′ =

1

p
cos2 θ + g sin2 θ, (1.2)

where
g = λw − q.
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This method is meaningful provided that y and py′ do not vanish simultaneously.
Note that Eq. (1.2) has a unique solution θ satisfying the initial condition

θ(a, λ) = α.

Some certain properties of eigenvalues of the propblem (1.1) can be investigated
with the help of the monotone increasing proporty of θ. In fact, one may examine
the properties of θ using the following equation

(θ2 − θ1)
′
= f (θ2 − θ1) + h, h ≥ 0,

where
f =

(
g1 −

1

p1

)
(sin θ2 + sin θ1)

(
sin θ2 − sin θ1

θ2 − θ1

)
,

and
h =

(
1

p2
− 1

p1

)
cos2 θ2 + (g2 − g1) sin

2 θ2 ≥ 0,

with p1 > p2 and g2 > g1.
Another method belongs to Atkinson [1]. Indeed, for the problem(

1

r(x)
y′
)′

+ (q(x) + λw(x))y = 0, x ∈ [a, b],

y(a) cosα−
(
1

r
y′
)
(a) sinα = 0,

y(b) cosβ −
(
1

r
y′
)
(b) sinβ = 0,

where r, q, w are real-valued and integrable functions on [a, b] with r ≥ 0, w ≥ 0 on
[a, b] such that for x ∈ (a, b)∫ x

a

w(s)ds > 0,

∫ b

x

w(s)ds > 0,

∫ b

a

r(s)ds > 0,

and for c1, c2 ∈ [a, b] ∫ c2

c1

w(s)ds = 0,

implies ∫ c2

c1

|q(s)| ds = 0.

He passed to the differential equations generated by y and z instead of the
second-order equation such that

y′ = rz, z′ = −(λw + q)y,

where z = y′/r and investigated the properties of eigenvalues of the problem.
In [5], Eckhardt et al have investigated some properties of the eigenvalues and

solutions of the following problem

− [p(x) (y′ + s(x)y)]
′
+ p(x)s(x) (y′ + s(x)y) + q(x)y = λw(x)y, x ∈ [a, b],

y(a) cosα− [p(y′ + sy)](a) sinα = 0,

y(b) cosβ − [p(y′ + sy)](b) sinβ = 0,

(1.3)
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where α, β are some real numbers, p, p′, q, s, w are real-valued and integrable func-
tions with w > 0 on the given interval. The differential equation appearing in (1.3)
is called as differential equation with distributional potentials. This equation and
the corresponding problems have also been studied in [2] and [16]. Clearly, this
differential equation contains the differential equation in (1.1). However, this one
provides a detailed analysis. It is better to note that a weaker version of the dif-
ferential equation in (1.3) has also been introduced by Savchuk and Shkalikov [13]
as

− [(y′ + s(x)y)]
′
+ s(x) (y′ + s(x)y)− s2(x)y = λy, x ∈ [a, b].

Clearly for s ≡ 0, these equations turn out to be the ordinary Sturm-Liouville
equations.

In this paper, we will investigate the properties of eigenvalues of a similar prob-
lem with (1.3) with the aid of Atkinson’s approach. Moreover, at the end of the
paper we will compare this method with Prüfer’s transformation. Finally, we will
investigate the dependence of the eigenvalues of the problem on some elements
of data. This is also a remarkable area for the investigation of the eigenvalues
of some Sturm-Liouville boundary value problems and the readers may see the
papers [4, 6, 9–12, 14, 15, 17, 19] including recent works on the dependence of the
eigenvalues of some ordinary Sturm-Liouville boundary value problems.

2. Boundary-value problem
Let us consider the following system of equations

y′ + s(x)y = r(x)z, z′ = (−λw(x) + q(x))y + s(x)z, x ∈ [a, b]. (2.1)

Here the basic assumptions are as follows
(i) r, s, q, w are real-valued and integrable functions on [a, b],
(ii) w ≥ 0, r ≥ 0 on [a, b],

(iii)
∫ x

a
w(t)dt > 0,

∫ b

x
w(t)dt > 0,

∫ b

a
r(t)dt > 0, x ∈ (a, b),

(iv)
∫ d

c
w(x)dx = 0 implies

∫ d

c
|q(x)| dx =

∫ d

c
|s(x)| dx = 0, a ≤ c < d ≤ b.

We should note that the Eq. (2.1) can also be considered as the following
second-order differential equation with distributional potentials

−
(

1

r(x)
[y′ + s(x)y]

)′

+
1

r(x)
s(x) [y′ + s(x)y] + q(x)y = λw(x)y, x ∈ [a, b].

However, we will continue with the system of Eq.s (2.1).

Lemma 2.1. If ∫ b

a

w(x) |y(x)|2 dx = 0,

then y ≡ z ≡ 0 on [a, b], where z = r−1(x) [y′ + s(x)y] .

Proof. We obtain from the second equation in (2.1) that

µa(x)z(x)− z(a) = −λ
∫ x

a

µa(t)w(t)y(t)dt+

∫ x

a

µa(t)q(t)y(t)dt,
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where

µδ(x) := exp

(
−
∫ x

δ

s(t)dt

)
, a ≤ δ < x ≤ b.

Let us consider that ∫ b

a

w(x) |y(x)|2 dx = 0. (2.2)

Then the inequality∣∣∣∣∫ x

a

µa(t)w(t)y(t)dt

∣∣∣∣ ≤ ∫ x

a

µ2
a(t)w(t)dt

∫ x

a

w(t) |y(t)|2 dt

implies the following

µa(x)z(x)− z(a) =

∫ x

a

µa(t)q(t)y(t)dt. (2.3)

Now suppose that we have the following∫ b

a

µa(x) |q(x)y(x)| dx > 0.

Then for some ϵ > 0 we get∫ b

a

µa(x) |q(x)y(x)| dx > ϵ

∫ b

a

|q(x)| dx.

Therefore on an arbitrarily small interval (c1, c2) we have∫ c2

c1

µa(x) |q(x)y(x)| dx > ϵ

∫ c2

c1

|q(x)| dx > 0.

Since y is continuous we may consider that |y(x)| > ϵ/2 on (c1, c2). Moreover from
(iv) we infer that ∫ c2

c1

w(x)dx > 0.

Therefore on (c1, c2) one obtains∫ c2

c1

w(x) |y(x)|2 dx > 0. (2.4)

Then (2.2) and (2.4) give a contradiction.
Therefore (2.3) implies that

µa(x)z(x) = z(a),

or equivalently
µa(x)

1

r(x)
[y′(x) + s(x)y(x)] = k,

where k is a constant. Therefore we get for k ̸= 0 that

exp

(∫ b

a

r(x)s(x)

µa(x)
dx

)
y(b)− y(a) = k

∫ b

a

exp

(∫ x

a

r(t)s(t)

µa(t)
dx

)
r(x)

µa(x)
dx. (2.5)
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Since the right hand side of (2.5) is positive from (iii), y(b) and y(a) can not be zero
at the same time. This implies by the continuity of y that there exists an interval
(a, a + ϵ) or (b − ϵ, b) such that (2.2) is not satisfied. This completes the proof for
k ̸= 0.

For k = 0 one gets

y(x)− y(a) = exp

(
−
∫ x

a

s(t)dt

)
,

or

y(b)− y(a) = exp

(
−
∫ b

a

s(t)dt

)
.

Consequently, as before, this gives a contradiction with (2.2) and this completes the
proof for k = 0.

The boundary conditions for the solutions of (2.1) are considered as follows

y(a) cos γ − z(a) sin γ = 0,

y(b) cosφ− z(b) sinφ = 0,
(2.6)

where 0 ≤ γ < π and 0 < φ ≤ π.
The first property of the problem (2.1), (2.6) is the following.

Theorem 2.1. The eigenvalues of (2.1), (2.6) are all real and discrete with the
possible limit point at infinity.

Proof. Consider the equation

∂

∂x

(
y(x, λ)z(x, λ)− y(x, λ)z(x, λ)

)
= (λ− λ)w(x)y(x, λ)y(x, λ). (2.7)

Integration of both sides of (2.7) and the conditions (2.6) give

2iℑλ
∫ b

a

w(x) |y(x)|2 dx = 0.

Since y is a nontrivial solution this implies ℑλ = 0.

The second assertion follows from the conditions (2.6) and the entire property
of y(x, λ) and z(x, λ).

Therefore the proof is completed.
A direct consequence of (2.1) is the following.

Theorem 2.2. Following equations are satisfied(y
z

)′
= r + λw

(y
z

)2
− q

(y
z

)2
− 2s

y

z
, z ̸= 0,

and (
z

y

)′

= −λw + q − r

(
z

y

)2

+2s
z

y
, y ̸= 0 . (2.8)
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Lemma 2.2. Following equations are satisfied

∂

∂λ

y(x, λ)

z(x, λ)
=

1

z(x, λ)2

∫ x

a

w(t)y(t, λ)2dt, z(x, λ) ̸= 0,

and

∂

∂λ

z(x, λ)

y(x, λ)
=

−1

y(x, λ)2

∫ x

a

w(t)z(t, λ)2dt, y(x, λ) ̸= 0.

Proof. Using Eq. (2.7) and (2.6) we get

y(x, λ2)z(x, λ1)− y(x, λ1)z(x, λ1) + y(x, λ1)z(x, λ1)− y(x, λ1)z(x, λ2)

λ2 − λ1

=

∫ x

a

w(t)y(t, λ1)y(t, λ2)dt.

Let λ2 → λ1. Then one gets

z(x, λ)
∂

∂λ
y(x, λ)− y(x, λ)

∂

∂λ
z(x, λ) =

∫ x

a

w(t)y(t, λ)2dt

and the results follow from the last equation.

Corollary 2.1. The solutions of (2.1) have the following properties

y(b, λ2)

z(b, λ2)
>
y(b, λ1)

z(b, λ1)
; λ2 > λ1,

and

z(b, λ2)

y(b, λ2)
<
z(b, λ1)

y(b, λ1)
; λ2> λ1.

Theorem 2.3. For the nontrivial solutions y and z of (2.1) y/z can not be zero at
each point on [a, b].

Proof. We get from (2.8) that(
z

y

)′

− 2s
z

y
≤ −λw + q,

since r ≥ 0. Therefore we have

exp

(
−2
∫ x

c

s(t)dt

)(
z

y

)
(x)−

(
z

y

)
(c) ≤

∫ x

c

exp

(
−2
∫ t

c

s(t1)dt1

)
(−λw(t)+q(t))dt,

(2.9)
where a ≤ c < x ≤ b or

exp

(
−2
∫ c

x

s(t)dt

)(
z

y

)
(c)−

(
z

y

)
(x) ≤

∫ c

x

exp

(
−2
∫ c

t

s(t1)dt1

)
(−λw(t)+q(t))dt,

(2.10)
where a ≤ x < c ≤ b. The proof is completed by (2.9) and (2.10) because the right
hand sides of (2.9) and (2.10) remain finite on the given intervals.
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3. On the eigenvalues of the problem
In this section we investigate the properties of the problem (2.1), (2.6). For this
purpose we shall construct the following function

ψ(x, λ) = arctan

(
y(x, λ)

z(x, λ)

)
= arg [z(x, λ) + iy(x, λ)] . (3.1)

Clearly the roots of ψ coincide with the roots of y. Moreover ψ can be considered
on (−π/2 + nπ, π/2 + nπ) for the fixed integer n.

One may obtain from (3.1) the following

ψ′ = r cos2 ψ + (λw − q) sin2 ψ − s sin 2ψ. (3.2)

Therefore we may infer that (3.2) has a unique solution satisfying

ψ(a, λ) = γ.

Moreover Lemma 2.1 and Lemma 2.2 also imply that ψ(., λ) is increasing in λ.

Theorem 3.1. Let c1 ∈ (a, b] and y(c1, λ1) = 0. If y(c2, λ2) = 0 when λ2 > λ1 then
c2 < c1, where 0 < γ < π.

Proof. Suppose that
ψ(c1, λ1) = nπ,

for a fixed n, where a < c1 ≤ b and λ1 is a real number. Then from Lemma 2.2 we
get

ψ(c1, λ2) > nπ,

for λ2 > λ1. Since ψ(a, .) = γ < π we should have

ψ(c2, λ2) = nπ,

at a point c2, where a < c2 < c1. This completes the proof.

Theorem 3.2. For ψ(a, .) = 0 or r ≡ 0 the results of Theorem 3.1 may not be true
in a right neighborhood of a.

Proof. Suppose first that ψ(a, λ∗) = 0. For∫ c∗

a

w(x)y(x, λ∗)
2dx = 0,

we should have z is a constant but nonzero on (a, c∗) because z(a, λ∗) ̸= 0. Therefore
ψ can not reach the value π/2 in (a, c∗) and therefore there is not any root of the
equation

ψ(·, λ) = nπ,

on (a, c∗].
Now let r ≡ 0 on an interval (c1, c2). Then from (3.2) we get

ψ′ = (λw − q) sin2 ψ − s sin 2ψ. (3.3)

At ψ = nπ for a fixed n, (3.3) implies that ψ ≡ nπ on (c1, c2). This completes the
proof.
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Theorem 3.3. The roots of the equation

ψ(b, λk) = φ+ kπ,

where k is the nonnegative integer, are the eigenvalues of (2.1), (2.6).

Proof. Using (3.2) we obtain that

ψ(b, λ)− γ =

∫ b

a

[
r cos2 ψ + λw sin2 ψ − q sin2 ψ − s sin 2ψ

]
dx, (3.4)

is uniformly bounded for all real λ and

ψ′ ≤ r + |q|+ |s| ,

for all negative λ. Therefore on (c1, c2) we have for λ < 0 that

ψ(c2, λ)− ψ(c1, λ) ≤
∫ c2

c1

{r(x) + |q(x)|+ |s(x)|} dx. (3.5)

Since ψ(a, 0) < π we get ψ(x, 0) < π − ϵ for some ϵ > 0 on [a, b). From (3.4) we
obtain that

|λ|
∫ b

a

w sin2 ψdx, (3.6)

is uniformly bounded for λ < 0. Therefore for∫ c2

c1

w(x)dx > 0, (3.7)

there exists a x∗ ∈ [c1, c2] such that

|sinψ| ≤ const. |λ|−1/2
. (3.8)

For large negative λ we see that sinψ is sufficiently small. Moreover using

0 ≤ ψ(x, λ) ≤ ψ(x, 0) < π − ϵ,

we obtain that ψ is sufficiently small for large negative λ and so one may infer that

ψ(x∗,−∞) < ψ(x∗, λ) <
π

2
.

Now suppose that the inequality∫ d2

d1

{r(x) + |q(x)|+ |s(x)|} dx < π

4
,

holds for some [d1, d2] ⊂ [a, b]. Then (3.5) implies

ψ(d2,−∞)− ψ(d1,−∞) <
π

4
,

and so
ψ(d1,−∞) >

π

4
.
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On the other side since ψ(d1,−∞) <
π

2
for large negative λ we have

ψ(d1, λ) <
π

2
. (3.9)

Replacing c1 and c2 by d1 and d2, respectively in (3.5) we see that

ψ(x, λ) <
3π

4
,

on [d1, d2]. Therefore we may write

π

4
< ψ(x, λ) <

3π

4
,

and hence
1

2
< sin2 ψ.

Using (3.6)-(3.8) we obtain
d2∫

d1

w(x)dx = 0,

and by (iv) we get
d2∫

d1

|q(x)| dx =

d2∫
d1

|s(x)| dx = 0.

So q and s are zero almost everywhere in [d1, d2]. Now (3.2) shows that

tanψ(x, λ)− tanψ(d1, λ) =

∫ x

d1

r(t)dt, d1 ≤ x < d2. (3.10)

(3.9) and (3.10) imply that

ψ(d2, λ) <
π

2
, λ < 0. (3.11)

(3.11) particularly shows that

0 ≤ ψ(b,−∞) <
π

2
.

Now assume that ∫ b

b∗

{r(x) + |q(x)|+ |s(x)|} dx < ϵ∗,

where b∗ < b and ϵ∗ > 0. Therefore we may infer for sufficiently large negative λ
from previous calculations on [b∗, b] that

ϵ∗ < ψ(x, λ) <
π

2
+ ϵ∗, λ < 0.

So
0 < sin2(ϵ∗) < sin2 ψ.
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Therefore we again infer that ∫ b

b∗

w(x)dx = 0,

which contradicts with (iii). Consequently we should have

ψ(b,−∞) = 0.

This completes the proof.
The following Theorem gives a necessary condition for (2.1), (2.6) to have an

infinite number of eigenvalues.

Theorem 3.4. There are infinitely many eigenvalues of (2.1), (2.6) if∫ c2k+1

c2k

w(x )dx > 0 ,

∫ c2k+2

c2k+1

r(x )dx > 0 , k = 0 , 1 , ... .

Proof. Let us consider the function tanψ1 with the rule

tanψ1 = λ1/2
y

z
, λ > 0,

where ψ1 = ψ1(x, λ) and |ψ − ψ1| <
π

2
. Then we obtain

(
sec2 ψ1

)
ψ′
1 = λ1/2r − 2s tanψ1 + λ−1/2 (λw − q) tan2 ψ1.

Hence for λ > 0 we obtain

ψ′
1 = λ1/2r cos2 ψ1 + λ−1/2 (λw − q) sin2 ψ1 − s sin 2ψ1

= λ1/2r cos2 ψ1 + λ1/2w sin2 ψ1 − λ−1/2q sin2 ψ1 − s sin 2ψ1.

It follows for λ > 0 that
ψ′
1 ≥ −λ−1/2 |q| − |s| ,

and so for λ ≥ 1

ψ1(b, λ)− ψ1(a, λ) ≥ −
∫ b

a

|q| dx−
∫ b

a

|s| dx.

Therefore ψ1(b, λ) − ψ1(a, λ) is bounded from below, uniformly for λ ≥ 1. Now
suppose that for λ ≥ 1 there exists a constant l1 such that

ψ1(b, λ)− ψ1(a, λ) ≤ l1,

or

λ1/2
∫ b

a

(
r cos2 ψ1 + w sin2 ψ1

)
dx− λ−1/2

∫ b

a

q sin2 ψ1dx−
∫ b

a

s sin 2ψ1dx ≤ l1.

(3.12)
Therefore ∫ b

a

|ψ′
1| dx ≤ l1 +

∫ b

a

|q| dx+

∫ b

a

|s| dx, λ ≥ 1.
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So ψ1 is of bounded variation uniformly for λ ≥ 1.
Using (3.12) we obtain

λ1/2
∫ c2k+1

c2k

(
r cos2 ψ1 + w sin2 ψ1

)
dx ≤ l1 +

∫ c2k+1

c2k

|q| dx+

∫ c2k+1

c2k

|s| dx = l2,

and ∫ c2k+1

c2k

w sin2 ψ1dx ≤ λ−1/2l2.

Then at any rate x ∈ [c2k, c2k+1] we obtain

sin2 ψ1(x, λ) ≤ λ−1/2l2

(∫ c2k+1

c2k

wdx

)−1

.

Similarly we obtain

cos2 ψ1(x, λ) ≤ λ−1/2l2

(∫ c2k+2

c2k+1

rdx

)−1

.

For large values of λ one may find x ∈ [c0, c1] such that ψ1 is arbitrarily close to a
multiple of π, and x ∈ [c1, c2] such that ψ1 is arbitrarily close to an odd multiple of
π/2. Therefore taking λ large, the variation of ψ1(x, λ) over (a, b) can be made as
large as we please and we have a contradiction.

Therefore ψ1(b, λ)−ψ1(a, λ) can be made arbitrarily large and ψ1(x, λ) increases
through an arbitrarily large number of multiples of π as x goes from a to b. This
completes the proof.

4. Banach space
In this section we investigate the differentiable property of the eigenvalues of (2.1),
(2.6) with respect to some elements of data. For this purpose we shall construct a
suitable Banach space as follows

B = R× R× R× R× L1(a′, b′)× L1(a′, b′)× L1(a′, b′)× L1(a′, b′),

with the norm

|l1|+ |l2|+ |l3|+ |l4|+
∫ b′

a′
{|p1|+ |p2|+ |p3|+ |p4|} dx,

where l1, ..., l4 are real numbers and p1, ..., p4 are integrable functions on (a′, b′).
Now we shall consider the following subspace B1 of B consisting of all elements

υ1 such that
υ1 = (a, b, γ, φ, r̃, s̃, q̃, w̃) ,

where the corresponding function k̃ is defined as follows

k̃ =

k on [a, b],

0 otherwise.
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If we define B as the set consisting of all elements υ such that

υ = (a, b, γ, φ, r, s, q, w) ,

then B is not a subset of B. Therefore we identify B with B1 to inherit the norm
from B and the convergence in B.

Lemma 4.1. Let y and z be the solutions of (2.1) satisfying

y(x∗, λ) = ξ1, z(x∗, λ) = ξ2, ξ1, ξ2 ∈ C, x∗ ∈ (a′, b′).

Then y = y(., x∗, ξ1, ξ2, r, s, q, w) is continuous of all its variables.

Proof. The proof can be introduced as Theorem 2.7 in [10].

Lemma 4.2. The eigenvalue λ of (2.1), (2.6) is a continuous function of υ in the
set B.

Proof. The roots of the function

Φ(λ) = y(b, λ) cosψ − z(b, λ) sinψ,

can be considered as the eigenvalues of the problem (2.1), (2.6) provided that y and
z satisfy the certain conditions at a. Since Φ is entire in λ, for the point υ0 ∈ B,
there exists an η > 0 such that Φ(λ) ̸= 0 for µ with |λ− µ| = η. Therefore by the
theorem on continuity of roots of an equation as a function of parameters [4] the
proof is completed.

Remark 4.1. We should understand Lemma 4.2 as there exists a continuous eigen-
value branch in B. However, this does not imply that the n th eigenvalue is always
continuous in B.Therefore we will consider the eigenvalues in such a continuous
eigenvalue branch.

Theorem 4.1. For the simple eigenvalue λ of (2.1), (2.6) belonging to the contin-
uous branch in B there exists a normalized eigenfunction yu(x, λ) such that

∥yu(x, λ(υ))− yu(x, λ(υ0))∥ → 0, (uniformly)

as
∥υ − υ0∥→ 0 , υ, υ0∈ B .

Proof. For the proof we refer to [10] together with Lemma 4.1 and Lemma 4.2.

Using Theorem 4.1 we can introduce the following.

Theorem 4.2. Let λ be an eigenvalue of (2.1), (2.6). Then the derivatives of λ
with respect to some certain elements of data can be introduced as follows

dλ

dγ
= − sin2 γ |yu(a)|2 − cos2 γ |zu(a)|2 ,

dλ

dφ
=sin2 φ |yu(b)|2 +cos2 φ |zu(b)|2 ,

dλ

dr
=

∫ b

a

h |y′u + syu|
2
, h ∈ L1(a, b),
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dλ

ds
=2

∫ b

a

h

r
ℜ(y ′

uyu)+2

∫ b

a

hs

r
|yu|2 +

∫ b

a

h2

r
|yu|2 , h ∈ L2(a, b),

dλ

dq
=

∫ b

a

h |yu|2 , h ∈ L1(a, b),

dλ

dw
= λ

∫ b

a

h |yu|2 , h ∈ L1(a, b).

Proof. The ordinary derivatives of λ with respect to γ and φ and the Frechet
derivatives of λ with respect to q and w can be obtained using a similar method in
the literature (for example, see [4, 6, 9–12, 14, 15, 17, 19]) . However, the proofs of
the derivatives of λ with respect to r and s should be given as they are new in the
literature.

We shall consider the Eq. (2.7). Let yu be a normalized eigenfunction of λ and
yu = yu(x, λ(1/r)) and yv = yu(x, λ(1/r + h)), where h ∈ L1(a, b). Fixing all the
other variables we get(

λ(
1

r
)− λ(

1

r
+ h)

)∫ b

a

wyuyv

=− 1

r
(y′u + syu)yv |ba +

∫ b

a

1

r
(y′u + syu)y′v

+

∫ b

a

s

r
y′uyv +

∫ b

a

s2

r
yuyv +

(
1

r
+ h

)
yu(y′v + syv) |ba −

∫ b

a

y′u

(
1

r
+ h

)
(y′v + syv)

−
∫ b

a

(s
r
+ sh

)
yu
(
y′v + syv

)
=−

∫ b

a

h (y′u + syu)
(
y′v + syv

)
.

Therefore the result follows from the last equation.
Now consider that yu be a normalized eigenfunction of λ and yu = yu(x, λ(s))

and yv = yu(x, λ(s+h)), where h ∈ L2(a, b). Fixing all the other variables we obtain

(λ(s)− λ(s+ h))

∫ b

a

wyuyv = −
∫ b

a

h

r
(y′uyv + yuy′v)−

∫ b

a

hs

r
2yuyv −

∫ b

a

h2

r
yuyv.

Therefore the proof is completed.

5. Conclusion and remarks
In this paper we investigate some properties of the real eigenvalues of the problem
(2.1), (2.6) and we have followed Atkinson’s method.

We should note that for the case s ≡ 0 on [a, b] the results are well known but
in this work there is no need to consider s as identically zero. Therefore the results
are new. Furthermore, as can be seen in Theorem 4.2, for the Frechet derivative
of the spectral parameter with respect to s we need to consider h as an element of
square integrable function space. This construction and result are also new in the
literature as well as the results for the derivative of the eigenvalues with respect to
the function r.
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On the other side, as we have discussed in the introduction, there exists another
way following the Prüfer’s transformation. It is possible for the problem (2.1), (2.6)
to pass to the new variables using Prüfer’s transformation and obtain some results
for this variables. Indeed, one may consider the following transformations

y(x) = τ(x) sinψ(x), z(x) = τ(x) cosψ(x).

These yield

τ ′ = (r − λw + q) τ sinψ cosψ + τs cos 2ψ,

and

ψ′ = r cos2 ψ + (λw − q) sin2 ψ − s sin 2ψ. (5.1)
Then

(ψ2 − ψ1)
′
= f (ψ2 − ψ1) + h,

where

f = (λw1 − q1 − r1) (sinψ2 + sinψ1)

(
sinψ2 − sinψ1

ψ2 − ψ1

)
+ 2s2

sin 2ψ2 − sin 2ψ1

2ψ2 − 2ψ1
,

and

h = (r2 − r1) cos
2 ψ2 + (λw2 − q2 − λw1 + q1) sin

2 ψ2 + (s1 − s2) sin 2ψ1.

For r2 > r1, λw2 − q2 > λw1 − q1 and s1 > s2 if ψ is restriced on (−π/2, 0) then
one may say from (5.1) that ψ is increasing function of ψ. However, on (0, π/2) the
assumption on s1 and s2 should be reversed to infer that ψ is increasing on (0, π/2).
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