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Abstract In the present paper, we are concerning with a quadratic integral
equation with phase–lag term. In the following pages, sufficient conditions
are given for the existence of positive continuous solution to quadratic in-
tegral equations. The method used here depends on both Tychonoff fixed
point principle and Arzelà–Ascoli theorem. A concrete example illustrating
the mentioned applicability is also included.
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1. Introduction
Phase lag has a very important role in our applied science and there are currently
one, dual and three phases and each phase has a different applications. For example
the three–phase–lag model incorporates the microstructural interaction effect in the
fast–transient process of heat transport. It describes the finite time required for the
various microstructural interactions to take place, including the phonon–electron
interaction in metals, the phonon scattering in dielectric crystals, insulators, and
semiconductors, and the activation of molecules at extremely low temperature, by
the resulting phase lag (time delay) in the process of heat transport see [9, 11,
13, 23]. Integral equations with phase lag term are the mathematical model of
many evolutionary in problems chemistry, engineering, quantum mechanics, biology,
optimal control systems, mathematical physics and so on. For example, integral
equations for the dual lag model of heat transfer.

Integral equations create a very important and significant part of mathematical
analysis and their applications to real–world problems. On the other hand, nor-
mality and continuity are very useful tools in the wide area of functional analysis
such as the metric fixed–point theory and the theory of operator equations in Ba-
nach spaces. They are also used in the studies of functional equations, ordinary
and partial differential equations, fractional partial differential equations, integral
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and integro–differential equations, optimal control theory, etc., see [1–8, 14, 17–22].
In our investigations, we apply the Tychonoff fixed point principle [12] to prove
the existence and uniqueness of solution of the quadratic integral equation with
phase–lag term.

In this paper, the existence of at least one continuous solution for the quadratic
integral equation of phase–lag term (in short QIEPLT),

ψ(t+ δt) = a(t) + ψ(t+ δt)

∫ 1

0

k(t+ δt, τ)g(τ, ψ(τ))dτ ; (0 < δt << 1), (1.1)

will be proved, where δt is the phase–lag constant, the function ψ(t) is unknown in
the Banach space and continuous with their derivative with respect to time. The
kernel k(t, τ) is positive and continuous, the functions a(t), g(τ, ψ) are continuous
its derivatives with respect to time. Let I = [0, 1], denote by E = C(I) the space
of continuous functions defined on I with norm ∥ψ∥ = maxt∈I |ψ(t)|.
Using Taylor expansion after neglecting the second derivative in Eq. (1.1), we get

ψ(t)+δt
∂ψ

∂t
(t) = a(t)+

(
ψ(t)+δt

∂ψ

∂t
(t)

)∫ 1

0

(
k(t, τ)+δt

∂k

∂t
(t, τ)

)
g(τ, ψ(τ))dτ,

(1.2)
with initial condition,

ψ(0) = ψ0. (1.3)

Equation (1.2) with initial condition (1.3) is called quadratic integro–differential
equation. The quadratic integro–differential equation (QIDE) is a kind of functional
equation that has associate integral and derivatives of an unknown function. These
equations were named after the leading mathematicians who have first studied them,
such as quadratic Fredholm, quadratic Volterra. quadratic Fredholm and Volterra
equations are the most encountered types.
By comparing the expressions with the same powers of parameter δt, we receive the
relations

ψ(t) = a(t) + ψ(t)

∫ 1

0

k(t, τ)g(τ, ψ(τ))dτ, (1.4)

and

∂ψ

∂t
(t) = ψ(t)

∫ 1

0

∂k

∂t
(t, τ)g(τ, ψ(τ))dτ +

∂ψ

∂t
(t)

∫ 1

0

k(t, τ)g(τ, ψ(τ))dτ. (1.5)

Integrating Eq. (1.5) twice and using initial condition (1.3), we get

ψ(t)=ψ0+

∫ t

0

ψ(τ)

∫ 1

0

∂k

∂τ
(τ, s)g(s, ψ(s))dsdτ+

∫ t

0

∂ψ

∂τ
(τ)

∫ 1

0

k(τ, s)g(s, ψ(s))dsdτ,

(1.6)
integration by parts and applying the Leibniz’s rule, we obtain

ψ(t) =ψ0+

∫ t

0

ψ(τ)dτ

(∫ 1

0

∂k

∂t
(t, s)g(s, ψ(s))ds−

∫ t

0

∫ 1

0

∂2k

∂τ2
(τ, s)g(s, ψ(s))dsdτ

)
+ (ψ(t)− ψ0)

(∫ 1

0

k(t, s)g(s, ψ(s))ds−
∫ t

0

∫ 1

0

∂k

∂τ
(τ, s)g(s, ψ(s))dsdτ

)
.

(1.7)
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Equation (1.4) is called the Fredholm quadratic integral equation and (1.7) the
Volterra–Fredholm quadratic integral equation, in order to guarantee discuss the
existence and uniqueness of solution of the equation (1.1), we must establish the
existence and the uniqueness of solutions of the Eqs. (1.4) and (1.7).
The contribution of this work can be summarized in the following four points:

• Introducing the preliminaries and auxiliary results about the fixed point the-
orem needed in the following points of the paper.

• The existence and uniqueness of the solution of a quadratic integral equation
of Volterra type (1.4), under certain conditions, will be discussed and proved
using Banach’s fixed point method in the space E = C(I).

• We study existence of solution of quadratic integral equation (1.7) by using
Tychonoff fixed point theorem.

• An example is given to show the applications of our results.

2. Preliminaries
In this section, the existence results will be based on the following fixed–point
theorems and definitions that are used in the paper.

Definition 2.1 (Convex set [16]). A set S ⊂ E is said to be a convex set if
∀λ ∈ [0, 1] and ∀ϕ, ψ ∈ S, λφ+ (1− λ)ψ ∈ S.

Theorem 2.1 (Banach’s Fixed Point Theorem [10]). If E be a Banach space and
T : E → E be a contraction mapping, then T has a unique fixed point in E.

Theorem 2.2 (Tychonoff’s Fixed Point Theorem [12]). Suppose E is a complete,
locally convex linear space and Sr is a closed convex subset of E. Let the mapping
T : Sr → Sr be continuous and T (E) ⊂ E. If the closure of T (E) is compact, then
T has a fixed–point in E.

Notice that a normed vector space is a locally convex topological vector space
so this theorem extends the Schauder fixed point theorem.

Theorem 2.3 (Arzelà–Ascoli Theorem [15]). Let E be a compact metric space and
C(E) the Banach space of real or complex valued continuous functions normed by

∥ψ∥ = max
t∈E

|ψ(t)|.

If F = {fn} is a sequence in C(E) such that is uniformly bounded and equi–
continuous, then the closure of F is compact.

3. Existence of positive continuous solution
In this section, we study the existence of at least one solution of the integral equation
(1.1), to achieve this, the existence and uniqueness of the Eqs. (1.4) and (1.7) were
discussed in the following subsections:
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3.1. The existence and uniqueness of solution of Eq. (1.4)
Here, we prove the existence of positive continuous solution for Eq. (1.4). To
facilitate our discussion, let us first state the following assumptions:

(i) The kernel k(t, τ) ∈ C([0, 1]), t, τ ∈ [0, 1] satisfies |k(t, τ)| < k∗, k∗ is a constant.
(ii) M = sup{|g(t, 0)| : t ∈ [0, 1]}.
(iii) Ni = max{|ψi(t)| : t ∈ [0, 1]}, i = 1, 2.
(iv) Function g(τ, ψ(τ)) satisfy the Lipschitz condition with Lipschitz constant l

|g(τ, ψ1(τ))− g(τ, ψ2(τ))| ≤ l|ψ1(τ)− ψ2(τ)|.

To prove the existence and the uniqueness solution of Eq. (1.4), we use the
continuity of the integral operator, with the help of Banach fixed point. For this
the integral equation (1.4) can be written in the integral operator form:

(Hψ)(t) = a(t) + ψ(t)

∫ 1

0

k(t, τ)g(τ, ψ(τ))dτ. (3.1)

Theorem 3.1. If the conditions (i) – (iv) are satisfied and the integral operator
(3.1) is a continuous, then equation (1.4) has an unique solution ψ(t) in the Banach
space C([0, 1]), under the condition,

k∗(M + lN1 + lN2) < 1.

Proof. For the continuity, we assume the two functions ψ1(t) and ψ2(t) in the
space C([0, 1]) satisfy the integral operator then,

(Hψ1)(t)−(Hψ2)(t)

=ψ1(t)

∫ 1

0

k(t, τ)g(τ, ψ1(τ))dτ−ψ2(t)

∫ 1

0

k(t, τ)g(τ, ψ2(τ))dτ,

=ψ1(t)

∫ 1

0

k(t, τ)g(τ, ψ1(τ))dτ−ψ2(t)

∫ 1

0

k(t, τ)g(τ, ψ1(τ))dτ

+ ψ2(t)

∫ 1

0

k(t, τ)g(τ, ψ1(τ))dτ−ψ2(t)

∫ 1

0

k(t, τ)g(τ, ψ2(τ))dτ,

=[ψ1(t)−ψ2(t)]

∫ 1

0

k(t, τ)g(τ, ψ1(τ))dτ

+ ψ2(t)

∫ 1

0

k(t, τ)[g(τ, ψ1(τ))−g(τ, ψ2(τ))]dτ.

Using the properties of the norm and the conditions (i)–(iv), we get

∥(Hψ1)(t)− (Hψ2)(t)∥ ≤max
t∈I

|[ψ1(t)− ψ2(t)]

∫ 1

0

k(t, τ)g(τ, ψ1(τ))dτ |

+max
t∈I

|ψ2(t)

∫ 1

0

k(t, τ)[g(τ, ψ1(τ))− g(τ, ψ2(τ))]dτ |,

≤max
t∈I

|ψ1(t)− ψ2(t)|
∫ 1

0

|k(t, τ)||g(τ, ψ1(τ))|dτ
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+max
t∈I

|ψ2(t)|
∫ 1

0

|k(t, τ)||g(τ, ψ1(τ))− g(τ, ψ2(τ))|dτ,

∥(Hψ1)(t)− (Hψ2)(t)∥ ≤k∗ max
t∈I

|ψ1(t)− ψ2(t)|
∫ 1

0

(|g(τ, ψ1(τ))− g(τ, 0)|

+ |g(τ, 0)|)dτ + k∗N2lmax
t∈I

|ψ1(t)− ψ2(t)|
∫ 1

0

dτ,

≤k∗ max
t∈I

|ψ1(t)−ψ2(t)|
(∫ 1

0

(l|ψ1(τ)|+M)dτ+N2l

∫ 1

0

dτ

)
,

≤k∗(M + lN1 + lN2)∥ψ1(t)− ψ2(t)∥,

hence, we have

∥(Hψ1)(t)− (Hψ2)(t)∥ ≤ α∥ψ1(t)− ψ2(t)∥; α < 1. (3.2)

Hence, H is a contraction operator in the space C([0, 1]); therefore, by Banach’s
fixed point theorem, H has a unique fixed point. If the reader uses the continuity
of the integral operator, with the help of Banach’s fixed point, we arrive to the
existence and uniqueness of the Eq. (1.4).

3.2. The existence and uniqueness of solution of Eq. (1.7)
Equation (1.7) can be written in the following integral operator from:

(V ψ)(t)=ψ0+(Tψ)(t)((KtG)(t)−(KττG)(t))+(ψ(t)−ψ0)((KG)(t)−(KτG)(t)), (3.3)

where

(Tψ)(t) =

∫ t

0

ψ(τ)dτ,

(KG)(t) =

∫ 1

0

k(t, s)g(s, ψ(s))ds,

(KtG)(t) = −
∫ 1

0

∂k

∂t
(t, s)g(s, ψ(s))ds,

(KτG)(t) = −
∫ t

0

∫ 1

0

∂k

∂τ
(τ, s)g(s, ψ(s))dsdτ,

(KττG)(t) = −
∫ t

0

∫ 1

0

∂2k

∂τ2
(τ, s)g(s, ψ(s))dsdτ.

Assume that g is a real function defined on the set I ×R+, we consider the super-
position operator (Gψ)(t) = g(t, ψ(t)) under the some following assumptions.
(a) g is continuous on the set I ×R+.
(b) The function t→ g(t, ψ) is nondecreasing on I for any fixed ψ ∈ R+.
(c) For any fixed t ∈ I the function ψ → g(t, ψ) is nondecreasing on R+.
(d) The function g = g(t, ψ) satisfies the Lipschitz condition with respect to the

variable ψ, i.e. there exists a constant l > 0 such that for any t ∈ I and for
ψ1, ψ2 ∈ R+ the following inequality holds

|g(t, ψ1)− g(t, ψ2)| ≤ l|ψ1 − ψ2|. (3.4)



The quadratic integral equations 1593

Then the following result is implied.

Theorem 3.2. Assume that the hypotheses (a)–(d) are satisfied and ψ ∈ ΨI ⊆
C(I). Then

d(Gψ) ≤ ld(ψ).

The above theorem follows that when the function g satisfies the Lipschitz con-
dition with a constant l < 1 (cf. the assumption (d)) the superposition operator G
generated by the function g improves the degree of monotonicity of any subset Ψ
of ΨI with the coefficient l.

Corollary 3.1. Suppose the function g(t, ψ) = g : I × R+ → R+ satisfies the
assumptions (a), (b). Moreover, we assume that g has partial derivative gψ which
is nonnegative and bounded on the set I ×R+. Then g satisfies the assumptions (c)
and (d) with the Lipschitz constant l defined as follows

l = sup{gψ(t, ψ) : (t, ψ) ∈ I ×R+}.

In order that discuss the existence and uniqueness solution of Eq. (1.7), we
assume the following assumptions:

(i) k : I × I → R+ is continuous and the functions s → k(t, s) and t → k(t, s)
are nondecreasing on R+ for fixed t ∈ I and s ∈ I, respectively such that
|−kτ (τ, s)| < k1, |−kττ (τ, s)| < k2, ∀t ∈ I, where k1, k2 are positive constants.

(ii) The operator T : C(I) → C(I) is continuous and satisfies the |(Tψ)(t)| ≤ |ψ|.
(iii) The function g : I × R+ → R+ satisfies the conditions (a) − (d), and there

exists a nondecreasing function m : R+ → R+ such that |g(s, ψ(s))| ≤ m(|ψ|).
(iv) The unknown function ψ(t) satisfies |ψ(t)− ψ0| ≤ |ψ| in the space C(I).
(v) The inequality

ψ0 + rm(r)[k2 + k∗] ≤ r,

where k∗ = max{k(t, s) : t, s ∈ I}.

Now we can formulate the main existence theorem:

Theorem 3.3. Let the assumptions (i)–(v) be satisfied. Then the quadratic func-
tional integral equation (1.7) has at least one solution ψ = ψ(t) in the space C(I).

Proof. Let Sr be the subset of the space C([0, 1]) defined as follows:

Sr = {ψ ∈ C(I) : |ψ(t)| ≤ r for t ∈ I}.

The space C([0, 1]) is a complete locally convex linear space that has been proved in
[12], it is clear that the set Sr is nonempty, bounded and closed, but we will prove
that the set Sr convex.

Let ψ1, ψ2 ∈ Sr and λ ∈ [0, 1] then we have

∥λψ1 + (1− λ)ψ2∥ ≤ λ∥ψ1∥+ (1− λ)∥ψ2∥,
≤ λr + (1− λ)r,

≤ λr + r − λr = r.
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Then λψ1 + (1 − λ)ψ2 ∈ Sr which means that is convex set. Let us consider the
operator V is defined on the space C(I) by the formula:

(V ψ)(t) =ψ0+(Tψ)(t)

(∫ 1

0

∂k

∂t
(t, s)g(s, ψ(s))ds−

∫ t

0

∫ 1

0

∂2k

∂τ2
(τ, s)g(s, ψ(s))dsdτ

)
+(ψ(t)−ψ0)

(∫ 1

0

k(t, s)g(s, ψ(s))ds−
∫ t

0

∫ 1

0

∂k

∂τ
(τ, s)g(s, ψ(s))dsdτ

)
.

To show the operator V transforms the space Sr into itself. For that let ψ ∈ Sr,
then

|(V ψ)(t)|≤
∣∣∣∣ψ0+(Tψ)(t)

(∫ 1

0

∂k

∂t
(t, s)g(s, ψ(s))ds−

∫ t

0

∫ 1

0

∂2k

∂τ2
(τ, s)g(s, ψ(s))dsdτ

)∣∣∣∣
+

∣∣∣∣(ψ(t)− ψ0)

(∫ 1

0

k(t, s)g(s, ψ(s))ds−
∫ t

0

∫ 1

0

∂k

∂τ
(τ, s)g(s, ψ(s))dsdτ

)∣∣∣∣ .
Using the properties of the norm and the conditions (i)–(v), we get

|(V ψ)(t)| ≤ψ0 + |(Tψ)(t)|
(∫ 1

0

−
∣∣∣∣−∂k∂t (t, s)

∣∣∣∣ |g(s, ψ(s))|ds
+

∫ t

0

∫ 1

0

∣∣∣∣−∂2k∂τ2
(τ, s)

∣∣∣∣ |g(s, ψ(s))|dsdτ)
+ |(ψ(t)− ψ0)|

(∫ 1

0

|k(t, s)||g(s, ψ(s))|ds

+

∫ t

0

∫ 1

0

∣∣∣∣−∂k∂τ (τ, s)
∣∣∣∣ |g(s, ψ(s))|dsdτ) ,

≤ψ0 + |ψ(t)|m(|ψ|)[k2 + k∗],

hence, we obtain
|(V ψ)(t)| ≤ ψ0 + rm(r)[k2 + k∗] ≤ r.

From the above estimate and assumption (v), then (V ψ)(t) ∈ Sr implies V Sr ⊂ Sr.
Now, let the fix arbitrarily δ > 0 and choose t1, t2 ∈ I such that

|t2 − t1| ≤ δ, t2 ≥ t1. Then, keeping in mind our assumptions, we obtain

|(V ψ)(t2)− (V ψ)(t1)| ≤|(Tψ)(t2)|
∣∣∣∣∫ t2

t1

∫ 1

0

∣∣∣∣−∂2k∂τ2
(τ, s)

∣∣∣∣ g(s, ψ(s))dsdτ ∣∣∣∣
+ |(ψ)(t2)− ψ0|

∣∣∣∣∫ t2

t1

∫ 1

0

∣∣∣∣−∂k∂τ (τ, s)
∣∣∣∣ g(s, ψ(s))dsdτ ∣∣∣∣

+ |(Tψ)(t2)− (Tψ)(t1)|
∣∣∣∣∫ 1

0

−
∣∣∣∣−∂k∂t (t, s)

∣∣∣∣ g(s, ψ(s))ds
+

∫ t1

0

∫ 1

0

∣∣∣∣−∂2k∂τ2
(τ, s)

∣∣∣∣ g(s, ψ(s))dsdτ ∣∣∣∣
+ |(ψ)(t2)− (ψ)(t1)|

∣∣∣∣∫ 1

0

k(t, s)g(s, ψ(s))ds

+

∫ t1

0

∫ 1

0

∣∣∣∣−∂k∂τ (τ, s)
∣∣∣∣ g(s, ψ(s))|dsdτ ∣∣∣∣ ,
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using the properties of the norm and the conditions (i)–(v), we obtain

|(V ψ)(t2)− (V ψ)(t1)| ≤m(|ψ|)[|(Tψ)(t2)|k2 + |(ψ)(t2)− ψ0|k1](t2 − t1)

+ |(Tψ)(t2)− (Tψ)(t1)|m(|ψ|)[−k1 + k2t1]

+ |(ψ)(t2)− (ψ)(t1)|m(|ψ|)[k∗ + k1t1].

Hence, keeping in mind our assumptions and the above-established facts, we arrive
at the following relation:

|(V ψ)(t2)− (V ψ)(t1)| → 0 as |t2 − t1| → 0.

This means that the function V Sr is equi–continuous on I. By using Arzelà–Ascoli
theorem [13], we can say that is V Sr compact.

Now, Tychonoff fixed point theorem is satisfied all its conditions, then Eq. (1.7)
has at least one solution ψ ∈ C(I). This completes the proof.

4. Example
In this section, we will discuss the following example and applying theories 3.1 and
3.3, then check the results.

Example 4.1. Consider the following quadratic integral equation with phase lag
term:

ψ(t+ δt) = a(t) + ψ(t+ δt)

∫ 1

0

(t+ δt)2

2e((t+δt)+τ)
ln(1 + τ |ψ(τ)|)dτ ; (ψ(0) = 0). (4.1)

Equation (4.1), has the exact solution ψ(t) = t. Using numerical treatment of the
equation (4.1) and comparing the expressions with the same powers of parameter
δt, we obtained

ψ(t) = a(t) + ψ(t)

∫ 1

0

t2

2et+τ
ln(1 + τ |ψ(τ)|)dτ ; (t ∈ I = [0, 1]), (4.2)

and

ψ(t) =(Tψ)(t)

(∫ 1

0

− t

2
(−2 + t)e(−s−t) ln(1 + s|ψ(s)|)ds

+

∫ t

0

∫ 1

0

τ

4
(10− 8τ + τ2)e(−s−τ) ln(1 + s|ψ(s)|)dsdτ

)
+ ψ(t)

(∫ t

0

∫ 1

0

τ

2
(−2 + τ)e(−s−τ) ln(1 + s|ψ(s)|)dsdτ

+

∫ 1

0

t2

2et+s
ln(1 + s|ψ(s)|)ds

)
.

(4.3)

In this example, comparing with equation (1.4) and assumptions (i)–(iv) in
Subsect. (3.1), we have

(i) The kernel k(t, τ) = t2/2et+τ , t, τ ∈ [0, 1] satisfies |k(t, τ)| < 1/2e2, (k∗ =
1/2e2).
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(ii) M = sup{|g(t, 0)| : t ∈ [0, 1]} = ln(1) = 0.
(iii) N1 = max{|t| : t ∈ [0, 1]} = 1 and N2 = max{|t2| : t ∈ [0, 1]} = 1.
(iv) The function g(τ, ψ(τ)) = ln(1 + τ |ψ(τ)|) satisfy the Lipschitz condition with

Lipschitz constants

l = sup{ ∂

∂ψ
(ln(1 + τ |ψ(τ)|)) : (τ, ψ) ∈ I ×R+} = 1.

Under the following inequality:

k∗(M + lN1 + lN2) = (
1

2e2
)(2) = (

1

e2
) < 1,

the theorem 3.1 is true, and comparing with equation (1.7) and assumptions (i)–
(v) in Subsect. (3.2), we have the operator T is defined as (Tψ)(t) =

∫ t
0
ψ(τ)dτ

which is also continuous with norm ∥T∥ = 1, the function kτ (τ, s) = −[τ(−2 +
τ)e(−s−τ)]/2, where |kτ (τ, s)| ≤ 1/2e2, (k1 = 1/2e2), Also, we have kττ (τ, s) =
−[(10 − 8τ + τ2)e(−s−τ)]/4, where |kττ (τ, s)| ≤ 7/e2, (k2 = 7/e2), the function
g(τ, ψ(τ)) = ln(1+ τ |ψ(τ)|), which satisfies the assumption (iii) with |g(τ, ψ(τ))| =
| ln(1 + τ |ψ(τ)|)| ≤ |ψ(τ)|. Thus, we get m(r) = r.
Further, let us consider the inequality

ψ0 + rm(r)[k2 + k∗] ≤ r,

or equivalently,

r2[
7

e2
+

1

2e2
] ≤ r. (4.4)

Using the standard methods we can verify that the function ρ(r) = r(7/e2 +1/2e2)
attains its maximum at the point r = 0.985 and ρ(0.985) = 0.985(7/e2+1/2e2) ≤ 1.
So, the number r = 0.985 is a positive solution of the inequality (4.4), hence the
theorem 3.3 is true.

Finally, taking into account all the above–established facts and theories 3.1 and
3.3 we conclude that the equation (1.1) has at least one solution ψ = ψ(t) defined
and continuous on the interval I. Moreover, |ψ| ≤ r = 0.985.

5. Conclusion
In this work, from the above results and discussion, the following may be conclude,
the quadratic integral equation with phase–lag term (1.1) possesses at least one
solution ψ(t) in the space C([0, 1]), under all the assumptions of theories 3.1 and
3.3. Fixed point theories are one of the best methods to prove the existence and
uniqueness of any equation.
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