
Journal of Applied Analysis and Computation Website:http://jaac-online.com/
Volume 10, Number 1, February 2020, 361–377 DOI:10.11948/20190274

LIMIT CYCLE BIFURCATIONS IN
DISCONTINUOUS PLANAR SYSTEMS WITH

MULTIPLE LINES∗

Yanqin Xiong1 and Maoan Han2,3,†

Abstract In this paper, the limit cycle bifurcation problem is investigated for
a class of planar discontinuous perturbed systems with n parallel switch lines.
Under the assumption that the unperturbed system has a family of periodic
orbits crossing all of the lines, an explicit expression of the first order Melnikov
function along the periodic orbits is presented, which plays an important role
in studying the problem of limit cycle bifurcations. As an application of the
established method, the maximal number of limit cycles of a discontinuous
system is considered.
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1. Introduction
Consider a piecewise smooth system of the from

ẋ = F (x, y), ẏ = G(x, y), (1.1)

where

F (x, y) =

F+(x, y), x ≥ 0,

F−(x, y), x < 0,
G(x, y) =

G+(x, y), x ≥ 0,

G−(x, y), x < 0

and F±(x, y), G±(x, y) are C∞ functions. Then, system (1.1) has two subsystems

ẋ = F+(x, y), ẏ = G+(x, y) (1.1a)

and
ẋ = F−(x, y), ẏ = G−(x, y), (1.1b)

which are called the right and left subsystems respectively. The notations of the
subsystems were first introduced in [13] by Han and Zhang.
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Recently, system (1.1) has been receiving great attention because many prob-
lems, from control theory, electronics, physics, medicine as well as biology, can
be modeled by it, see [3, 4, 8] and references therein. The non-smoothness of sys-
tem (1.1) at the y-axis yields many complicated and interesting behaviors which
cannot occur in smooth case, such as sliding homoclinic bifurcation and sliding-
crossing bifurcation, border-collision bifurcation, stick-slip oscillation and so on,
see [4, 6, 8, 9, 26] and references cited therein.

A lot of theory has been developed to investigate Poincaré, Hopf and Homo-
clinic loop bifurcations on system (1.1). Poincaré bifurcation is to study the max-
imal number of limit cycles emerging from a period annulus. To the best of our
knowledge, there are two main methods to investigate this problem. One is the
Melnikov function method proposed in [17], see [10,18,29,30] and references quoted
therein. Another one is the averaging method developed in [11, 22], see [23] and
references therein. However, the authors [21] proved that the two method are
equivalent to each other. Several cases of Hopf bifurcations were investigated by
the papers [5,13,25,29]. On homoclinic loop bifurcation, there are also two ways to
study. The first one is the Melnikov function method, see [18–20]. The second one
is the method of stability-changing of a homoclinic loop, which, in some cases, can
find more limit cycles than the first one. These limit cycles, which are not covered
by the Melnikov function method, are called alien limit cycles, see [31]. Further-
more, Poincaré and Homoclinic loop bifurcations are also called global bifurcations,
while Hopf bifurcation is called local bifurcation

However, as mentioned in [1], discontinuities may occur on multiply lines or
even nonlinear curves or surfaces. In the literature [1, 16, 21, 24, 34], the authors
studied the problem of limit cycle bifurcation for a planar discontinuous system
by considering discontinuities on finitely many nonlinear curves emanating from a
vertex. In the paper [27], the author considered the number of limit cycles for a
piecewise-linear Liénard system with n parallel switch lines and obtained that it
can have 2n limit cycles, which proved a conjecture in the paper [28]. In this paper
we study the limit cycle bifurcation problem of a class of differential systems having
discontinuities on finitely many parallel straight lines. The rest of this paper is
organized as follows. Some definitions, assumptions and main results are presented
in Section 2. The proof of Theorem 2.1 is given in Section 3.

2. Preliminaries and main results
First, introduce some notations as follows

Ii = (xi+1, xi), i = 0, 1, · · · , n, n ∈ N+

where
xn+1 < xn < · · · < x1 < x0, xn+1 = −∞, x0 = +∞.

Therefore, the set R is divided into n+1 subintervals by the points x1, x2, · · · , xn,
and

R =I0 ∪ I1 ∪ · · · ∪ In ∪ {x1, x2, · · · , xn}

=

n⋃
i=0

Ii ∪ {x1, x2, · · · , xn}.
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Then, we define vector functions Φi(x, y) : Ii 7→ R4, i = 0, 1, · · · , n,

Φi(x, y)=(Hiy(x, y),−Hix(x, y), pi(x, y), qi(x, y)), (x, y) ∈ Ii×R, i=0, 1, · · · , n,

where Hi(x, y), pi(x, y), qi(x, y) are C∞ functions in (x, y). Further, let us use
smooth vector functions Φi(x, y) to construct a piecewise smooth vector function
Φ(x, y) in what follows

Φ(x, y) =



Φ0(x, y), x ∈ I0,

Φ1(x, y), x ∈ I1,
...

...

Φn(x, y), x ∈ In

≜ (Hy(x, y),−Hx(x, y), p(x, y), q(x, y)). (2.1)

Now, we utilize the piecewise smooth function Φ(x, y) to define a piecewise
smooth planar system of the form

ẋ = Hy(x, y) + εp(x, y), ẏ = −Hx(x, y) + εq(x, y), (2.2)

where ε > 0 is a small parameter, and Hy(x, y), Hx(x, y), p(x, y), q(x, y) are given
in (2.1). For ε = 0, system (2.2) reads

ẋ = Hy(x, y), ẏ = −Hx(x, y). (2.3)

It is easy to see that system (2.2) has n+ 1 subsystems

ẋ = Hiy(x, y) + εpi(x, y), ẏ = −Hix(x, y) + εqi(x, y), i = 0, 1, · · · , n, (2.4)

which are all C∞ near-Hamiltonian systems. Similarly, system (2.3) also has n+ 1
subsystems

ẋ = Hiy(x, y), ẏ = −Hix(x, y), i = 0, 1, · · · , n, (2.5)

which are all C∞ Hamiltonian systems. Therefore, one can give a definition as
follows.

Definition 2.1. If a planar system has n subsystems and each subsystem is a near-
Hamiltonian (resp. Hamiltonian) system on the plane, then we call this system an
n-piecewise near-Hamiltonian (resp. Hamiltonian) system.

From Definition 2.1, one can know that system (2.2) (resp. (2.3)) is an (n+ 1)-
piecewise near-Hamiltonian (resp. Hamiltonian) system. And system (2.2)|ε=0 or
(2.3) has a piecewise Hamiltonian function defined by H(x, y), i.e.

H(x, y) =



H0(x, y), x ∈ I0,

H1(x, y), x ∈ I1,
...

...

Hn(x, y), x ∈ In.

(2.6)

Regarding system (2.3), we make the following three assumptions:
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(A1) System (2.3) has a period annulus A consisting of a one-parameter family of
clockwise periodic orbits

Γh, h ∈ J = (h1, h2), h1 < h2.

For h ∈ J , each Γh crosses the straight line li : x = xi two times clock-
wise, having the intersection points denoted by Ai(h) = (xi, ai(h)), Bi(h) =
(xi, bi(h)), ai(h) > bi(h), i = 1, 2, · · · , n, see Figure 1.

(A2) There exist 2n − 1 C∞ functions αi(h), βi(h), i = 1, 2, · · · , n − 1 and
αn(h) such that for h ∈ J

H0(A1(h)) =H0(B1(h)) = h, Hn(An(h)) = Hn(Bn(h)) = αn(h),

Hi(Ai(h)) =Hi(Ai+1(h)) = αi(h), Hi(Bi(h)) = Hi(Bi+1(h)) = βi(h),

where i = 1, 2, · · · , n− 1.
(A3) For h ∈ J , we have

H0y(A1)H0y(B1)Hny(An)Hny(Bn) 6= 0,

Hjy(Aj)Hjy(Aj+1)Hjy(Bj)Hjy(Bj+1) 6= 0, j = 1, 2, · · · , n− 1.
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Figure 1. The periodic orbit Γh of system (2.3).

From the above assumptions, one can see that the (x, y)-plane has been split
into n+ 1 subregions by the straight lines l1, l2, · · · , ln. That is to say,

R× R =I0 × R ∪ I1 × R ∪ · · · In × R ∪ l1 × R ∪ l2 × R · · · ∪ ln × R

=

n⋃
i=0

Ii × R ∪
n⋃

i=1

li × R.

On each subregion Ii×R, it defines a C∞ near-Hamiltonian system. And there exists
a family of periodic Γh, h ∈ J passing through each subregion with a clockwise
orientation.

Now, we investigate the unperturbed system (2.2) under the conditions (A1)-
(A3). By continuous dependency of discontinuous planar systems on initial data es-
tablished in [2], the positive orbit of system (2.2) starting from A1 must intersect the
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Figure 2. Poincaré map of system (2.2).

straight lines l1, · · · , ln successively with points B1ε(h) = (x1, b1ε(h)), · · · , Bnε(h) =
(xn, bnε(h)), then it turns and crosses the lines ln, · · · , l1 again with points Anε(h) =
(xn, anε(h)), · · · , A1ε(h) = (x1, a1ε(h)) respectively, see Figure 2. Obviously, in
view of (A3), one knows that

Biε(h)=Bi(h)+O(ε) ∈ C∞, Aiε(h)=Ai(h)+O(ε)∈C∞, i=1, 2, · · · , n. (2.7)

It is not hard to see that from the point A1(h) to the point A1ε(h) on the straight
line l1, it results in a return map or Poincaré map, denoted by P(h, ε),

P(h, ε) : A1(h) 7→ A1ε(h), h ∈ J .

Based on these, we can define a function below

B(h, ε) = H0(A1ε(h))−H0(A1(h)) = εF (h, ε) =
∑
i≥1

εiMi(h). (2.8)

On account of the definition of H0(x, y), together with (2.7), one can find that the
functions Mi(h), i ≥ 1 are C∞ functions in h ∈ J . On the other hand, by the
differential mean value theorem,

B(h, ε) =DH0(A1 +O(A1ε −A1))(A1ε −A1)

=(DH0(A1) +O(ε))(A1ε −A1)

=
(
H0y(A1) +O(ε)

)
(a1ε − a1). (2.9)

Using (A3) again, we obtain that B(h, ε) = 0 if and only if a1ε = a1 (or A1ε = A1).
Recall that, similar to the case of continuous systems, a limit cycle is an isolated
periodic orbit of the discontinuous systems. Therefore, for ε > 0 small, system (2.2)
has a limit cycle if and only if F in (2.8) has an isolated zero in h. Thus, one can
call the function B(h, ε) in (2.8) a bifurcation function of system (2.2). The function
Mi in (2.8) can be called the ith order Melnikov function.

It is easy to prove that, if the first non-zero Mi(h) has a zero of odd multiplicity
in h, then for ε > 0 small enough, F (h, ε) also has a zero having an odd multiplicity
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near h. This means that one can investigate the number of isolated zeros of the first
non-zero Mi(h) to obtain the number of limit cycles emerging from the period an-
nulus A. Recently, the authors of [17] have derived the explicit expression of M1(h)
for a 2-piecewise near-Hamiltonian system and gave the corresponding applications.

This paper focuses on presenting the general expression of M1(h) for an (n+1)-
piecewise near-Hamiltonian system, n ≥ 1, n ∈ N. As an application, we study
the limit cycle bifurcation for a 3-piecewise near-Hamiltonian system.

For convenience, let M(h) = M1(h). Also, we define for j ≥ 1

k∏
i=j

ai =

 1, for k = j − 1,

ajaj+1 · · · ak, for k ≥ j.

Then, using the same idea of [17] or by Theorem 2.2 in [16], it is easy to obtain the
following lemma.

Lemma 2.1. Suppose that (A1)-(A3) hold. Then, we have for n ≥ 1, n ∈ N,

M(h) =

∫
Â1B1

q0dx− p0dy +

n−1∑
j=1

j∏
k=1

Hky(Bk+1)

Hky(Bk)

H0y(B1)

Hjy(Bj+1)

∫
B̂jBj+1

qjdx− pjdy

+

n−1∑
j=1

j−1∏
k=1

Hky(Ak+1)

Hky(Ak)

H0y(A1)

Hjy(Aj)

∫
Âj+1Aj

qjdx− pjdy

+

n−1∏
k=1

Hky(Ak+1)

Hky(Ak)

H0y(A1)

Hny(An)

∫
B̂nAn

qndx− pndy.

Particularly, we have for n = 1,

M(h) =

∫
Â1B1

q0dx− p0dy +
H0y(A1)

H1y(A1)

∫
B̂1A1

q1dx− p1dy

and for n = 2, we have

M(h) =

∫
Â1B1

q0dx− p0dy +
H0y(B1)

H1y(B1)

∫
B̂1B2

q1dx− p1dy

+
H0y(A1)

H1y(A1)

∫
Â2A1

q1dx− p1dy

+
H1y(A2)H0y(A1)

H1y(A1)H2y(A2)

∫
B̂2A2

q2dx− p2dy. (2.10)

Furthermore, if M(h0) = 0 and M ′(h0) 6= 0 for some h0 ∈ J , then for ε > 0 small
system (2.2) has a unique limit cycle near Γh0

. If h0 is a zero of M(h) having an
odd multiplicity, then for ε > 0 small, system (2.2) has at least one limit cycle near
Γh0

.

Usually, the boundary of the period annulus A is a center or a polycycle. For
example, the following 2-piecewise Hamiltonian system

(ẋ, ẏ) =

 (y,−x), x ≥ 0,

(y, x+ 1), x < 0
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has a period annulus Ã = {Lh = L+
h ∪ L−

h | h ∈ (0, 1
2 )} surrounding the origin,

where L+
h : 1

2y
2 + 1

2x
2 = h and L−

h : 1
2y

2 − 1
2x

2 − x = h. The boundary of
Ã is a generalized homoclinic loop (as h → 1

2 ) or the origin (as h → 0). Here,
the origin is an elementary center, see Definition 1.4 of [13]. Similar to smooth
systems [14, 15, 32, 33], one can investigate the asymptotic expansion of M(h) near
the boundary to study the homoclinic loop bifurcation or the Hopf bifurcation,
see [18,19,29].

Now, we apply Lemma 2.1 to study the limit cycle bifurcation of a 3-piecewise
near-Hamiltonian system. For definiteness, take Φ(x, y) in (2.1) as follows

Φ(x, y) =



(y, x− 1, 0,
2m∑
i=0

aix
iy), (x, y) ∈ (1,+∞)× R,

(y,−x, 0,
m∑
i=0

bix
2iy), (x, y) ∈ (−1, 1)× R,

(y, x+ 1, 0,
2m∑
i=0

(−1)iaix
iy), (x, y) ∈ (−∞,−1)× R

≜(y,−g(x), 0, f(x)y). (2.11)

Then, system (2.2) becomes

ẋ = y, ẏ = −g(x) + εf(x)y, (2.12)

where f(x) and g(x) are given in (2.11), i.e.

g(x) =


x− 1, (x, y) ∈ (1,+∞)× R,

−x, (x, y) ∈ (−1, 1)× R,

x+ 1, (x, y) ∈ (−∞,−1)× R,

f(x) =



2m∑
i=0

aix
iy, (x, y) ∈ (1,+∞)× R,

m∑
i=0

bix
2iy, (x, y) ∈ (−1, 1)× R,

2m∑
i=0

(−1)iaix
iy, (x, y) ∈ (−∞,−1)× R.

In view of Lemma 2.1, one can obtain that

Theorem 2.1. For ε > 0 small, system (2.12) can have 7m+ 3 limit cycles.

From Theorem 2.1, we conclude that a 3-piecewise linear near-Hamiltonian sys-
tem can have 3 limit cycles. While, for a 2-piecewise linear near-Hamiltonian, we
only find 2 limit cycles, see [7,29]. This implies that one can find more limit cycles
by the Melnikov function method by adding a switch line. The proof of Theorem
2.1 will be given in the next section.

3. Proof of Theorem 2.1
Clearly, system (2.12) has the following three subsystems

ẋ = y, ẏ = −(x− 1) + ε

2m∑
i=0

aix
iy, (3.1)
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ẋ = y, ẏ = x+ ε

m∑
i=0

bix
2iy, (3.2)

and

ẋ = y, ẏ = −(x+ 1) + ε

2m∑
i=0

(−1)iaix
iy. (3.3)

Systems (3.1), (3.2) and (3.3) are polynomials Liénard systems. For ε = 0, systems
(3.1), (3.2) and (3.3) are Hamiltonian systems with the Hamiltonian functions,
respectively

H1(x, y)=
1

2
y2+

1

2
(x−1)2, H(x, y)=

1

2
y2− 1

2
x2, H2(x, y)=

1

2
y2+

1

2
(x+1)2. (3.4)

It is easy to see that system (2.12)|ε=0 has three families of periodic orbits given by

Γ1h = {(x, y) | H1(x, y) = h+ 1
2 , 1 ≤ x ≤ 2}

∪{(x, y) | H(x, y) = h, 0 < x < 1},

Γ2h = {(x, y) | H2(x, y) = h+ 1
2 , 1 ≤ −x ≤ 2}

∪{(x, y) | H(x, y) = h, 0 < −x < 1},

h ∈ (−1

2
, 0),

Γh={(x, y) | H1(x, y)=h+
1

2
, x≥1}∪{(x, y) | H2(x, y)=h+

1

2
, x≤−1}

∪ {(x, y) | H(x, y) = h, − 1 < x < 1}, h ∈ (0,+∞).

(3.5)

As h → − 1
2 , Γ1h (resp. Γ2h) approaches to a generalized elementary center (1, 0)

(resp. (−1, 0)), and as h → 0, Γ1h (resp. Γ2h) approaches to a generalized homo-
clinic loop denoted by Γ1 (resp. Γ2). Further, as h → 0, Γh tends to a generalized
double homoclinic loop denoted by Γ. Obviously, we have

Γ = Γ1 ∪ Γ2.

The closed curve Γ1h (resp. Γ2h) crosses the straight line x = 1 (resp. x = −1)
clockwise with two points denoted by C1(h) = (1,

√
2h+ 1) and D1 = (1,−

√
2h+ 1)

(resp. C2(h) = (−1,
√
2h+ 1) and D2 = (−1,−

√
2h+ 1)) respectively, where h ∈

(− 1
2 , 0). The periodic orbit Γh intersects the straight lines x = ±1 clockwise with

four points in turn, denoted by A1(h) = (1,
√
2h+ 1), B1(h) = (1,−

√
2h+ 1), B2 =

(−1,−
√
2h+ 1) and A2(h) = (−1,

√
2h+ 1) respectively, where h ∈ (0,+∞). Fig-

ure 3 shows the phase portrait of system (2.12)|ε=0.
Then, associated to the three families of periodic orbits, one has three the first

order Melnikov functions as follows

M1(h) =
∫
Ĉ1D1

2m∑
i=0

aix
iydx+

∫
D̂1C1

m∑
i=0

bix
2iydx,

M2(h) =
∫
Ĉ2D2

m∑
i=0

bix
2iydx+

∫
D̂2C2

2m∑
i=0

(−1)iaix
iydx,

h ∈ (−1

2
, 0) (3.6)

and

M(h)=

∫
Â1B1

2m∑
i=0

aix
iydx+

∫
B̂1B2∪Â2A1

m∑
i=0

bix
2iydx+

∫
B̂2A2

2m∑
i=0

(−1)iaix
iydx,

h ∈ (0,+∞).
(3.7)
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Figure 3. Phase portrait of system (2.12)|ε=0.

Note that system (2.12) is symmetric with respect to the origin. Then, from
(3.6) and (3.7), we obtain that

M1(h) =M2(h), h ∈ (−1

2
, 0),

M(h) =2

∫
Â1B1

2m∑
i=0

aix
iydx+ 2

∫
Â2A1

m∑
i=0

bix
2iydx, h ∈ (0,+∞).

(3.8)

Thus, it suffices to compute the functions M1(h) and M(h). First, we have

Lemma 3.1. Let (3.4) and (3.5) hold. Then, the function M1(h) in (3.6) can be
written as

M1(h) =

2m∑
i=0

Ai(2h+1)
i
2+1+

m−1∑
i=0

Bih
i(2h+1)

3
2 +

m∑
i=0

B̃ih
iA(h), h ∈ (−1

2
, 0), (3.9)

where

A(h) =
√
2h+ 1 + 2h ln(1 +

√
2h+ 1)− h ln 2− h ln |h|,

Ai =

2m∑
k=i

akαki, i = 0, 1, · · · , 2m,

Bi =

m−1∑
j=i

bj+1βi,j+1, i = 0, 1, · · · , m− 1,

B̃0 =b0, B̃i = biρi, i = 1, 2, · · · , m

(3.10)

and each αki > 0, βij 6= 0 and ρi 6= 0.

Proof. Along the curve Ĉ1D1, one has 1
2y

2 + 1
2 (x− 1)2 = h+ 1

2 , which intersects
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the x-axis with a point (1 +
√
2h+ 1, 0). Then, from (3.6), it gives that∫

Ĉ1D1

2m∑
i=0

aix
iydx = 2

2m∑
i=0

ai

∫ 1+
√
2h+1

1

xi
√

(2h+ 1)− (x− 1)2dx. (3.11)

Make a transformation x =
√
2h+ 1 sin θ+1 to the above integral. Then, (3.11)

can be carried into∫
Ĉ1D1

2m∑
i=0

aix
iydx =2

2m∑
i=0

ai(2h+ 1)

∫ π
2

0

(
√
2h+ 1 sin θ + 1)i cos2 θdθ

=2

2m∑
i=0

ai(2h+ 1)

∫ π
2

0

i∑
r=0

Cr
i (2h+ 1)

r
2 sinr θ cos2 θdθ

=

2m∑
i=0

ai

i∑
r=0

αir(2h+ 1)
r
2+1

=

2m∑
i=0

2m∑
k=i

akαki(2h+ 1)
i
2+1, h ∈ (−1

2
, 0), (3.12)

where
αir = 2Cr

i

∫ π
2

0

sinr θ cos2 θdθ = Cr
i B

(r + 1

2
,
3

2

)
> 0

and B(•) is a Beta function.
Further, the curve D̂1C1 : 1

2y
2 − 1

2x
2 = h, 0 < x < 1 intersects the x-axis at a

point (
√
−2h, 0). Then,∫

D̂1C1

m∑
i=0

bix
2iydx =2

∫ 1

√
−2h

m∑
i=0

bix
2i
√

2h+ x2dx

=2

m∑
i=0

biIi(h), (3.13)

where
Ii(h) =

∫ 1

√
−2h

x2i(2h+ x2)
1
2 dx.

Recall that∫
x2i(2h+x2)

1
2 dx=

x2i−1(2h+x2)
3
2

2i+2
+
(1−2i)h

i+1

∫
x2i−2(2h+x2)

1
2 dx, i≥1. (3.14)

Then, one can obtain the following recurrent relation

Ii(h) =
(2h+ 1)

3
2

2(i+ 1)
+

(1− 2i)h

i+ 1
Ii−1(h), i ≥ 1,

which follows that

Ii(h) =
(2h+ 1)

3
2

2(i+ 1)

(
1 +

i−1∑
k=1

k−1∏
j=0

2j + 1− 2i

i− j
hk

)
+

i−1∏
j=0

2j + 1− 2i

i+ 1− j
hiI0(h)

=
1

2
(2h+ 1)

3
2

i−1∑
k=0

βkih
k + ρih

iI0(h),
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where

βki =
1

i+ 1

k−1∏
j=0

2j + 1− 2i

i− j
, k ≥ 0, ρi =

i−1∏
j=0

2j + 1− 2i

i+ 1− j
, i ≥ 1. (3.15)

Therefore, from (3.13), we get that∫
D̂1C1

m∑
i=0

bix
2iydx =2b0I0 + 2

m∑
i=1

biIi(h)

=2b0I0(h) + 2

m∑
i=1

bi
[1
2
(2h+ 1)

3
2

i−1∑
k=0

βkih
k + ρih

iI0(h)
]

=

m−1∑
i=0

bi+1

i∑
k=0

βk,i+1h
k(2h+ 1)

3
2 + 2b0I0 + 2

m∑
i=1

biρih
iI0(h)

=

m−1∑
i=0

m−1∑
j=i

bj+1βi,j+1h
i(2h+ 1)

3
2 + 2b0I0 + 2

m∑
i=1

biρih
iI0(h).

(3.16)

We note that for a > 0∫ √
x2 − a2dx =

x

2

√
x2 − a2 − a2

2
ln |x+

√
x2 − a2|+ C,

where C is a constant. Then, for h ∈ (− 1
2 , 0)

I0(h) =

∫ 1

√
−2h

√
2h+ x2dx =

x

2

√
2h+ x2 + h ln |x+

√
2h+ x2|

∣∣∣1√
−2h

=
1

2

√
1 + 2h+ h ln(1 +

√
1 + 2h)− ln 2

2
h− 1

2
h ln |h|.

Combining (3.6), (3.12), (3.16) and the above formula, we easily derive the
expression of M1(h) in (3.9). This completes the proof.

Lemma 3.2. Let (3.4) and (3.5) hold. Then, the function M(h) in (3.7) can be
expressed as

M(h)=2

2m∑
i=0

Ai(2h+ 1)
i
2+1+2

m−1∑
i=0

Bih
i(2h+ 1)

3
2 +2

m∑
i=0

B̃ih
iA(h), h∈(0,+∞),

(3.17)
where Ai, Bi, B̃i and A(h) are given in (3.10).

Proof. Similar to handling the integral in (3.11), by (3.12), one obtains that∫
Â1B1

2m∑
i=0

aix
iydx =

2m∑
i=0

2m∑
k=i

akαki(2h+ 1)
i
2+1, h ∈ (0,+∞). (3.18)

Further, along the curve Â2A1 : y2 − x2 = 2h, − 1 < x < 1. Then,∫
Â2A1

m∑
i=0

bix
2iydx =

∫ 1

−1

m∑
i=0

bix
2i
√

2h+ x2dx =

m∑
i=0

biĨi(h), (3.19)
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where

Ĩi(h) =

∫ 1

−1

x2i
√
2h+ x2dx.

Using (3.14), we can derive that

Ĩi(h) =
(2h+ 1)

3
2

i+ 1
+

(1− 2i)h

i+ 1
Ĩi−1(h), i ≥ 1.

It implies that

Ĩi(h) = (2h+ 1)
3
2

i−1∑
k=0

βkih
k + ρih

iĨ0(h), i ≥ 1,

where βki and ρi are defined in (3.15). Inserting the above into (3.19), we achieve
that∫

Â2A1

m∑
i=0

bix
2iydx =b0Ĩ0(h) +

m∑
i=1

biĨi(h)

=b0Ĩ0(h) +

m∑
i=1

bi
[
(2h+ 1)

3
2

i−1∑
k=0

βkih
k + ρih

iĨ0(h)
]

=

m−1∑
i=0

m∑
j=i

bj+1βi,j+1h
i(2h+ 1)

3
2 + b0Ĩ0(h) +

m∑
i=1

biρih
iĨ0(h).

(3.20)

Since, for a > 0,∫ √
x2 + a2dx =

x

2

√
x2 + a2 +

a2

2
ln(x+

√
2h+ x2) + C̃,

where C̃ is a constant, we have for h ∈ (0,+∞)

Ĩ0(h) =

∫ 1

−1

√
2h+ x2dx =

x

2

√
2h+ x2 + h ln |x+

√
2h+ x2|

∣∣∣1
−1

=
√
1 + 2h+ 2h ln(1 +

√
1 + 2h)− h ln 2− h ln |h|.

Therefore, from (3.18), (3.20) and the above, we can obtain the formula in (3.17).
This finishes the proof.

Now, we are in the position of proving Theorem 2.1.

Proof of Theorem 2.1. First, we consider the expansions of M1(h) and M(h)
around h = 0. To do this, denote by

M∗
1 (h) =

M1(h)

2h+ 1
, M∗(h) =

M(h)

2h+ 1
. (3.21)
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Then, from (3.9)

M∗
1 (h) =

2m∑
i=0

Ai(2h+ 1)
i
2 +

m−1∑
i=0

Bih
i(2h+ 1)

1
2 +

m∑
i=0

B̃i
hiA(h)

2h+ 1

=

m∑
i=0

A2i(1 + 2h)i+

m−1∑
i=0

A2i+1(2h+1)i+
1
2 +

m−1∑
i=0

Bih
i(2h+ 1)

1
2 +

m∑
i=0

B̃i
hiA(h)

2h+1

=

m∑
i=0

A2i

i∑
r=0

Cr
i 2

rhr+

m−1∑
i=0

A2i+1

i∑
r=0

Cr
i 2

rhr(2h+ 1)
1
2 +

m−1∑
i=0

Bih
i(2h+ 1)

1
2

+

m∑
i=0

B̃i
hiA(h)

2h+ 1

=

m∑
i=0

A∗
i h

i +

m−1∑
i=0

Ãih
i(1 + 2h)

1
2 +

m∑
i=0

B̃i
hiA(h)

2h+ 1
, h ∈ (−1

2
, 0), (3.22)

where

A∗
i =

m∑
j=i

2iA2jC
i
j , i = 0, 1, · · · , m,

Ãi =

m−1∑
j=i

2iA2j+1C
i
j +Bi, i = 0, 1, · · · , m− 1.

(3.23)

Similarly, in view of (3.17), one derives that

M∗(h) = 2

m∑
i=0

A∗
i h

i+2

m−1∑
i=0

Ãih
i(1+2h)

1
2 +2

m∑
i=0

B̃i
hiA(h)

2h+ 1
, h ∈ (0,+∞), (3.24)

where A∗
i , Ãi and B̃i are given in (3.23).

By (3.10), it is easy to see that Ai, i = 0, 1, · · · , 2m are independent of
each other. Thus, on account of (3.23), A∗

0, A∗
1, · · · , A∗

m, Ã0, Ã1, · · · , Ãm−1 are
independent of each other. This implies that A∗

0, A
∗
1, · · · , A∗

m, Ã0, Ã1, · · · , Ãm−1,
B̃0, B̃1, · · · , B̃m can be taken as free parameters.

For |h| > 0 small,

(1 + 2h)
1
2 =1 +

∑
i≥1

ηih
i, η1 = 1, ηi = (−1)i−1

i−2∏
r=0

(2r + 1)

i−2∏
r=0

(r + 2)

, r ≥ 2,

A(h)

1 + 2h
=1− h ln |h|+O(|h|).

(3.25)

Then, for 0 < −h � 1, M∗
1 (h) in (3.22) can be expanded as

M∗
1 (h) =

m∑
i=0

A∗
i h

i +

m−1∑
i=0

Ãih
i
(
1 +

∑
i≥1

ηih
i
)
+

m∑
i=0

B̃ih
i
(
1− h ln |h|+O(|h|)

)
=

m∑
i=0

(
Ci +Dih ln |h|

)
hi +

∑
i≥m+1

Cih
i, (3.26)
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where

Ci =A∗
i +

i∑
k=0

Ãkηi−k +O(|B̃0, B̃1, · · · , B̃m|), i = 0, 1, · · · , m− 1,

Cm =A∗
m +

m−1∑
k=0

Ãkηm−k +O(|B̃0, B̃1, · · · , B̃m|),

Ci =

m−1∑
k=0

Ãkηi−k +O(|B̃0, B̃1, · · · , B̃m|), i ≥ m+ 1,

Di =− B̃i, i = 0, 1, · · · , m.

(3.27)

Similarly, M∗(h) can be expressed as for 0 < h � 1

M∗(h) = 2

m∑
i=0

(
Ci +Dih ln |h|

)
hi + 2

∑
i≥m+1

Cih
i, (3.28)

where Ci and Di are the same as in (3.27).
Note that

det
∂(D0, D1, · · · , Dm, C0, C1, · · · , Cm, Cm+1, · · · , C2m)

∂(B̃0, B̃1, · · · , B̃m, A∗
0, A

∗
1, · · · , A∗

m, Ã0, · · · , Ãm−1)

=

∣∣∣∣∣∣∣∣∣
−I 0 0

D11 D12 D13

D21 0 D23

∣∣∣∣∣∣∣∣∣ ≜ |D|, (3.29)

where I is a (m+1)×(m+1) identity matrix, D11, D̃13 and D̃21 are (m+1)×(m+1),
(m + 1) × m and m × (m + 1) matrices, respectively, D12 is a (m + 1) × (m + 1)
upper triangular matrix whose elements on the diagonal are all 1, and

D23 =



ηm+1 ηm ηm−1 · · · η2

ηm+2 ηm+1 ηm · · · η3

ηm+3 ηm+2 ηm · · · η4
...

...
... . . . ...

η2m η2m−1 η2m−2 · · · ηm+1


(3.30)

and ηi are defined in (3.25). Then, we have from (3.29)

|D| = (−1)m+1|D23|,

where D23 is given in (3.30). Since

ηi = (−1)i−1

i−2∏
r=0

(2r + 1)

i−2∏
r=0

(2r + 4)

× 2i−1 = 2i−1η∗i−1, i ≥ 2,
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where

η∗k = (−1)k

k−1∏
r=0

(2r + 1)

k−1∏
r=0

(2r + 4)

, k ≥ 1.

Therefore, one finds that from (3.30)

|D23| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2mη∗m 2m−1η∗m−1 2m−2η∗m−2 · · · 2η∗1

2m+1η∗m+1 2mη∗m 2m−1η∗m−1 · · · 22η∗2

2m+2η∗m+2 2m+1η∗m+1 2mη∗m · · · 23η∗3
...

...
... . . . ...

22m−1η∗2m−1 22m−2η∗2m−2 22m−3η∗2m−3 · · · 2mη∗m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=2m+m−1+m−2+···+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

η∗m η∗m−1 η∗m−2 · · · η∗1

2η∗m+1 2η∗m 2η∗m−1 · · · 2η∗2

22η∗m+2 22η∗m+1 22η∗m · · · 22η∗3
...

...
... . . . ...

2m−1η∗2m−1 2m−1η∗2m−2 2m−1η∗2m−3 · · · 2m−1η∗m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=2m+m−1+m−2+···+1 × 21+2+···m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

η∗m η∗m−1 η∗m−2 · · · η∗1

η∗m+1 η∗m η∗m−1 · · · η∗2

η∗m+2 η∗m+1 η∗m · · · η∗3
...

...
... . . . ...

η∗2m−1 η∗2m−2 η∗2m−3 · · · η∗m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=2m

2

|Am,1(2, 4, 2)|,

where Am,1(2, 4, 2) is given in (3.2) of [30]. From Lemma 3.2 of [30], one can
see that |D23| 6= 0. This means that |D| 6= 0. In other words, from (3.29),
D0, D1, · · · , Dm, C0, C1, · · · , C2m in (3.26) can be taken as free parameters. Then,
one can choose them satisfying

0 � −C0 � D0 � (−1)2C1 � (−1)D1 � · · · � (−1)mCm−1 � (−1)m−1Dm−1

� (−1)m+1Cm � (−1)mDm � (−1)m+2Cm+1 � (−1)m+2Cm+2

� · · · � (−1)m+2C2m � 1

such that the sighs of M∗
1 (h) and M∗(h) have been changed 3m + 1 and m + 1

times, respectively. In view of (3.21), one can know that M1(h) can have 3m + 1
simples zeros for 0 < −h � 1, at the same time, M(h) can have m+1 simples zeros
for 0 < h � 1. On the other hand, M2(h) = M1(h). Thus, system (2.2) can have
2(3m+ 1) +m+ 1 = 7m+ 3 limit cycles near the generalized double loop L. This
ends the proof.
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