
Journal of Applied Analysis and Computation Website:http://jaac-online.com
Volume 10, Number 5, October 2020, 1878–1896 DOI:10.11948/20190272

IMPACT OF NOISE IN A
PHYTOPLANKTON-ZOOPLANKTON

SYSTEM∗

Tiancai Liao1,2, Hengguo Yu3, Chuanjun Dai2 and Min Zhao2,†

Abstract In this paper, we investigate the dynamics of a delayed toxic
phytoplankton-two zooplankton system incorporating the effects of Lévy noise
and white noise. The value of this study lies in two aspects: Mathematically,
we first prove the existence of a unique global positive solution of the system,
and then we investigate the sufficient conditions that guarantee the stochastic
extinction and persistence in the mean of each population. Ecologically, via
numerical simulations, we find that the effect of white noise or Lévy noise on
the stochastic extinction and persistence of phytoplankton and zooplankton
are similar, but the synergistic effects of the two noises on the stochastic extinc-
tion and persistence of these plankton are stronger than that of single noise.
In addition, an increase in the toxin liberation rate or the intraspecific com-
petition rate of zooplankton was found to be capable to increase the biomass
of the phytoplankton but decrease the biomass of zooplankton. These results
may help us to better understand the phytoplankton-zooplankton dynamics
in the fluctuating environments.
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1. Introduction
Phytoplankton blooms, especially harmful algal blooms, occur frequently in various
water bodies all over the world, such as Lake Kasumigaura in Japan [19], Lake
Taihu in China [41], the Baltic Sea in Northern Europe [11], and the Caspian Sea
in West Asia [40], etc., which seriously threaten the ecological balance, drinking
water safety and human healthy, and cause huge economic losses to people [15,18].
However, a clear mechanism, which may provide a convincing explanation for the
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emergence of these phenomena, is still under investigation. Consequently, studying
the dynamic mechanisms of interacting plankton in the aquatic environments is of
considerable interest.

Actually, a growing effort has been devoted to seeking for a fundamental mecha-
nism that underlies the possible formation or termination of phytoplankton blooms
by different approaches [12,14,22,34]. Mathematical models have been revealed as a
powerful tool for investigating the dynamics of aquatic plankton ecological systems
qualitatively and quantitatively, as the research results may be applied to reveal the
growth mechanisms of phytoplankton and to determine some key factors inducing
phytoplankton blooms [8, 13,21,33,42,43,48,52].

In recent years, a number of mathematical models have been formulated to
study the phytoplankton-zooplankton dynamics, and many physical and biological
processes related to dynamic mechanisms of interacting plankton in the aquatic
environments have been revealed [8,12,13,21,22,33,42–44,48,49,52]. For example,
Li et al. [22] showed that phytoplankton refuge and toxin have a significant impact
on the occurring and terminating of algal blooms in the freshwater lakes. Dai et
al. [13] found that delay cannot only induce instability, but can also promote the
formation of spatial pattern via a Turing-like instability. Nevertheless, most of the
remarkable results obtained under a framework of the deterministic environments
[8, 12, 13, 21, 22, 33, 42, 43, 48, 52], which have been viewed as being unrealistic to
some extent due to the fact that the environments in which plankton live are always
uncertain and stochastic in the natural world.

In the existing literature, for all population models in the deterministic envi-
ronments [7,8,12,13,21,22,33,42,43,45,47,48,50–52,54], it is usually assumed that
the parameters involved in the models are well-defined constants, but in fact they
will fluctuate around some average value due to continuous fluctuation in the en-
vironments. In the aquatic ecosystems, there exist many objective environmental
disturbance factors such as the unpredictability of photosynthetically active radia-
tion, light availability, nutrition loading, water temperature variation, etc., which
may have great impacts on the growth rate, the death rate and intraspecific compe-
tition rate in the plankton ecosystems [44, 49]. These factors are usually neglected
in deterministic mathematical modelling of plankton and are difficult to predict in
reality, but they can be described by white noise [16]. A fact has been further
pointed out by May [39] that the birth rates, carrying capacity, competition coeffi-
cient, and other parameters involved in the system exhibit random fluctuations to
a greater or lesser extent because of the effects of white noise. As a result, some
mathematical models have been formulated to describe the effects of white noise
on the dynamics of interacting plankton in recent years [2,20,24,35,44,49,53]. For
example, in the work of Wu et al. [49], they showed that the environmental white
noise disturbances are able to destabilize biological populations. Bandyopadhyay
et al. [2] demonstrated that environmental noise forces play a crucial role in deter-
mining the stability or instability of two interacting phytoplankton species. These
works strongly indicate that stochastic differential equation models may be a more
appropriate way of modelling plankton ecosystems in many circumstances. In ad-
dition, the application of noise effects in other population dynamics or infectious
disease dynamics can be found in references [4–6,29,46].

However, population ecosystems may also suffer sudden random environmental
disturbances [1, 31], such as hurricanes, tsunamis, epidemics, etc., which can not
be described by white noise. In other words, the nature of dynamics of population
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can not be fully revealed by stochastic population ecosystems with only taking into
account the effect of white noise. As indicated by Refs. [3,28], one may use a Lévy
process to model these phenomena and then these limitations in stochastic popula-
tion systems can be overcome. In the pioneering work of Bao et al. [3], they initially
studied the dynamics of Lotka-Volterra system with taking into account the effects
of Lévy noises, and their results indicated that the sudden random environmental
disturbances can be reasonably described by Lévy noise. In view of this point, a
number of population ecosystems considering the effects of Lévy noise have been
reported recently [25, 26, 55, 56]. For example, Zhang et al. [55]showed that Lévy
noise is capable to stabilize the proposed population system. Zhao et al. [56] sum-
marized that the Lévy noise may seriously affect the asymptotical behaviors of the
ecosystem. The role of Lévy noise plays, in the dynamics of population ecosystems,
which has been clearly demonstrated by these results.

In aquatic ecosystems, plankton populations, including phytoplankton and zoo-
plankton, may also be affected by Lévy noise. In spite of much attention has
been devoted to exploring various factors that may affect the dynamics of plank-
ton ecological systems, the impacts of Lévy noise and white noise on the dynam-
ics of interacting plankton in the aquatic environments are still rarely studied.
So, naturally, some questions arise: How do Lévy noise and white noise affect
the phytoplankton-zooplankton dynamics in the aquatic environments? Can these
noises affect the extinction and persistence of phytoplankton and zooplankton? To
answer the above questions, in the present paper, we extend a delayed toxin pro-
ducing phytoplankton-two zooplankton system originally developed by Lv et al. [33]
into a new stochastic version by incorporating the effects of white noise and Lévy
noise, and we will investigate the dynamics of stochastic extinction and persistence
in the mean of phytoplankton and zooplankton, which determine these plankton
will die or survive in the future.

Based on the remarkable research in [33], the deterministic plankton system
mentioned above can be given by

dP (t)

dt
= P (t)

(
r − r

K
P (t)− µ1Z1(t)

α1 + P (t)
− µ2Z2(t)

α2 + P (t)

)
,

dZ1(t)

dt
= Z1(t)

(
β1P (t)

α1 + P (t)
− ρ1P (t− τ)

α1 + P (t− τ)
− d1 − g1Z1(t)

)
,

dZ2(t)

dt
= Z2(t)

(
β2P (t)

α2 + P (t)
− ρ2P (t− τ)

α2 + P (t− τ)
− d2 − g2Z2(t)

)
,

(1.1)

subject to the initial condition ∆ := {(P0, Z10, Z20) = (Ψ1(ζ),Ψ2(ζ),Ψ3(ζ)) ≥
0,Ψi ∈ C([−τ, 0];R3

+),Ψi(0) > 0, i = 1, 2, 3}, where C([−τ, 0];R3
+) stands for the

family of all bounded and continuous functions from [−τ, 0] to R3
+ := {(P,Z1, Z2) ∈

R3|P ≥ 0, Z1 ≥ 0, Z2 ≥ 0}; P (t) represents the density of toxin producing phyto-
plankton population at any instant of time t and τ indicates that the liberation
of toxic substances by the phytoplankton is not an instantaneous process but is
mediated by some time lag required for maturity of the species; Zj(t)(j = 1, 2)
denotes the densities of zooplankton population at any instant of time t. For the
biological significance of the other parameters, we refer to [33]. Recently, Shi et
al. [43] considered the gestation delays of zooplankton into the system (1.1) and
investigated the existence of Hopf bifurcation. To the best of our knowledge, up to
now, no body has explored the impacts of random environmental fluctuations on
the system.
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Now, we introduce two types of noise fluctuations mentioned above into the
deterministic plankton system (1.1). In the existing literature, there are many ways
to introduce noise disturbances into population ecosystem. Following the method
used in [30], we assume that white noise is proportional to the size of phytoplankton
population; for zooplankton population, taking the method introduced in [32], we
assume the white noise disturbances mainly affect the intraspecific competition rate
gi and death rate di(i = 1, 2), that is, −d1 → −d1 + δ2dB2(t), −g1 → −g1 + δ3dB3,
−d2 → −d2 + δ4dB4 and −g2 → −g2 + δ5dB5. For the Lévy noise, we follow the
method used in [27] and let Lévy noise be proportional to the size of plankton
population, then system (1.1) becomes



dP (t) =P (t−)

[
r(1− P (t−)

K
)− µ1Z1(t

−)

α1 + P (t−)
− µ2Z2(t

−)

α2 + P (t−)

]
dt

+ δ1P (t−)dB1(t) +

∫
Y
P (t−)γ1(u)Ñ(dt, du),

dZ1(t) =Z1(t
−)

[
β1P (t−)

α1 + P (t−)
− ρ1P (t− τ)

α1 + P (t− τ)
− d1 − g1Z1(t

−)

]
dt

+ δ2Z1(t
−)dB2(t) + δ3Z

2
1 (t

−)dB3(t) +

∫
Y
Z1(t

−)γ2(u)Ñ(dt, du),

dZ2(t) =Z2(t
−)

[
β2P (t−)

α2 + P (t−)
− ρ2P (t− τ)

α2 + P (t− τ)
− d2 − g2Z2(t

−)

]
dt

+ δ4Z2(t
−)dB4(t) + δ5Z

2
2 (t

−)dB5(t) +

∫
Y
Z2(t

−)γ3(u)Ñ(dt, du),

(1.2)

where P (t−) denotes the left limit of P (t) and Zi(t
−) means the left limit of

Zi(t)(i = 1, 2). N represents a Poisson counting measure with compensator Ñ and
characteristic measure λ on a measurable subset Y of (0,∞) satisfying λ(Y) < ∞,
and Ñ(dt, du) = N(dt, du)−λ(du)dt,γi : Y×Ω → R(i = 1, 2, 3) is bounded and con-
tinuous with respect to λ and is B(Y)×Ft-measurable. Bj(t) are mutually indepen-
dent standard Brownian motions defined on the probability space

(
Ω,F , {Ft}t≥0,P

)
with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and
right continuous with F0 contains all P-null sets), dBs(t)(s = 1, 2, 3, 4, 5) represents
the white noise and δ2j denotes the intensity of the white noise, j = 1, 2, 3, 4, 5. The
initial conditions and the biological significance of all the parameters in system (1.2)
are the same as shown in system (1.1). Furthermore, we assume that there exists
a constant c > 0 such that (A) :

∫
Y(ln(1 + γi(u)) ∨ ln(1 + γi(u))

2) < c, 1 + γi(u) >
0, u ∈ Y, i = 1, 2, 3. From a biological viewpoint, it denotes that the intensities of
Lévy jumps are not very large.

The rest of this article is organized as follows: In Section 2, the existence and
uniqueness of global positive solution in system (1.2) is proved. Section 3 is devoted
to studying the sufficient conditions that guarantee the stochastic extinction and
persistence in the mean of each population. Section 4, numerical simulations are
carried out to verify the analytical results. Finally, we give a brief discussion and a
summary of our main results.
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2. The existence of a unique global positive solution
In this section, by using the Lyapunov analysis method [36], we verify that the
solution of system (1.2) is global and positive.

Theorem 2.1. Let (A) hold, for any initial value (P0, Z10, Z20) ∈ ∆, then system
(1.2) admits a unique global positive solution (P (t), Z1(t), Z2(t)) ∈ R3

+ on t ≥ −τ
with probability one.

Proof. Since the coefficients of system (1.2) satisfy the local Lipschitz condition,
then for any initial values (P0, Z10, Z20) ∈ ∆, there exists a unique local solution
(P (t), Z1(t), Z2(t)) on t ∈ [−τ, τe), where τe denotes the explode time [36]. To show
that this solution is global in R3

+, we need to show that τe = ∞ a.s.. To this end,
we choose a sufficiently large non-negative number ϵ0 such that P0, Z10 and Z20 lie
with in the interval [ 1ϵ0 , ϵ0]. For each integer ϵ, we can define the stopping time

τϵ = inf

{
t ∈ [−τ, τe) : P (t) /∈ (

1

ϵ
, ϵ)or Z1(t) /∈ (

1

ϵ
, ϵ)orZ2(t) /∈ (

1

ϵ
, ϵ)

}
,

where inf ∅ = ∞ (as usual ∅ denotes the empty set). τϵ is increasing as ϵ → ∞. Set
τ∞ = limϵ→∞ τϵ, then τ∞ ≤ τϵ a.s..

In the following, we need to show that τe = ∞ a.s. If this statement is violated,
there exists two constants T > 0 and σ ∈ (0, 1) such that

P{τ∞ ≤ T} > σ.

Hence we can find an integer ϵ1 ≥ ϵ0 such that

P{τϵ ≤ T} ≥ σ,

for all ϵ > ϵ1. Define a C2-function V : R3
+ → R+ by

V (P,Z1, Z2) =(
√
P − 1− 0.5 lnP ) + (

√
Z1 − 1− 0.5 lnZ1) + (

√
Z2 − 1− 0.5 lnZ2)

+ 0.5

∫ t

t−τ

ρ1P (s)

α1 + P (s)
ds+ 0.5

∫ t

t−τ

ρ2P (s)

α2 + P (s)
ds.

Considering that (
√
A1 − 1 − 0.5 lnA1) ≥ 0 for all A1 > 0, the function V (·) is

positive definite for all (P,Z1, Z2) ∈ R3
+. Calculating the differential of V along the

solution trajectories of system (1.2) by using Itô’s formula, we get

dV (P,Z1, Z2) =LV (P,Z1, Z2)dt+ 0.5δ1(
√
P − 1)dB1(t)

+

∫
Y

[
(ln(1 + γ1(u))

1
2 − 1)P

1
2 − 0.5 ln(1 + γ1(u))

]
Ñ(dt, du)

+ 0.5δ2(
√
Z1 − 1)dB2(t) + 0.5δ3Z1(

√
Z1 − 1)dB3(t)

+

∫
Y

[
(ln(1 + γ2(u))

1
2 − 1)Z

1
2
1 − 0.5 ln(1 + γ2(u))

]
Ñ(dt, du)

+ 0.5δ4(
√
Z2 − 1)dB4(t) + 0.5δ5Z2(

√
Z2 − 1)dB5(t)

+

∫
Y

[
(ln(1 + γ3(u))

1
2 − 1)Z

1
2
2 − 0.5 ln(1 + γ3(u))

]
Ñ(dt, du),
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where

LV (P,Z1, Z2) =0.5(
√
P − 1)

(
r − r

K
P − µ1Z1

α1 + P
− µ2Z2

α2 + P

)
+ 0.125(2−

√
P )δ21

+

∫
Y
[((1+γ1(u))

1
2 −1−0.5γ1(u))P

1
2 +0.5(γ1(u)

−ln(1+γ1(u)))]λ(du)

+ 0.5(
√

Z1 − 1)

(
β1P

α1 + P
− ρ1P (t− τ)

α1 + P (t− τ)
− d1 − g1Z1

)
+ 0.125(2−

√
Z1)δ

2
2

+ 0.125Z2
1δ

2
3(2−

√
Z1) +

∫
Y
[((1 + γ2(u))

1
2 − 1− 0.5γ2(u))Z

1
2
1

+ 0.5(γ2(u)− ln(1 + γ2(u)))]λ(du) + 0.5(
√
Z2 − 1)

( β2P

α2 + P

− ρ2P (t− τ)

α2 + P (t− τ)
− d2 − g2Z2

)
+ 0.125(2−

√
Z2)δ

2
4

+ 0.125Z2
2δ

2
5(2−

√
Z2)

+

∫
Y

[
((1 + γ3(u))

1
2 − 1− 0.5γ1(u))Z

1
2
2 + 0.5(γ3(u)

− ln(1 + γ3(u)))
]
λ(du) + 0.5

ρ1P (t)

α1 + P (t)

− 0.5
ρ1P (t− τ)

α1 + P (t− τ)
+ 0.5

ρ2P (t)

α2 + P (t)
− 0.5

ρ2P (t− τ)

α2 + P (t− τ)

=0.5(rP
1
2 − r

K
P

3
2 − µ1Z1

α1+P
P

1
2 − µ2Z2

α2+P
P

1
2 −r+

r

K
P +

µ1Z1

α1 + P

+
µ2Z2

α2 + P
) + 0.25δ21 − 0.125δ

1
2
1 + 0.5(

β1P

α1 + P
Z

1
2
1

− ρ1P (t− τ)

α1 + P (t− τ)
Z

1
2
1 − d1Z

1
2
1

− g1Z
3
2
1 − β1P

α1 + P
+

ρ1P (t− τ)

α1 + P (t− τ)

+ d1 + g1Z1) + 0.25δ22 − 0.125δ22Z
1
2
1

+ 0.25δ23Z
2
1 − 0.125δ23Z

5
2
1 + 0.5(

β2P

α2 + P
Z

1
2
2

− ρ2P (t− τ)

α2 + P (t− τ)
Z

1
2
2 − d2Z

1
2
2 − g2Z

3
2
2

− β2P

α2 + P
+

ρ2P (t− τ)

α2 + P (t− τ)
+ d2 + g2Z2) + 0.25δ24

− 0.125δ24Z
1
2
2 + 0.25δ25Z

2
2

− 0.25δ25Z
5
2
2 + 0.5

ρ1P

α1 + P
+ 0.5

ρ2P

α2 + P

− 0.5
ρ1P (t− τ)

α1 + P (t− τ)
− 0.5

ρ2P (t− τ)

α2 + P (t− τ)
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+

∫
Y
[((1 + γ1(u))

1
2 − 1− 0.5γ1(u))P

1
2 + 0.5(γ1(u)

− ln(1 + γ1(u)))]λ(du)

+

∫
Y
[((1 + γ2(u))

1
2 − 1− 0.5γ2(u))Z

1
2
1 + 0.5(γ2(u)

− ln(1 + γ2(u)))]λ(du)

+

∫
Y
[((1 + γ3(u))

1
2 − 1− 0.5γ3(u))Z

1
2
3 + 0.5(γ3(u)

− ln(1 + γ3(u)))]λ(du)

≤− 0.125δ23Z
5
2
1 − 0.125δ25Z

5
2
2 + 0.25δ23Z

2
1 + 0.25δ25Z

2
2

+ 0.5(
r

K
+

ρ1
α1

+
ρ2
α2

)P

+ 0.5(
µ1

α1
+ g1)Z1 + 0.5(

µ2

α2
+ g2)Z2 − 0.5

r

K
P

3
2 − 0.5g1Z

3
2
1

−0.5g2Z
3
2
2 + (0.5r−0.125δ21)P

1
2 +(0.5

β1

α1
−0.5d1−0.125δ22)Z

1
2
1

+ (0.5
β2

α2
− 0.5d2 − 0.125δ24)Z

1
2
2

+ 0.25(δ21 + δ22 + δ24) + 0.5(d1 + d2 − r)

+ 0.5

∫
Y
(|γ1(u)|+ | ln(1 + γ1(u))|)λ(du)

+ 0.5

∫
Y
(|γ2(u)|+ | ln(1 + γ2(u))|)λ(du)

+ 0.5

∫
Y
|γ3(u)|+ | ln(1 + γ3(u))|λ(du)

≤Υ,

where Υ is a positive constant. The reminder of proof is similar to those works in
the study [37] and hence is omitted here. This completes the proof.

3. Stochastic extinction and persistence in the mean
In this section, we are committed to investigating the stochastic extinction and per-
sistence in the mean of each population in system (1.2). For the sake of convenience,
we give the following notations and definition before presenting the main results.

Φ1 = lim
t→∞

sup 0.5δ23t
−1

∫ t

0

Z2
1 (s)ds,

Φ2 = lim
t→∞

sup 0.5δ25t
−1

∫ t

0

Z2
2 (s)ds,

Q = r − 0.5δ21 +

∫
Y
(ln(1 + γ1(u))− γ1(u))λ(du),

Q1 = β1 − d1 − 0.5δ22 +

∫
Y
(ln(1 + γ2(u))− γ2(u))λ(du),
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Q2 = β2 − d2 − 0.5δ24 +

∫
Y
(ln(1 + γ3(u))− γ3(u))λ(du),

Q3 = ρ1 +
α2
1 − β2

1

2α1
+

∫
Y
(ln(1 + γ2(u))− γ2(u))λ(du),

Q4 = ρ2 +
α2
2 − β2

2

2α2
+

∫
Y
(ln(1 + γ3(u))− γ3(u))λ(du),

M1(t) =

∫ t

0

δ1dBi(s), M2(t) =

∫ t

0

δ2dB2,

M3(t) =

∫ t

0

δ3Z1(s)dB3(s), M4(t) =

∫ t

0

δ4dB4(s),

M5(t) =

∫ t

0

δ5Z2(s)dB5(s), Ki(t) =

∫ t

0

∫
Y
ln(1 + γi)Ñ(dt, du), i = 1, 2, 3,

⟨f(t)⟩ = t−1

∫ t

0

f(s)ds, ⟨f(t)⟩∗ = inf
1

t

∫ t

0

f(s)ds, ⟨f(t)⟩∗ = sup
1

t

∫ t

0

f(s)(s)ds.

Definition 3.1 ( [57]). (1)The population x(t) is said to be extinct if limt→∞ x(t) =
0 a.s.

(2) If limt→∞⟨x(t)⟩∗ > 0 a.s., the population x(t) is said to be strongly persistent
in the mean.

(3) If limt→∞⟨x(t)⟩∗ > 0 a.s., the population x(t) is said to be weakly persistent
in the mean.

Using the above notations and definition, we can get the following results re-
garding the persistence or extinction of plankton for system (1.2).

Theorem 3.1. Let (A) hold, the solution of system (1.2) satisfies the following
properties.
(1) For any solution (P (t), Z1(t), Z2(t) ∈ R3

+ of system (1.2), we get that

lim
t→∞

sup
lnP (t)

t
≤ Q a.s., lim

t→∞
sup

lnZ1(t)

t
≤ Q1 a.s.,

lim
t→∞

sup
lnZ2(t)

t
≤ Q2 a.s.

(2) If Q < 0,Q1 < 0 and Q2 < 0, then

lim
t→∞

P (t) = 0 a.s., lim
t→∞

Z1(t) = 0 a.s., lim
t→∞

Z2(t) = 0 a.s.,

i.e., the phytoplankton and zooplankton populations will go to extinction with prob-
ability one.
(3) If Q > 0, Q1 > 0 and Q2 > 0, then

lim
t→∞

⟨P (t)⟩∗ ≤ QK

r
a.s., lim

t→∞
⟨Z1(t)⟩∗ ≤ Q1

g1
a.s., lim

t→∞
⟨Z2(t)⟩∗ ≤ Q2

g2
a.s.,

i.e., both phytoplankton and zooplankton populations for system (1.2) are weakly
persistent in the mean with probability one.
(4) If Q > µ1Q1

α1g1
+ µ2Q2

α2g2
, Q1 > 0 and Q2 > 0, we have

lim
t→∞

⟨P (t)⟩∗ ≥ QKα1α2g1g2 −KQ1µ1α2g2 −KQ2µ2α1g1
rg1g2α1α2

a.s.,
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i.e., the phytoplankton population is strongly persistent in the mean with probability
one.
(5) If Q3 > d1 + 0.5δ22 +Φ1 +

ρ1KQ
α1r

and Q > 0, we get

lim
t→∞

⟨Z1(t)⟩∗ ≥ Q3α1r − d1α1r − 0.5δ22α1r − Φ1α1r − ρ1QK

α1g1r
a.s.,

i.e., the zooplankton population Z1 is strongly persistent in the mean with probability
one.
(6) If Q4 > d2 + 0.5δ24 +Φ2 +

ρ2QK
α2r

and Q > 0, we derive

lim
t→∞

⟨Z2(t)⟩∗ ≥ Q4α2r − d2α2r − 0.5δ24α2r − Φ2α2r − ρ2KQ

g2α2r
a.s.,

i.e., the zooplankton population Z2 is strongly persistent in the mean with probability
one.

Proof. Making use of the generalized Itô’s formula to the system (1.2) yields

lnP (t)− lnP (0) =

∫ t

0

[
r − 0.5δ21 +

∫
Y
(ln(1 + γ1(u))− γ1(u))λ(du),

− r

K
P (s)− µ1Z1(s)

α1 + P (s)
− µ2Z2(s)

α2 + P (s)

]
ds,

+

∫ t

0

δ1dB1(s) +

∫ t

0

∫
Y
ln(1 + γ1(u))Ñ(ds, du). (3.1)

From Eq.(3.1), it is not difficult to derive

t−1 ln
P (t)

P (0)
≤ Q− r

K
⟨P (s)⟩+ M1(t)

t
+

K1(t)

t
. (3.2)

Let fi(P ) = βiP
αi+P (i = 1, 2), and then by applying the positivity of P , we have that

fi(P ) = βi − βiαi

αi+P ≤ βi. Similarly, we can get

t−1 ln
Z1(t)

Z1(0)
≤Q1 − g1⟨Z1(s)⟩ − 0.5δ23t

−1

∫ t

0

Z2
1 (s)ds,

+
M3(t)

t
+

M2(t)

t
+

K2(t)

t
, (3.3)

t−1 ln
Z2(t)

Z2(0)
≤Q2 − g2⟨Z2(s)⟩ − 0.5δ25t

−1

∫ t

0

Z2
2 (s)ds,

+
M5(t)

t
+

M4(t)

t
+

K3(t)

t
. (3.4)

Based on the strong law of large number for local martingale [23] and Assumption
(A) in the Introduction part, we can know that limt→∞

Mi(t)
t = 0 a.s,i = 1, 2, 4 and

limt→∞
Kj(t)

t = 0 a.s.,j = 1, 2, 3. From (3.2), we have that

lnP (t)

t
≤ Q+

lnP (0)

t
+

M1

t
+

K1(t)

t
.
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Taking the limit on both side of the above inequality, we can derive

lim
t→∞

sup
lnP (t)

t
≤ Q a.s.

Therefore, it is clear that limt→∞ P (t) = 0 a.s. if Q < 0 holds. By applying Lemma
2 in [27], if Q > 0, we have

lim
t→∞

⟨P (t)⟩∗ ≤ QK

r
a.s.

On the other hand, the quadratic variation of M3(t) is

⟨M3,M3⟩(t) = δ23

∫ t

0

Z2
1 (s)ds.

In view of the exponential martingale inequality [36], we can observe that

P{ sup
0≤t≤ϵ

[M3(t)− 0.5⟨M3,M3⟩(t)] ≥ 2 ln ϵ} ≤ 1

ϵ2
.

By the Borel-Cantelli Lemma [38], we can obtain that for almost all ω1 ∈ Ω, there
is a random integer ϵ0 = ϵ(ω1) such that for ϵ > ϵ0,

sup
0≤t≤ϵ

[M3(t)− 0.5⟨M3,M3⟩(t)] ≥ 2 ln ϵ.

Namely, we have shown

M3(t) ≤ 2 ln ϵ+ 0.5⟨M3,M3(t)⟩ = 2 ln ϵ+ 0.5δ23

∫ t

0

Z2
1 (s)ds, (3.5)

for all 0 ≤ t ≤ ϵ and ϵ > ϵ0 a.s. By substituting (3.5) into (3.3) leads to

t−1 ln
Z1(t)

Z1(0)
≤ Q1 − g1⟨Z1(t)⟩+

M2(t)

t
+

K2(t)

t
+

2 ln ϵ

ϵ− 1
, (3.6)

for 0 < ϵ− 1 ≤ t ≤ ϵ and ϵ ≥ ϵ0 a.s.
From (3.4), similarly, we have

t−1 ln
Z2(t)

Z2(0)
≤ Q2 − g2⟨Z2(t)⟩+

M4(t)

t
+

K3(t)

t
+

2 ln ϵ

ϵ− 1
, (3.7)

for all 0 < ϵ− 1 ≤ t ≤ ϵ and ϵ ≥ ϵ0 a.s.
Using the same analysis method, in view of (3.6) and (3.7), and then we obtain

lim
t→∞

sup
lnZ1(t)

t
≤ Q1 a.s., lim

t→∞
sup

lnZ2(t)

t
≤ Q2 a.s.

Moreover, if Qi < 0, we can get that limt→∞ Zi(t) = 0 a.s., i = 1, 2. By applying
Lemma 2 in [27], if Q1 > 0 and Q2 > 0 hold, we have

lim
t→∞

⟨Z1(t)⟩∗ ≤ Q1

g1
a.s., lim

t→∞
⟨Z2(t)⟩∗ ≤ Q2

g2
a.s.
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By virtue of βi−ρi−di > 0 and the positivity of P , we have that fi(P ) > ρi+
α2

i−β2
i

2αi
,

i = 1, 2. Supposing that Q > 0,Q1 > 0 and Q2 > 0, and making use of the Itô’s
formula to system (1.2) again and then we can get

t−1 ln
P (t)

P (0)
≥ Q− r

K
⟨P (t)⟩ − µ1

α1
⟨Z1(t)⟩∗ −

µ2

α2
⟨Z2(t)⟩∗ +

M1(t)

t
+

K1(t)

t
, (3.8)

t−1 ln
Z1(t)

Z1(0)
≥Q3 − d1 − 0.5δ22 − Φ1 −

ρ1
α1

⟨P (t)⟩∗ − g1⟨Z1(t)⟩,

+
ρ1
α1

t−1(

∫ t

t−τ

P (s)dt−
∫ t

−τ

P (s)dt) +
M2(t)

t
+

M3(t)

t
+

K2(t)

t
,

(3.9)

t−1 ln
Z2(t)

Z2(0)
≥Q4 − d2 − 0.5δ24 − Φ2 −

ρ2
α2

⟨P (t)⟩∗ − g2⟨Z2(t)⟩,

+
ρ2
α2

t−1(

∫ t

t−τ

P (s)dt−
∫ t

−τ

P (s)dt) +
M4(t)

t
+

M5(t)

t
+

K3(t)

t
.

(3.10)

From (3.8), if Q− µ1Q1

α1g1
− µ2Q2

α2g2
> 0 and Qi > 0(i = 1, 2), based on Lemma 2 in [27],

we have

lim
t→∞

⟨P (t)⟩∗ ≥ QKα1α2g1g2 −Kµ1Q1α2g2 −Kµ2Q2α1g1
rg1g2α1α2

a.s.

Using Lemma 1 in [53] or Lemma 2.2 in [31], we have that limt→∞
M3(t)

t = 0 a.s.

and limt→∞
M5(t)

t = 0 a.s.. A similar proof to the Lemma 2 in [17], we get that
limt→∞ t−1

∫ t

t−τ
P (s)dt = limt→∞ t−1(

∫ t

0
P (s)ds −

∫ t−τ

0
P (s)ds) = 0 a.s.. There-

fore, according to (3.9) and in view of Lemma 2 in [27], if Q3 > d1+0.5δ22+Φ1+
ρ1KQ
α1r

holds, we derive

lim
t→∞

⟨Z1(t)⟩∗ ≥ Q3α1r − d1α1r − 0.5δ22α1r − Φ1α1r − ρ1QK

α1g1r
a.s.

From (3.10), similarly, we have

lim
t→∞

⟨Z2(t)⟩∗ ≥ Q4α2r − d2α2r − 0.5δ24α2r − Φ2α2r − ρ2KQ

g2α2r
a.s.,

provided Q4 > d2 + 0.5δ24 +Φ2 +
ρ2QK
α2r

. This competes the proofs.

Remark 3.1. From Theorem 3.1, it is clearly indicated that {Q,Q1, Q2} is a
threshold determining whether plankton is weakly persistent or extinct (Q for phy-
toplankton P (t) and Qi for zooplankton Zi(t),i = 1, 2 ). That is, if {Q,Q1, Q2} > 0,
the plankton is weakly persistent and extinct if {Q,Q1, Q2} < 0.

4. Numerical simulations
In this section, we carry out some numerical simulations to show the effects of noises
on the resulting dynamics of stochastic system (1.2). As an example, we obtain such
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set of parameters [33]: r = 1, K = 20, µ1 = 5, µ2 = 6, α1 = 6, α2 = 10, β1 = 4,
β2 = 5,τ = 1.2, ρ1 = 1, ρ2 = 1.4, d1 = 1, d2 = 1.11, g1 = 2 and g2 = 5, which are
used for the following numerical simulations. For this choices, Lv et al. [33] showed
that there exists a unique positive equilibrium E∗ = (16.30, 0.595, 0.224) of system
(1.1) and it is globally asymptotically stable (see Fig.4 in [33]). In what follows, we
shall present numerically that the stochastic system (1.2) admits much richer and
more interesting dynamics because of the influences of white noise and Lévy noise.
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Figure 1. The solutions of stochastic system (1.2) with time step ∆t = 0.001 and different
white noise intensities.a for (δ1, δ2, δ3, δ4, δ5) = (0.40, 0.41, 0.42, 0.43, 0.44). b for (δ1, δ2, δ3, δ4, δ5) =
(0.80, 0.81, 0.82, 0.83, 0.84). c for (δ1, δ2, δ3, δ4, δ5) = (1.80, 1.81, 1.82, 1.83, 1.84).
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Figure 2. The solutions of stochastic system (1.2) and its deterministic system (1.1) with time step
∆t = 0.001. a for phytoplankton P (t). b for zooplankton Z1(t). c for zooplankton Z2(t).
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Figure 3. The solutions of the stochastic system (1.2) and its deterministic system (1.1) with time step
∆t = 0.001. a for phytoplankton P (t). b for zooplankton Z1(t). c for zooplankton Z2(t).

Letting the Lévy noise intensities γi(u) = 0(i = 1, 2, 3) and only varying the
intensities of white noise, we first investigate the effects of white noise on the
phytoplankton-zooplankton dynamics and the numerical method can be found in
[17]. The numerical results are shown in Fig.1. By comparing Fig.1a and Fig.1b,
it can be found that the irregular random variation and the fluctuation range of
phytoplankton and zooplankton in the system (1.2) increase as the white noise
intensities increase. However, they eventually go extinct as the white noise inten-
sities continue to increase, as is shown in Fig.1c. We make white noise intensities
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δj = 0(j = 1, 2, 3, 4, 5) and only change the intensities of Lévy noise, by following
the method used in [9, 10], a result similar to Fig.1 can be achieved, and so, we
don’t show the pictures of this result.
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Figure 4. The sensitivity analysis of the threshold for phytoplankton P (t) in system (1.2) with respect
to its growth rate and noise intensities. a for r and δ1. b for δ1 and γ1(u). The space region I
denotes the persistence of phytoplankton, the space region II indicates the extinction of phytoplankton,
and the planes (pink and green) represent the critical plane between the persistence and extinction of
phytoplankton.

Next, by following the same method used in [9,10] again, we show the synergistic
effects of white noise and Lévy noise on the phytoplankton-zooplankton dynamics.
Let Y = (0,+∞), λ(Y) = 1, we start our numerical simulation with the following
noise intensities:

(δ1, δ2, δ3, δ4, δ5, γ1(u), γ2(u), γ3(u)) = (0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18),

(δ1, δ2, δ3, δ4, δ5, γ1(u), γ2(u), γ3(u)) = (0.11, 0.12, 0.13, 0.14, 0.15, 3.16, 3.17, 3.18),

which satisfy the conditions of Assumption (A). For the first cases, by direct calcu-
lations, it is not difficult to derive {Q,Q1, Q2} > 0, in view of Theorem 3.1, it can
be got that phytoplankton P1(t) and zooplankton Zi(t)(i = 1, 2) in the stochastic
system (1.2) never go to extinction and they are weakly persistent in the mean,
which is demonstrated in Fig.2. By comparing Figs.1a-1b and Fig.2, it is obvious
that the irregular random variation of phytoplankton and zooplankton under the
synergistic effects of the two noises is stronger than that of phytoplankton and zoo-
plankton under the effects of single noise. For the second case, a simple calculation
shows {Q,Q1, Q2} < 0. From Theorem 3.1, it is found that with the increase of
noise intensities, these plankton populations eventually go extinct with probability
one, which does not occur in the deterministic system (1.1). It is worth noting that
the only difference between Fig.2 and Fig.3 is that the Lévy noise intensities are
different. By further comparison of Fig.2 and Fig.3, one can find that an increase
in the Lévy noise intensity can result in the extinction of persistent plankton.

In order to further study the effects of some key factors such as the growth
rate and noise intensities on the survival of phytoplankton and to show the intu-
itive response of these factors to the survival of phytoplankton, we carry out some
sensitivity analysis of the survival probability of phytoplankton by taking the same



A phytoplankton-zooplankton system with. . . 1891

0 200 400 600 800 1000

time t

4

5

6

7

8

9

10

11

12

P
h

y
to

p
la

n
k
to

n
 P

(t
)

a

(ρ
1
,ρ

2
)=(0,0)

(ρ
1
,ρ

2
)=(0.6,0.7)

(ρ
1
,ρ

2
)=(1.2,1.4)

0 200 400 600 800 1000

time t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Z
o

o
p

la
n

k
to

n
 Z

1
(t

)

b

(ρ
1
,ρ

2
)=(0,0)

(ρ
1
,ρ

2
)=(0.6,0.7)

(ρ
1
,ρ

2
)=(1.2,1.4)

0 200 400 600 800 1000

time t

0

0.05

0.1

0.15

0.2

0.25

0.3

Z
o

o
p

la
n

k
to

n
 Z

2
(t

)

c

(ρ
1
,ρ

2
)=(0,0)

(ρ
1
,ρ

2
)=(0.6,0.7)

(ρ
1
,ρ

2
)=(1.2,1.4)

Figure 5. The effects of toxin liberation rate ρi on the dynamics of plankton in the stochastic system
(1.2).

parameters as in Fig.2, and the results are shown in Fig.4. In Fig.4a, by varying the
parameters r and δ1, and fixing the other parameters, one can find that with the
increase of noise intensity δ1, the threshold value decreases, while it increases as the
growth rate r increases. Clearly, increasing the noise intensity δ1 is disadvantage
for the survival of phytoplankton, and the increase of r is advantage for the survival
of phytoplankton. By changing the parameters δ1 and γ1(u), and keep the other
parameters fixed in Fig.4b, it can be found that the increase of δ1 or γ1(u) is able
to reduce the threshold value of phytoplankton. Consequently, the large random
environmental fluctuations such as hurricanes, infectious diseases and tsunamis are
always harmful to the survival of phytoplankton.
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Figure 6. The effects of intraspecific coefficient gi(i = 1, 2) on the dynamics of plankton in the stochastic
system (1.2).

In addition, toxin liberate rate and intraspecific competition rate are also impor-
tant factors influencing the interactions between phytoplankton and zooplankton.
Therefore, we investigate numerically the effects of toxin liberate rate ρi(i = 1, 2)
and intraspecific competition rate gi (i = 1, 2) on the dynamics of plankton in the
stochastic system (1.2). Keeping the parameters in Fig.2 unchanged, we only vary
the toxin liberation rate ρ1 and ρ2, it is worth noting that with the increase of
the ρj(j = 1, 2), the biomass of phytoplankton increases but that of zooplankton
Zj(t)(j = 1, 2) decreases, as is demonstrated in Fig.5a, Fig.5b and Fig.5c, respec-
tively. Furthermore, by changing the values of gs(s = 1, 2) and fixing the other
parameters, we achieve a similar result as the gs(s = 1, 2) increases (see Fig.6).
Hence, it can be concluded that toxin liberate rate of phytoplankton and intraspe-
cific competition rate of zooplankton have a great influence on the variation of
plankton biomass.
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5. Concluding remarks

In this paper, an extension of the delayed plankton system consisting of toxin pro-
ducing phytoplankton and two zooplankton originally developed in [33] was derived
to explore the effects of environmental white noise and Lévy noise fluctuations on
the phytoplankton-zooplankton dynamics. In spite of some stochastic predator-prey
models with Lévy noise have been reported in the existing literature, a delayed toxin
producing phytoplankton-two zooplankton system taking into account the impacts
of white noise and Lévy noise has been rarely studied. Hence, the study of the influ-
ences of white noise and Lévy noise on the phytoplankton-zooplankton dynamics,
especially the stochastic extinction and persistence of these plankton, which have
been considered as two important topics in plankton ecology, is of great signifi-
cance and importance. Mathematically, we first proved the existence of a unique
global positive solution of the system, and then the survival analysis was carried
out to investigate the sufficient conditions for stochastic extinction and persistence
in the mean of each population, which in turn provided a theoretical basis for nu-
merical simulations. Numerical analysis indicated that white noise and Lévy noise
have a great influence on the phytoplankton-zooplankton dynamics in the aquatic
environments.

Actually, when the stochastic system (1.2) with only white noise or only Lévy
noise or both of them, it can be found that the persistence of phytoplankton and
zooplankton remains unchanged with the weak noise intensities (see Figs.1a-1b and
Fig.2). For the strong noise intensities, it was to be noted that both phytoplank-
ton and zooplankton can not avoid the fate of extinction (see Fig.1c). This results
indicated that the weak white noise or Lévy noise could not affect the persistence
of phytoplankton and zooplankton, whereas the strong white noise or Lévy noise
were able to result in the extinction of these plankton, which did not occur in the
deterministic system. In spite of the weak noise intensity could not drive phyto-
plankton and zooplankton to go extinct, it was worth noting that they can cause the
irregular random variation of phytoplankton and zooplankton in the system (1.2).
In fact, the same weak intensity of white noise and Lévy noise may generate the
same intensity of irregular random variation for phytoplankton and zooplankton,
but the random variation of phytoplankton and zooplankton under the synergistic
effects of white noise and Lévy noise was found to be stronger than that of the phy-
toplankton and zooplankton under the effects of single noise (see Fig.1 and Fig.2),
which indicated that the small random environmental perturbations can not result
in the extinction of phytoplankton and zooplankton, but they are bound to affect
the growth process of these plankton. Furthermore, the rapidly increase or decrease
in the irregular random variation could cause the appearance or disappearance of
the phytoplankton (see Fig.2a and Fig.3a), and hence, the control of the rapidity
of the random fluctuations may be a key factor for the termination of phytoplank-
ton blooms. Consequently, it could be concluded that the effects of white noise or
Lévy noise on the stochastic extinction and persistence of phytoplankton and zoo-
plankton are similar, but the synergistic effect of the two noises on the stochastic
extinction and persistence of these plankton is stronger than that of single noise.
In view of the above results, the questions mentioned in the Introduction have been
partially answered.

Additionally, it was observed that an increase in the toxin liberation rate can
increase the biomass of the phytoplankton but decrease the biomass of zooplank-
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ton, which implied that toxin released by phytoplankton is conducive to the growth
of phytoplankton but not to the growth of zooplankton (see Fig.5). More inter-
estingly, with the increase in the intraspecific competition rate of zooplankton, a
similar result has been found (see Fig.6). However, in the work of Lv et al. [33],
where the deterministic plankton system (1.1) was studied, one of their results indi-
cated that the intraspecific competition of zooplankton reduces the biomass of both
phytoplankton and zooplankton populations. As can be seen from condition of (4)
in Theorem 3.1, the result of this paper was very obvious and was also apparent by
the ecological significance. In fact, the increase in intraspecific competition among
zooplankton naturally reduces the grazing pressure of phytoplankton by zooplank-
ton, which may lead to the rapid growth of phytoplankton and thus increase their
biomass. Consequently, our conclusion may be more realistic than those in [33].

Although some interesting results have achieved in this paper, it should be noted
that the extinction of phytoplankton can be caused by the random environmental
noise perturbations, but not all noises involved in the plankton equations can have
great influence on the phytoplankton-zooplankton dynamics. Actually, some noises
involved the plankton equations can be ignored while some noises of the plankton
equations must be taken into accounts (see Q,Q1 and Q2). Further, one may con-
sider more realistic but complex system to study more interesting topics, such as
incorporating the effect of impulsive perturbation or colored noise into the system
(1.2). These will leave our future works.
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lotka-volterra model with lévy jumps, Chaos Soltions Fractals, 2016, 85, 98–109.

[57] Z. Zhao and Q. Jiang, The threshold of a stochastic sis epidemic model with
vaccination, Appl. Math. Comput., 2014, 243, 718–727.


	Introduction
	The existence of a unique global positive solution
	Stochastic extinction and persistence in the mean
	Numerical simulations
	Concluding remarks

