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Abstract In this paper, the Cauchy problem of the generalized ellipse-ellipse
type Davey-Stewartson systems is discussed. When the dimension of space is
greater than or equal to two, we get a unique global solution in Besov spaces by
contraction mapping argument. Moreover, by using the F-expansion method,
the exact periodic wave solutions for the generalized ellipse-ellipse type Davey-
Stewartson systems are discussed, some counter examples are given.
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1. Introduction

A large amount of work are devoted to the study of Davey-Stewartson systems. The
classical Davey-Stewartson systems iut +D1u = r |u|2 u+ µuv,

D2v = D3(|u|2),
(1.1)

are originally derived by Davey and Stewartson in [4] to describe quasi-monochromatic
wave pockets on the surface of a shallow liquid. Here D1, D2 and D3 are partial
differential operators of the second order in x, y (x, y) ∈ R2. D1 = δ∂2

x+∂2
y is either

elliptic or hyperbolic, and D2 = ∂2
x + m∂2

y(m > 0) is elliptic. Later, the case that
D2 is hyperbolic, i.e. m < 0, is derived in [5] by taking account of the effect of
surface tension (or capillary). Generally, D3 = ∂2

xu is a complex-valued function
of (t;x, y) ∈ R+ × R2, and v is a real-valued function of (t;x, y) ∈ R+ × R2. And
u and v are related to the amplitude and the mean velocity potential of the water
wave, respectively.

As in [7], the Davey-Stewartson equations are usually classified as elliptic-elliptic,
elliptic-hyperbolic, hyperbolic-elliptic and hyperbolic-hyperbolic types according to
the respective types of D1 and D2. In recent years, Davey-Stewartson equation-
s(1.1) have drawn much attention from many physicists and mathematicians due
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to the abundant physical and mathematical properties. In [3], by using the gener-
alized Kudryashov method, Demiray and Bulut found the dark soliton solutions of
DSE systems. Later, by employing the Bäcklund transformation, the Hamiltonian
approach and the G-expansion method to the DSEs, new traveling solitary and kink
wave solutions are obtained, see [23]. The well-posedness, decay of solutions, soliton
solutions, solitary and standing waves, etc., have been quite extensively studied by
many authors (see [7, 9, 14,15,17,25,26]).

In [10], Wang and Guo study the generalized Davey-Stewartson systems iut +Au = λ1 |u|p1 u+ λ2 |u|p2 u+ µuvx1
,

Bv = (|u|2)x1 ,
(1.2)

where A :=
∑

1≤i,j≤n
aij

∂2

∂xi∂xj
, B :=

∑
1≤i,j≤n

bij
∂2

∂xi∂xj
, (aij) and (bij) are real in-

vertible matrix. They discuss the initial value problem of the Davey-Stewartson
systems for the elliptic-elliptic and hyperbolic-elliptic cases. The local and global
existence, as well as uniqueness of solutions in Hs are shown. Moreover, they prove
that the scattering operator carries a band in Hs into Hs. By using the Hiro-
ta’s bilinear method, the homoclinic orbits of the Davey-Stewartson Equations are
obtained through the dependent variable transformation, see [30].

In [27], Wang shows that there exists sc > 0 such that the cubic (quartic)
non-elliptic derivative Schrödinger equations with small data in modulation spaces
Ms

2,1(Rn) for n ≥ 3(n = 2) are globally well-posed if s ≥ sc, and ill-posed if s < sc.
It should be pointed that there is little result about the existence of solutions if

the second equation of (1.2) is replaced by the following equations

Bv = (|u|q u)x1 , q 6= 2.

Furthermore, if λ1 |u|p1 u + λ2 |u|p2 u in the first equation of (1.2) is replaced by a
more general nonlinear function f(u), the existence of solutions is also little known.
And some physical models, such as Landau-Lifshitz equation, Navier Stokes equa-
tion, can be transformed into the equation with more general nonlinear function
f(u). So it is more meaningful and more difficult to study the Davey-Stewartson
systems with general nonlinear term f(u). System (1.1) and (1.2) are two impor-
tant cases of general nonlinear Davey-Stewartson equation. Although our study
(2.1) is a special case of general nonlinear Davey-Stewartequation, it includes (1.1)
and (1.2).

The purpose of this paper is to investigate the Cauchy problem of the two cases
mentioned above, i.e., the generalized ellipse-ellipse and hyperbolic-ellipse type.
When the dimension of space is greater than or equal to two, we get a unique global
solution in Besov spaces by contraction mapping argument (see Section 2).

Naturally, the reader will curious about whether these results are valid for
bounded domain? To answer those interesting questions, we construct some exac-
t periodic wave solutions for the generalized ellipse-ellipse type Davey-Stewartson
systems by using the F-expansion method, and some counter examples are given
(see Section 3). Furthermore, we construct some exact periodic wave solutions to
show the existence of solutions for generalized ellipse-hyperbolic and hyperbolic-
hyperbolic type Davey-Stewartson systems which is still open (see Section 4).

This paper is based on many kinds of methods which are raised, such as homo-
geneous balance method [28], hyperbolic function expansion method [6], nonlinear
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transformation method [11,13], trial function method [19], sine-cosine method [29],
Jacobi elliptic function expansion method, etc. The solution gotten by these meth-
ods are mainly solitary wave solutions, shock solutions, see [6, 11,13,19,28,29] and
elliptic function, see [20–22]. To search the stability of the solutions and inspired
by [18], we add perturbation in our research and discuss the evolution of the pertur-
bation. Essentially, it is to expand the solution of nonlinear evolution equation to
ε- power series and try to get the multi-order exact solutions of it. The symmetry
group properties of the variable coefficient Davey-Stewartson (vcDS) systems are
studied in [8]. The dromion of the Davey-Stewartson-1 equation is studied under
perturbation on the large time [12]. Through the Hirota bilinear method, Ma for-
mulate a combined fourth-order nonlinear equation while guaranteeing the existence
of lump solutions of new (2+1)-dimensional nonlinear equations [16].

2. Cauchy problem

In this section we study the Cauchy problem for the generalized Davey-Stewartson
systems 

iut +Au = f(u) + µuvx1
,

Bv = (|u|q u)x1

u(0, x) = u0(x),

(2.1)

where A :=
∑

1≤i,j≤n
aij

∂2

∂xi∂xj
, B :=

∑
1≤i,j≤n

bij
∂2

∂xi∂xj
, (aij) and (bij) are real invert-

ible matrices. λ, µ ∈ C. Let exist C > 0, satisfied∣∣∣∣∣∣
∑

1≤i,j≤n

bijξiξj

∣∣∣∣∣∣ ≥ C |ξ|2 , ∀ξ ∈ Rn. (2.2)

Denote E(ψ) = F−1

[
ξ21∑

1≤i,j≤n
bijξiξj

]
Fψ, where F is Fourier transformation.

Then (2.1) is equivalent to the following form iut +Au = f(u) + µE(|u|q u)u,

u(0, x) = u0(x).
(2.3)

Here f(u) ∈ Ck(k ∈ Z), is a nonlinear function and for any given p,

|f (k)(u)| ≤ C|u|p+1−k, k = 0, 1, · · · . (2.4)

For brevity, in the following, we denote

s(p) =
n

2
− 2

p
,

2

γ(r)
= n(

1

2
− 1

r
), r(p) =

2n(2 + p)

n(2 + p)− 4
, (2.5)

where 4
n ≤ p <∞, 1 ≤ r <∞,

α(n) =

∞, n = 2,

2n
n−2 , n > 2.

(2.6)
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Now, we state the main result as follows.

Theorem 2.1. Let n ≥ 2, 4
n ≤ p, q <∞, max(s(q), s(p)) ≤ s <∞, [s] ≤ p. If

u0 ∈ Hs and there exist a δ > 0 such that ‖u0‖Hs < δ, then there exists a unique
solution u of the Cauchy problem(2.3) satisfying

u ∈ C(0,∞;Hs) ∩ Lp+2(0,∞;Bsr(p),2) ∩ Lq+3(0,∞;Bsr(q),2). (2.7)

Throughout this paper, we use a variety of function spaces, Lebesgue spaces Lr,
Bessel potential spaces Hs,r, Besov spaces Bsr,2. The definition of Lr and Hs,r is as

usual, and an equivalent definition of the norm on Ḃsr,2 is that

‖u‖Ḃsr,2 =

∫ ∞
0

t2(s−[s])
∑
|α|=[s]

sup ‖∆hD
αu‖2Lr

dt

t

 1
2

, (2.8)

where [s] denotes the largest integer less than or equal to s, ∆hu(x) = u(x + h) −
u(x) = uh − u. For some additional basic results on Besov spaces, one can refer
to [1, 24].

In the following, C stands for a constant that may be different numbers in
different places. For any r ∈ [1,∞], r′ denotes the duality number of r, i.e. 1

r + 1
r′ =

1.

2.1. Main lemmas

The main tools used here are time spaces Lp − Lp′ estimates for solutions of lin-
ear Schrödinger equations in Lebesgue space. These estimates are usually named
generalized Strichartz inequalities. The method of the proof of the main result
is a contraction mapping argument. Let us recall that some estimates for linear
Schrödinger equations in Lebesgue-Besov spaces which are established by Cazenave
and Weissler in [2].

Lemma 2.1. For all s ∈ R, r, q ∈ [2, α(n)). S(t) is semi-group of operator and
i∂/∂t+A is generating operator of S(t), then we have

(i) If u0 ∈ Ḣs, then S(t)u0 ∈ Lγ(r)(0,∞; Ḃsr,2), and there exists a constant C > 0,
such that

‖S(t)u0‖Lγ(r)(0,∞;Ḃsr,2) ≤ C ‖u0‖Ḣs ; (2.9)

(ii) If f ∈ Lγ(r)′(0,∞; Ḃsr′,2), then
∫ t

0
S(t− τ)f(τ)dτ ∈ Lγ(q)(0,∞; Ḃsq,2), and

there exists C > 0, such that∥∥∥∥∫ t

0

S(t− τ)f(τ)dτ

∥∥∥∥
Lγ(q)(0,∞;Ḃsq,2)

≤ C ‖f‖Lγ(r)′ (0,∞;Ḃs
r′,2) , (2.10)

for all f ∈ Lγ(r)′(0,∞; Ḃsr′,2).

The proof of this lemma can be found in [10].

Lemma 2.2 ( [10]). Let 0 ≤ s <∞, 0 ≤ r′ <∞, lk,mk, pk, qk > 0 and

1

r′
=

1

lk
+

1

mk
=

1

pk
+

1

qk
, k = 0, 1, · · · , [s].
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Then, there exists a constant C > 0 only depending on r′, n, s, such that

‖uv‖Ḃs
r′,2
≤ C

∑[s]

k=0
(‖u‖Ḣk,pk ‖v‖Ḃs−kqk,2

+ ‖u‖Ḃs−klk,2
‖v‖Ḣk,mk ). (2.11)

Lemma 2.3 ( [10]). Let −∞ < σ < ∞, 1 < r, µ < ∞. Then there exists a
constant C > 0 such that, for all u ∈ Ḃσr,µ,

‖E(u)‖Ḃσr,µ ≤ C ‖u‖Ḃσr,µ . (2.12)

By a similar method in [9], one can have the following result.

Lemma 2.4. Let s(p) ≤ s < n

2
and ρ =

2n(p+ 2)

n(p+ 2)− 2
. If f ∈ C [s]+1(R,R) satisfy-

ing one of the following conditions:

(i) |f (k)(u)| ≤ C|u|p+1−k, where k = 0, 1, ..., [s] + 1, [s] < p+ 1;

(ii) |f (k)(u)| ≤ C|u|p+1−k, when k < p+ 1; f (k)(u) = 0, when k < p+ 1.

Then
‖f(u)‖Ḃs

ρ′,2
≤ C‖u‖r

Ḃ
s−s(p)
ρ

‖u‖
Ḃ

[s]
ρ
. (2.13)

Proof. The proof can be divided into the following steps.
Step 1 First, consider the case [s− s(p)] ≥ 1, one has

‖f(u)‖Ḃsρ′ = (

∫ ∞
0

t−2(s−[s]) sup
|h|≤t

∑
|α|=[s]

‖4hDαu‖2
Lρ′

dt

t
)

1
2 , (2.14)

and recalling that |f (q)(u)| ≤ C|u|p+1−q to obtain

|f (q)(u)− f (q)(v)| ≤ (|u|p−q + |v|p−q)|u− v|.

Notice that [s] ≥ 1 and (2.11) to get∑
|α|=[s]

‖4hDαf(u)‖Lρ′

≤ C

[s]∑
q=1

∑
Λq

[s]

‖(|uh|p−q + |u|p−q)|uh − u|
q∏
i=1

Dαiu‖Lρ′

+C

[s]∑
q=1

∑
Λq

[s]

q∑
i=1

‖|uh|p−q+1
i−1∏
j=1

Dαjuh

q∏
j=i+1

DαjuDαi(uh − u)‖Lρ′ .

Let

Γ1 := ‖(|uh|p−q + |u|p−q)|uh − u|
q∏
i=1

Dαiu‖Lρ′ , (2.15)

Γ2 :=

q∑
i=1

‖|uh|p−q+1
i−1∏
j=1

Dαjuh

q∏
j=i+1

DαjuDαi(uh − u)‖Lρ′ , (2.16)
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thus ∑
|α|=[s]

‖4hDαf(u)‖Lρ′ ≤ C
[s]∑
q=1

∑
Λq

[s]

(Γ1 + Γ2). (2.17)

Next, we estimate Γ1 and Γ2, respectively. Without lose of generality, it can be
considered Λq[s] |αq| ≥ |αq−1| ≥ · · · ≥ |α2| ≥ |α1|. Firstly, when q = 1, let

a0 = (p− 1)(
1

ρ
− s− s(p)

n
),

a1 =
1

ρ
− s− s(p)

n
,

a2 =
1

ρ
.

It is easy to see a0, a1, a2 > 0, and

a0 + a1 + a2 = p(
1

ρ
− s− s(p)

n
) +

1

ρ
=

1

ρ′
. (2.18)

By using Ḃ
s−s(p)
ρ ↪→ Ḣ

s−s(p)
ρ , (2.15), and Hölder inequality, one gets

Γ1 ≤ C‖u‖p−1

Ḣ
s−s(p)
ρ

‖uh − u‖
L

1
a′0
‖u‖Lρ

≤ C‖u‖p−1

Ḃ
s−s(p)
ρ

‖uh − u‖
L

1
a′0
‖u‖Lρ .

(2.19)

Since [s− s(p)] ≤ [s], then

Γ1 ≤ C‖u‖p−1

Ḃ
s−s(p)
ρ

‖u‖
Ḃ

[s]
ρ
‖u‖

B
[s]
ρ

≤ C‖u‖p−1

Ḃ
s−s(p)
ρ

‖u‖
Ḃ
s−s(p)
ρ

‖u‖
B

[s]
ρ

≤ C‖u‖p
Ḃ
s−s(p)
ρ

‖u‖
B

[s]
ρ
.

(2.20)

Second, consider the case q ≥ 2, by (2.15), and let

a0 = (p− q)(1

ρ
− s− s(p)

n
),

a′0 =
1

ρ
− s− s(p)

n
,

ai =
1

ρ
− s− s(p)− |ai|

n
, i = 1, 2, · · · , q − 1,

aq =
1

ρ
− [s]− |aq|

n
.

Clearly a0, a
′
0, ai > 0, (i = 1, 2, · · · , q) and

a0 + a′0 +

q∑
i=1

ai = p(
1

ρ
− s− s(p)

n
) +

1

ρ
=

1

ρ′
. (2.21)



2424 W. Song & G. Yang

By Hölder inequality, (2.15) yields

Γ1 ≤ C‖u‖p−q
Ḃ
s−s(p)
ρ

‖u‖
Ḃ

[s]
ρ

q−1∏
i=1

‖Dαiu‖
Ḣ
s−s(p)
ρ

‖u‖
Ḣ

[s]
ρ
. (2.22)

Since Ḃ
s−s(p)
ρ ↪→ Ḣ

s−s(p)
ρ , then (2.22) implies

Γ1 ≤ C‖u‖p
Ḃ
s−s(p)
ρ

‖u‖
Ḃ

[s]
ρ
. (2.23)

Let’s consider Γ2 :=
q∑
i=1

‖
i−1∏
j=1

Dαjuh
q∏
i+1

DαjuDαi(uh − u)|uh|p−q+1‖Lρ′ . There are

also two scenarios to consider. First of all, when q = 1,

Γ2 = ‖Dα1(uh − u)|uh|p‖Lρ′ . (2.24)

Let

a0 = p(
1

ρ
− s− s(p)

n
),

a1 =
1

ρ
− |α1| − |α1|)

n
,

then a0, a1 > 0, and a0 + a1 =
1

ρ′
. and by Hölder inequality, one gets

Γ2 ≤ C‖u‖p
Ḃ
s−s(p)
ρ

‖u‖
Ḣ
|α1|
ρ

. (2.25)

Notice that q = 1, |α1| = [s], thus

Γ2 ≤ C‖u‖p
Ḃ
s−s(p)
ρ

‖u‖
Ḃ

[s]
ρ
. (2.26)

Second, let’s consider the case q ≥ 2,

a0 = (p− q + 1)(
1

ρ
− s− s(p)

n
),

ai =
1

ρ
− s− s(p)− |ai|

n
, i = 1, 2, · · · , q − 1,

aq =
1

ρ
− [s]− |aq|

n
,

thus, a0, ai > 0, (i = 1, 2, · · · , q)

a0 +

q∑
i=1

ai = p(
1

ρ
− s− s(p)

n
) +

1

ρ
=

1

ρ′
. (2.27)

It follows from Hölder inequality,

Γ2 ≤ C‖u‖p−q+1

Ḃ
s−s(p)
ρ

‖u‖q−1

Ḃ
s−s(p)
ρ

‖u‖
Ḃ

[s]
ρ

≤ C‖u‖p
Ḃ
s−s(p)
ρ

‖u‖
Ḃ

[s]
ρ
,

(2.28)
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which combination (2.20), (2.23), (2.26) and (2.28) yields

‖f(u)‖
Ḃ
s−s(p)
ρ

≤ C‖u‖p
Ḃ
s−s(p)
ρ

‖u‖
Ḃ

[s]
ρ
. (2.29)

Step 2 Let’s consider the case [s− s(p)] = 0,

‖f(u)‖
Ḃ
s−s(p)
ρ′

= (

∫ ∞
0

t−2(s−s(p)) sup
|h|≤t

‖4hf(u)‖2
Lρ′

dt

t
)

1
2 . (2.30)

Since Ḃ
s−s(p)
ρ′ ↪→ Ḣs

ρ′ and |f(u)| ≤ |u|p+1, one has

p(
1

ρ
− s− s(p)

n
) +

1

ρ
− s− s(p)

n
=

1

ρ′
− s− s(p)

n
. (2.31)

Let
1

β
=

1

ρ′
− s− s(p)

n
,

and utilizing Hölder inequality to get

‖f(u)‖
Ḃ
s−s(p)
ρ

= ‖|u|p+1‖
Ḃ
s−s(p)
ρ

≤ C‖u‖p
Ḃ
s−s(p)
ρ

‖u‖
Ḃ
s−s(p)
ρ

≤ C‖u‖p
Ḃ
s−s(p)
ρ

‖u‖
Ḃ

[s]
ρ
.

(2.32)

From (2.29) and (2.32), it can be seen (2.13) holds which is

‖f(u)‖Ḃs
ρ′,2
≤ C‖u‖r

Ḃ
s−s(p)
ρ

‖u‖
Ḃ

[s]
ρ
.

Thus the proof of this lemma is completed.

Lemma 2.5. Let n ≥ 2, 4
n ≤ q <∞, [s] ≤ q, 0 ≤ s <∞, r = r(q), then we have

‖E(|u|q u)u‖Ḃs
r′,2
≤ C ‖u‖q

Ḃ
s(q)
r,2

‖u‖2Ḃsr,2 . (2.33)

Proof. From Lemma 2.2, it is easy to see that

‖E(|u|q u)u‖Ḃs
r′,2

≤C
∑[s]

k=0

[
‖u‖Ḣk,pk ‖E(|u|q u)‖Ḃs−kqk,2

+ ‖u‖Ḃs−klk,2
‖E(|u|q u)‖Ḣk,mk

]
≤C

∑s

k=0
[I + II],

(2.34)

where 1
r′ = 1

lk
+ 1

mk
= 1

pk
+ 1

qk
, k = 0, 1, · · · , [s].

In the following, we estimate I and II, firstly,

Ḣk,pk ⊃ Ḃsr,2,

and

‖u‖Ḣk,pk ≤ C ‖u‖Ḃsr,2 . (2.35)
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Setting 1
pk

= 1− 1
r −

k
n , 1

qk
= k

n , then

‖E(|u|q u)‖Ḃs−kqk,2
≤ C ‖E(|u|q u)‖Ḃs

r′,2
. (2.36)

From Lemma 2.3 and Lemma 2.4, one has

‖E(|u|q u)‖Ḃs′
r,2
≤ C ‖|u|q u‖Ḃs′

r,2
≤ C ‖u‖q

Ḃ
s(q)
r,2

‖u‖Ḃs
r,2
. (2.37)

Thus,

I ≤ C ‖u‖q
Ḃ
s(q)
r,2

‖u‖2Ḃs
r,2
. (2.38)

Similarly,

II ≤ C ‖u‖q
Ḃ
s(q)
r,2

‖u‖2Ḃs
r,2
. (2.39)

Then, one gets

‖E(|u|q u)u‖Ḃs
r′,2
≤ C ‖u‖q

Ḃ
s(q)
r,2

‖u‖2Ḃsr,2 , (2.40)

and the proof of this lemma is completed.

2.2. The proof of Theorem 2.1

The Cauchy problem of (2.1) is essentially equivalent to the following integral e-
quation

u(t) = S(t)u0 − i
∫ t

0

S(t− τ)F (u(τ))dτ, (2.41)

where F (u) = f(u) + µE(|u|q u)u.
For all δ > 0, define

D = {u ∈ Lp+2(0,∞;Bsr(p),2) ∩ Lq+3(0,∞;Bsr(q),2)

: ‖u‖Lp+2(0,∞;Bs
r(p),2

)∩Lq+3(0,∞;Bs
r(q),2

) ≤ δ}.
(2.42)

And for any u, v ∈ D, the metric d(u, v) is

d(u, v) = ‖u− v‖Lp+2(0,∞;Lr(p))∩Lq+3(0,∞;Lr(q)) . (2.43)

Considering the mapping

J : u(t)→ S(t)u0 − i
∫ t

0

S(t− τ)F (u(τ))dτ, (2.44)

and we claim that J : (D, d)→ (D, d) is a contraction mapping. To show this claim,
in view of Lemma 2.4 and Lemma 2.5 to get

‖f(u)‖Bs
r(p)′,2

≤ C ‖u‖p+1
Bs
r(p),2

, (2.45)

and

‖E(|u|q u)u‖Bs
r′,2
≤ C ‖u‖q+2

Bs
r(q),2

. (2.46)
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From 1
(p+2)′

= p+1
p+2 and 1

(q+3)′
= q+2

q+3 , one gets

‖f(u)‖L(p+2)′ (0,∞;Bs
r(p)′,2) ≤ C ‖u‖

p+1

L(p+2)(0,∞;Bs
r(p),2

)
, (2.47)

and

‖E(|u|q u)u‖L(q+3)′ (0,∞;Bs
r(q)′,2) ≤ C ‖u‖

q+2

L(q+3)(0,∞;Bs
r(q),2

)
. (2.48)

So, for any u ∈ D,

‖Ju‖L ≤ ‖S(t)u0‖L +

∥∥∥∥i∫ t

0

S(t− τ)F (u(τ))dτ

∥∥∥∥
L

≤ C‖u0‖Hs+C

(
‖f(u)‖L(p+2)′ (0,∞;Bs

r(p)′,2)+‖E(|u|q u)u‖L(q+3)′ (0,∞;Bs
r(q)′,2)

)
≤ C ‖u0‖Hs + C(‖u‖p+1

L(p+2)(0,∞;Bs
r(p),2

)
+ ‖u‖q+2

L(q+3)(0,∞;Bs
r(q),2

)
)

≤ C ‖u0‖Hs + 2C(δp+1 + δq+2)

≤ δ,

where

L := Lp+2(0,∞;Bsr(p),2) ∩ Lq+3(0,∞;Bsr(q),2). (2.49)

Now, one can get J : D → D. Further, for any u, v ∈ D,

d(Ju, Jv)

= ‖Ju− Jv‖Lp+2(0,∞;Lr(p))∩Lq+3(0,∞;Lr(q))

=

∥∥∥∥∫ t

0

S(t− τ)(F (u(τ))− F (v(τ)))dτ

∥∥∥∥
Lp+2(0,∞;Lr(p))∩Lq+3(0,∞;Lr(q))

≤ C ‖f(u)− f(v)‖L(p+2)′ (0,∞;Lr(p)) + C ‖E(|u|q u)u− E(|v|q v)v‖L(q+3)′ (0,∞;Lr(q))

≤ C ‖|u− v| (|u|p + |v|p)‖L(p+2)′ (0,∞;Lr(p))

+ C ‖|u− v| (E(|u|q u) + E(|v|q v))‖L(q+3)′ (0,∞;Lr(q))

≤ C ‖u− v‖Lp+2(0,∞;Lr(p))∩Lq+3(0,∞;Lr(q)) (‖u‖p
L(p+2)(0,∞;Lr(p))

+ ‖v‖p
L(p+2)(0,∞;Lr(p))

+ ‖u‖q+1
L(q+3)(0,∞;Lr(q))

+ ‖v‖q+1
L(q+3)(0,∞;Lr(q))

)

≤ C ‖u− v‖Lp+2(0,∞;Lr(p))∩Lq+3(0,∞;Lr(q)) (δp + δq+1)

≤ 1

2
d(u, v).

Thus, J is a contraction mapping on (D, d), and has a unique fixed point u ∈ D.
From Lemma 1, we deduce that there exists a unique solution u of the Cauchy
problem (2.1) satisfying

u ∈ C(0,∞;Hs) ∩ Lp+2(0,∞;Bsr(p),2) ∩ Lq+3(0,∞;Bsr(q),2).

This finishes the proof of the Theorem.
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3. Explicit periodic wave solutions and some
counter examples

The F-expansion method is the generalization of Jacobi elliptic function expansion
method. In this section we mainly consider the general Davey-Stewartson systems iut + ∆u+ r |u|2 u− µuvx1 = 0,

∆v + b(|u|2)x1
= 0,

(3.1)

where u is a complex-valued function, r, µ, b are real constants.
Let

u = exp(iη)w(x, t), η = Σni=1αixi + λt+ η0, (3.2)

where w(x, z) is real, αi(i = 1, 2, · · · , n), λ are undetermined coefficients, η0 is an
arbitrary n−dimensional constant vector.

From (3.2), one gets

ut = iλ exp(iη)w + exp(iη)wt, (3.3)

and
uxixi = −α2

i exp(iη)w + 2αwxi exp(iη)i+ exp(iη)wxixi . (3.4)

Combining (3.2) and (3.3)-(3.4), it follows that
wt + 2Σni=1αiwxi = 0,

∆w + rw3 − µwvx1 − (λ+ Σni=1α
2
i )w = 0,

∆v + b(w2)x1
= 0.

(3.5)

Supposing the problem (3.5) has wave solution as follows

w = w(ξ) = w(Σni=1kixi + nt+ ξ0), (3.6)

and
v = v(ξ) = v(Σni=1kixi + nt+ ξ0), (3.7)

where ki(i = 1, 2, · · · , n), are undetermined constants, ξ0 is an arbitrary constant.
Combining (3.5) and (3.6)-(3.7), one can gets simultaneous differential equations

of w(ξ), v(ξ),

n+ 2Σni=1αiki = 0, (3.8)

(Σni=1k
2
i )w′′ + rw3 − µk1wv

′ − (λ+ Σni=1α
2
i )w = 0, (3.9)

(Σni=1k
2
i )v′′ + 2bk1ww

′ = 0. (3.10)

In view of the F-expansion, the homogeneous balance of (Σni=1k
2
i )w′′ and rw3−

µk1wv
′ in (3.9), (Σni=1k

2
i )v′′ and 2bk1ww

′ in (3.10) should be considered. So, let

w = a1F + a0, (3.11)

v = b1F + b0, (3.12)
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where a0, a1, b0, b1 are undetermined constants, F (ξ)satisfies

F
′2 = PF 4 +QF 2 +R, (3.13)

where P,Q,R are real constants.

Combining (3.8)-(3.12), one gets the polynomials of F (ξ),

[a1(Σni=1k
2
i )(2PF 3 +QF ) + r(a1F + a0)3 − (λ+ Σni=1α

2
i )(a1F + a0)]2

−[µk1b1(a1F + a0)]2(PF 4 +QF 2 +R) = 0.
(3.14)

[b1(Σni=1k
2
i )(2PF 3 +QF )]2 − [2a1bk1(a1F + a0)]2(PF 4 +QF 2 +R) = 0. (3.15)

Setting the coefficients of the polynomials to zeros, one can get the functions of
the undetermined parameters as follows,

F 6 : 4(Σni=1k
2
i )2P 2 + r2a4

1 + 4r(Σni=1k
2
i )Pa2

1 = µ2k2
1b

2
1P, (3.16)

F 5 : 3a3
1a0r

2 + 6(Σni=1k
2
i )a1a0P = µ2k2

1b
2
1Pa0, (3.17)

F 4 : 4a2
1(Σni=1k

2
i )2PQ+ 9r2a2

1a
2
0 + 6r2a4

1a
2
0 + 2a4

1r(Σ
n
i=1k

2
i )Q

+12a2
1a

2
0r(Σ

n
i=1k

2
i )P − 4a2

1(λ+ Σni=1α
2
i )(Σ

n
i=1k

2
i )P

−2ra4
1(λ+ Σni=1α

2
i ) = µ2k2

1b
2
1(a2

1Q+ a2
0P ),

(3.18)

F 3 : a2
1a

3
0r

2 + 9a1a
3
0r

2 + 3a1a0r(Σ
n
i=1k

2
i )− 2Pa0(Σni=1k

2
i )(λ+ Σni=1α

2
i )

+2Pa1a
3
0r(Σ

n
i=1k

2
i )− r(λ+ Σni=1α

2
i )(3a1a0 + a2

1a0) = µ2k2
1b

2
1Qa0,

(3.19)

F 2 : a2
1(Σni=1k

2
i )2Q2 + 9r2a2

1a
4
0 + 6r2a1a

4
0 + a2

1(λ+ Σni=1α
2
i )

2

−2a2
1Q(λ+ Σni=1α

2
i )(Σ

n
i=1k

2
i )− 6r(λ+ Σni=1α

2
i )(a

2
1a

2
0 + a1a

2
0)

+6a2
1a

2
0Qr(Σ

n
i=1k

2
i ) = µ2k2

1b
2
1(a2

1R+ a2
0Q),

(3.20)

F 1 : 3r2a1a
4
0 + (λ+ Σni=1α

2
i )

2a3
0 −Q(λ+ Σni=1α

2
i )(Σ

n
i=1k

2
i )a0

+rQ(Σni=1k
2
i )a0 − 4r(λ+ Σni=1α

2
i )a

3
0 = µ2k2

1b
2
1Ra0,

(3.21)

F 0 : r2a6
0 + (λ+ Σni=1α

2
i )

2a2
0 − 2r(λ+ Σni=1α

2
i )a

4
0 = µ2k2

1b
2
1Ra

2
0, (3.22)

F 6 : P 2(Σni=1k
2
i )2b21 = b2k2

1Pa
4
1, (3.23)

F 5 : b2k2
1Pa

3
1a0 = 0, (3.24)

F 4 : PQ(Σni=1k
2
i )2b21 = b2k2

1a
2
1(a2

1Q+ a2
0P ), (3.25)

F 3 : b2k2
1Qa

3
1a0 = 0, (3.26)

F 2 : Q2(Σni=1k
2
i )2b21 = 4b2k2

1a
2
1(a2

1R+ a2
0Q), (3.27)

F 1 : b2k2
1Ra

3
1a0 = 0, (3.28)

F 0 : b2k2
1Ra

2
0 = 0. (3.29)
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Solving the algebraic equations (3.16)-(3.29) to get

a0 = 0, a1 = ±(Σni=1k
2
i )
√

−2P
r(Σni=1k

2
i )+µbk21

,

b0 = const, b1 = ± 2bk1(Σni=1k
2
i )

r(Σni=1k
2
i )+µbk2i

√
P ,

λ = (Σni=1k
2
i )Q− (Σni=1α

2
i ),

Q2 = 4PR,

(3.30)

where ki, αi(i = 1, 2, · · · , n) are constants, and r(Σni=1k
2
i ) + µbk2

1 < 0.
Since Q2 = 4PR, in view of (3.13), one has

F =
R

P
(tan[

4
√
PR(ξ + c)])4, (3.31)

where c is a constant.
Combining (3.30)-(3.31) and (3.11)-(3.12), and in view of (3.3), one can get

solutions of (3.1), which are as follows

u = ±(Σni=1k
2
i )

√
−2P

r(Σni=1k
2
i ) + µbk2

1

exp(iη)
R

P
(tan[

4
√
PR(ξ + c)])4, (3.32)

v = b0 ±
2bk1(Σni=1k

2
i )

r(Σni=1k
2
i ) + µbk2

1

R√
P

(tan[
4
√
PR(ξ + c)])4, (3.33)

where

η = Σni=1αixi + [(Σni=1k
2
i )Q− (Σni=1α

2
i )]t+ η0,

ξ = Σni=1kixi − 2(Σni=1αiki)t+ ξ0, (3.34)

ki, αi are constants, rΣni=1k
2
i + µbk2

1 < 0, η0 is an arbitrary constant.

Remark 3.1. (3.32) and (3.33) show that if Rn is replaced by bounded domain,
then there are some counter examples for nonhomogeneous initial values problems
to elliptic-elliptic Davey-Stewartson systems.

4. Multi-order exact solutions

4.1. Lam equation and Lam function

In this chapter, we aim to construct Multi-order exact soltions for DSI (Davey-
Stewartson systems of elliptic-hyperbolic types). Firstly, we recall the Lam equation
and Lam function. Usually, the Lam equation of y(x) can be written as

d2y

dx2
+ [λ− n(n+ 1)m2sn2x]y = 0, (4.1)

where λ is eigenvalue, n is positive integer, snx is Jacobi elliptic sine function, m
is the modulus and 0 < m < 1, x ∈ R1 in this subsection.

Making a change of independent variable

z = sn2x, (4.2)
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then, (4.1) is rewritten as

d2y

dz2
+

1

2
[
1

z
+

1

z − 1
+

1

z − h
]
dy

dz
− µn(n+ 1)z

4z(z − 1)(z − h)
y = 0, (4.3)

where h = m−2 > 1, µ = −hλ. The equation (4.3) is a Fuch-type equation which
has four singular points, i.e. z = 0, 1, h,∞. The solution of (4.3) is called Lam
function.

Especially,
(i) When n = 2, λ = 1 +m2, µ = −(1 +m2) , the Lam equation is

d2y

dx2
+ [(1 +m2)− 6m2sn2x]y = 0. (4.4)

The corresponding Lam function is defined by Ls2(x) ≡ (1 − z)1/2(1 − h−1z)1/2 =
cnxdnx, where cnx, dnx are Jacobi elliptic cosine functions and the third-class Ja-
cobi elliptic functions respectively.

(ii) When n = 2, λ = (1 + 4m2), the Lam equation is

d2y

dx2
+ [(1 + 4m2)− 6m2sn2x]y = 0. (4.5)

The corresponding Lam function is defined by

Lc2(x) ≡ snxdnx. (4.6)

(iii) When n = 2, λ = 4 +m2, the Lam equation is

d2y

dx2
+ [(4 +m2)− 6m2sn2x]y = 0. (4.7)

The corresponding Lam function is defined by

Ld2(x) ≡ snxcnx. (4.8)

(iv) When n = 3, λ = 4(1 +m2), [µ = −4(1 +m−2)], the Lam equation is

d2y

dx2
+ [4(1 +m2)− 12m2sn2x]y = 0. (4.9)

The corresponding lam function is defined by

L3(x) ≡ z1/2(1− z)1/2(1− h−1z)1/2 = snxcnxdnx. (4.10)

4.2. Multi-order exact solutions of DSI

In this section, we shall consider the following elliptic-hyperbolic types systems
(DSI) iut + ∆u+ r |u|2 u− 2uv = 0

Σlj=1vxjxj − Σnj=l+1vxjxj − Σkj=1rj(|u|
2
)xjxj = 0, 1 ≤ l, k < n.

(4.11)
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Setting

u = exp(iη)w(x, t), x ∈ Rn, η = Σni=1αixi + λt+ η0, (4.12)

w = w(ξ) = w(Σni=1kixi + nt+ ξ0), (4.13)

v = v(ξ) = v(Σni=1kixi + nt+ ξ0). (4.14)

Thus, (4.11) can be rewrite as

n+ 2Σnj=1αjkj = 0, (4.15)

(Σnj=1kj
2)w′′ + rw3 − 2wv − (λ+ Σnj=1αj

2)w = 0. (4.16)

(Σlj=1kj
2 − Σnj=l+1kj

2)v′′ − 2Σkj=1rjkj
2(w′2 + ww”) = 0, (4.17)

Let

w = w0 + εw1 + ε2w2 + · · · , (4.18)

v = v0 + εv1 + ε2v2 + · · · , (4.19)

where 0 < ε << 1, w0, w1, w2 · · · v0, v1, v2 · · · are the exact solutions of the zeroth-
order equation, the first-order equation and the second-order equation and so on,
respectively.

Combining (4.16)-(4.19), one gets equation of each order. The equation of ε0-
order is  (Σnj=1kj

2)w′′0 + rw3
0 − 2w0v0 − (λ+ Σnj=1αj

2)w0 = 0,

(Σlj=1kj
2 − Σnj=l+1kj

2)v′′0 − 2Σkj=1rjkj
2(w′20 + w0w

′′
0 ) = 0.

(4.20)

The equation of ε1-order is (Σnj=1kj
2)w′′1 + 3rw2

0w1 − 2(w0v1 + w1v0)− (λ+ Σnj=1αj
2)w0 = 0,

(Σlj=1kj
2 − Σnj=l+1kj

2)v′′1 − 2Σkj=1rjkj
2(2w′0w

′
1 + w0w

′′
1 + w′′0w1) = 0.

(4.21)

The equation of ε2-order is (Σnj=1kj
2)w′′2 + 3r(w2

0w2 + w0w
2
1)− 2(w0v2 + w1v1 + w2v0) = (λ+ Σnj=1αj

2)w2,

(Σlj=1kj
2−Σnj=l+1kj

2)v′′2−2Σkj=1rjkj
2(2w′0w

′
2+w′′21 +w′′0w2+w0w

′′
2 +w′1w

′
1)=0.

(4.22)
For (4.20), one can apply the Jacobi elliptic function expansion method. Firstly,

setting
w0 = a0 + a1snξ, v0 = b0 + b1snξ + b2sn

2ξ. (4.23)

Combining (4.20) and (4.23), it can easily be obtained
a0 = 0, a1 = ±

√
2m2(Σlj=1kj

2−Σnj=l+1kj
2)

r ,

b0 = const, b1 = 0, b2 = 2Σlj=1kj
2m2,

λ = −(Σnj=1kj
2)(1 +m2)− Σnj=1αj

2 − 2c.

(4.24)
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Thus, the zeroth-order solution of (4.18) can be get

w0 = ±m

√
2(Σlj=1kj

2 − Σnj=l+1kj
2)

r
snξ,

v0 = c+ 2Σlj=1kj
2m2sn2ξ, (4.25)

ξ = Σnj=1kjxj − (2Σnj=1αjkj)t+ ξ0,

where kj , αj are constants, ξ0 is arbitrary constant, and
(Σlj=1kj

2−Σnj=l+1kj
2)

r > 0.

Notice that one can deduce that v0 =
Σlj=1kj

2rw2
0

Σlj=1kj
2−Σnj=l+1kj

2 + c from (4.25) and

v1 =
2Σlj=1kj

2r

Σlj=1kj
2−Σnj=l+1kj

2w0w1 from the second equation of (4.21).

Then one gets the transformation of (4.21)

(Σnj=1kj
2)w′′1 + 6(r −

2Σlj=1kj
2r

Σlj=1kj
2 − Σnj=l+1kj

2 )
m2(Σlj=1kj

2 − Σnj=l+1kj
2)

r
sn2ξw1

+ (Σnj=1kj
2)(1 +m2)w1 = 0.

Simplifying this equation to have

w′′1 + [(1 +m2)− 6m2sn2ξ]w1 = 0. (4.26)

From (4.26), the first-order term of (4.18) is

w1(ξ) = ALs2 = Acnξdnξ,

v1(ξ) = ±2AΣlj=1kj
2m

√
2r

(Σlj=1kj
2 − Σnj=l+1kj

2)
snξcnξdnξ. (4.27)

For the second-order equation of (4.22), combining (4.27), (4.25) and v2 =
Σlj=1kj

2r

Σlj=1kj
2−Σnj=l+1kj

2 (2w0w2 + w2
1) from the second equation of (4.22), one has

w′′2 + [(1 +m2)− 6m2sn2ξ]w2 = ±3

√
2r

Σlj=1kj
2 − Σnj=l+1kj

2mA
2snξcn2ξdn2ξ,

i.e.

w′′2 + [(1 +m2)− 6m2sn2ξ]w2

=± 3

√
2r

Σlj=1kj
2 − Σnj=l+1kj

2mA
2[snξ − (1 +m2)sn3ξ +m2sn5ξ],

(4.28)

by using cn2ξ = 1− sn2ξ, dn2ξ = 1−m2sn2ξ.
Noticing that (4.28) is an inhomogeneous Lam equation and the key step is to

find a particular solution of the inhomogeneous term of (4.28).
Letting

w2 = c1snξ + c3sn
3ξ. (4.29)

Considering the (4.28), one gets

c1 = ∓1 +m2

4m

√
2r

Σlj=1kj
2 − Σnj=l+1kj

2A
2, (4.30)
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c3 = ±1

2

√
2r

Σlj=1kj
2 − Σnj=l+1kj

2mA
2. (4.31)

Then the second-order solution of (4.18) is

w2(ξ) =∓ 1 +m2

4m

√
2r

Σlj=1kj
2 − Σnj=l+1kj

2A
2snξ

± 1

2

√
2r

Σlj=1kj
2 − Σnj=l+1kj

2mA
2sn3ξ,

(4.32)

v2(ξ) = A2
Σlj=1kj

2r

Σlj=1kj
2 − Σnj=l+1kj

2 [cn2ξdn2ξ ∓ (1 +m2)sn2ξ ± 2m2sn4ξ)]. (4.33)

Thus one has the multi-order solution of DSI

u0(ξ) = ±m

√
2(Σlj=1kj

2 − Σnj=l+1kj
2)

r
snξ exp(iη),

v0(ξ) = c+ 2Σlj=1kj
2m2sn2ξ, (4.34)

u1(ξ) = ALs2 = Acnξdnξ exp(iη)

v1 = ±2AΣlj=1kj
2m
√

2r
(Σlj=1kj

2−Σnj=l+1kj
2)
snξcnξdnξ,

(4.35)

u2(ξ) = ∓ 1+m2

4m

√
2r

Σlj=1kj
2−Σnj=l+1kj

2A
2snξ(1− 2m2

1+m2 sn
2ξ) exp(iη)

v2(ξ) = A2 Σlj=1kj
2r

Σlj=1kj
2−Σnj=l+1kj

2 [cn2ξdn2ξ ∓ (1 +m2)sn2ξ ± 2m2sn4ξ)],
(4.36)

where ξ = Σnj=1kjxj − (2Σnj=1αjkj)t + ξ0, η = Σnj=1αjkj − [(Σnj=1kj
2)(1 + m2) +

Σnj=1αj
2 + 2c]t + η0, kj , αj are constants, ξ0, η0 are arbitrary constants, and

(Σlj=1kj
2−Σnj=l+1kj

2)

r > 0.

4.3. Degenerate solution

When the m→ 1, snξ → tanh ξ, the zeroth-order solution of DSI degenerates into

u0 = ±

√
2(Σlj=1kj

2 − Σnj=l+1kj
2)

r
tanh ξ exp(iη),

v0 = c+ 2Σlj=1kj
2 tanh2 ξ, (4.37)

where

ξ = Σnj=1kjxj − (2Σnj=1αjkj)t+ ξ0,

η = Σnj=1αjkj − [2(Σnj=1kj
2) + Σnj=1αj

2 + 2c]t+ η0, (4.38)

and kj , αj are constants, ξ0, η0 are arbitrary constants, and
(Σlj=1kj

2−Σnj=l+1kj
2)

r > 0.
This is solitary wave solution that we frequently see, and we call it shock wave

solution.
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Similarly by cnξ → sech, dnξ → sechξ, when m→ 1, the first-order solution of
DSI is to degenerate into

u1(ξ) = A sech2ξ exp(iη), (4.39)

v1(ξ) = ±AΣlj=1kj
2

√
2r

(Σlj=1kj
2 − Σnj=l+1kj

2)
tanh ξ sech2ξ. (4.40)

This is a bell shaped solitary wave solution, pulse shock wave solution.
The second-order solution of DSI is to degenerate into

u2(ξ) = ∓1

2

√
2r

Σlj=1kj
2 − Σnj=l+1kj

2A
2 tanh ξ(1− tanh2 ξ) exp(iη), (4.41)

v2(ξ) = A2
Σlj=1kj

2r

Σlj=1kj
2 − Σnj=l+1kj

2 [sech4ξ ∓ 2(tanh2 ξ − tanh4 ξ)]. (4.42)

It is a new solitary wave solution.

4.4. The more exact solution of DSI

One can get more solutions of Davey-Stewartson equations:
(i) If w0 = a0 + a1cnξ, v0 = b0 + b1cnξ + b2cn

2ξ in (4.23), one can get the
zeroth-order solution of DSI which is

u0 = ±m

√
−2(Σlj=1kj

2 − Σnj=l+1kj
2)

r
cnξ exp(iη),

−2(Σlj=1kj
2 − Σnj=l+1kj

2)

r
> 0,

v0 = c− 2Σlj=1kj
2m2cn2ξ,

η = Σnj=1αjkj + [(Σnj=1kj
2)(2m2 − 1)− Σnj=1αj

2 − 2c]t+ η0. (4.43)

The first-order solution is

u1(ξ) = ALc2 exp(iη) = Asnξdnξ exp(iη),

v1(ξ) = ±2AΣlj=1kj
2m

√
−2r

(Σlj=1kj
2 − Σnj=l+1kj

2)
snξcnξdnξ. (4.44)

The second-order solution is

u2(ξ) = ∓
√

−2r

Σlj=1kj
2 − Σnj=l+1kj

2

A2(2m2 − 1)

4m
cnξ(1− 2m2

2m2 − 1
cn2ξ) exp(iη),

v2(ξ) = A2
Σlj=1kj

2r

Σlj=1kj
2 − Σnj=l+1kj

2 [sn2ξdn2ξ ∓ (2m2 − 1)cn2ξ ± 2m2cn4ξ)]. (4.45)

(ii) If w0 = a0 + a1dnξ ,v0 = b0 + b1dnξ + b2dn
2ξ in (4.23), one can get the

zeroth-order solution of DSI which is

u0 = ±

√
−2(Σlj=1kj

2 − Σnj=l+1kj
2)

r
dnξ exp(iη),

−2(Σlj=1kj
2 − Σnj=l+1kj

2)

r
> 0,
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v0 = c− 2ldn2ξ,

η = Σnj=1αjkj + [(Σnj=1kj
2)(2−m2)− Σnj=1αj

2 − 2c]t+ η0. (4.46)

The first-order solution is

u1(ξ) = ALd2 exp(iη) = Asnξcnξ exp(iη),

v1(ξ) = ±2AΣlj=1kj
2

√
−2r

(Σlj=1kj
2 − Σnj=l+1kj

2)
snξcnξdnξ. (4.47)

The second-order solution is

u2(ξ) = ∓
√

−2r

Σlj=1kj
2 − Σnj=l+1kj

2

A2(2−m2)

4m4
dnξ(1− 2

2−m2
dn2ξ) exp(iη),

v2(ξ) = A2
Σlj=1kj

2r

Σlj=1kj
2 − Σnj=l+1kj

2 [sn2ξcn2ξ ∓ 2−m2

m4
dn2ξ(1− 2

2−m2
dn2ξ)].

(4.48)

These are periodic wave solutions of DSI expressed by Jacobi elliptic functions.
When m→ 1, one can get the degenerate solutions,

u0(ξ) = ±

√
−2(Σlj=1kj

2 − Σnj=l+1kj
2)

r
sechξ exp(iη),

v0(ξ) = c− 2Σlj=1kj
2 sech2ξ, (4.49)

η = Σnj=1αjkj + [(Σnj=1kj
2)− Σnj=1αj

2 − 2c]t+ η0,

u1(ξ) = A tanh ξ sechξ exp(iη),

v1(ξ) = ±2AΣlj=1kj
2

√
−2r

(Σlj=1kj
2 − Σnj=l+1kj

2)
tanh ξ sech2ξ, (4.50)

u2(ξ) = ∓
√

−2r

Σlj=1kj
2 − Σnj=l+1kj

2

A2

4
sechξ(1− 2 sech2ξ) exp(iη),

v2(ξ) = A2
Σlj=1kj

2r

Σlj=1kj
2 − Σnj=l+1kj

2 [tanh2 ξ sech2ξ ∓ sech2ξ ± 2 sech4ξ)]. (4.51)

Remark 4.1. It is open on the existence of global smooth solutions for Cauchy
problems to elliptic-hyperbolic types Davey-Stewartson systems. (4.27) indicates
that there are some examples of global smooth solutions.

5. Conclusion

In this paper, we prove that the Cauchy problem of generalized Davey-Stewartson
systems has a unique solution in C(0,∞;Hs)∩Lp+2(0,∞;Bsr(p),2)∩L

q+3(0,∞;Bsr(q),2).
What’s more interesting, we construct some explicit period wave solution of the
generalized Davey-Stewartson by F-expansion method, as well as some multi-order
exact solutions.

From the discussion above, it can be seen that
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(i) One can get many zeroth-order solutions of nonlinear evolution equations by
using F-expansion or Jacobi elliptic function expansion, which only related to the
correlation chart of P,Q,R and the solution of PF 4 +QF 2 +R.

(ii) The form of the first-order equation is the same as that of the Lam equation.
So one can get the first-order solution by solving the Lam equation. The form of the
second-order equation is the same as the inhomogeneous Lam equation, and one can
obtain the second-order solution by the particular solution of the inhomogeneous
term.

(iii) One can obtain the degenerate solution by discussing the limit cases of
the multi-order exact solutions. The method is valid to get the multi-order exact
solutions of some other nonlinear evolution equations. At the same time, one can
get many kinds of solitary wave solutions.

(iv) By the contraction mapping theorem, one can deduce that there exists a
unique solution of the Cauchy problem of generalized Davey-Stewartson systems.
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