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Abstract We consider a shallow water wave model with a non-stationary
bottom surface. By applying dynamical system approach to the model prob-
lem, we are able to obtain all possible bounded solutions (compactons, solitary
wave solutions and periodic wave solutions) under different parameter condi-
tions. More than 19 exact parametric representations are provided explicitly.
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1. Introduction

It is well known that the equations for shallow water waves were developed using
approximations, and there have been a number of different formulations that were
developed in the literature. The interesting history of various formulations was
discussed in [2]. Recently, in [4], the author pointed out that the Serre’s nonlinear
shallow water wave equations developed in ( [9, 10]) for uniform depth and later
generalized by Seabra-Santos et al. [11] for non-uniform depth are limited to a
stationary bottom surface and a uniform pressure applied to the top surface, while
the Green-Naghdi nonlinear shallow water wave equations developed by Green and
Naghdi [3] are valid for a non-stationary, non-uniform bottom surface and a non-
uniform pressure on the top surface. To be specific, in 2019, Kogelbauer and Rubin
[4] developed a class of exact nonlinear traveling wave solutions of the Green-Naghdi
equations for a non-stationary and non-uniform bottom surface. The traveling wave
equation is given by (see [4], (3.9)):[
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where φ is the current depth of the fluid depending on ξ = x − ct, the constants
a, H̃ parameterize the class, with a specified and H̃ determined by a critical value

of the depth φ, the Froude number F defined by F 2 =
k21
g̃H̃3

.

For convenience, we write β̃ = (1+a)

F 2H̃3
. Expanding equation (1.1) and dividing the

result by 2φ, one has (see [4], (3.11)):[
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Integrating equation (2) once with respect to ξ, we obtain an equivalent planar
dynamical system

dφ

dξ
= y,

dy
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=

(1− 3a2)y2 − βφ4 + 6gφ2 − 3

2
(
1 + 3

2a
)
φ

, (1.3)

where g is an integral constant and β = 6β̃. Clearly, system (1.3) is a singular
traveling wave system of the first class of the same type as [6–8, 12], with the
singular straight line φ = 0.

system (1.3) has a first integral:

Ha(φ, y) =φ
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2+3a
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when a 6= −1, ± 1√
3
,
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y2

φ4
+

3

2φ4
− 6g

φ2
= h (1.5)

when a = −1, i.e., β = 0, and
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3
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Especially, at the time that a = 0,− 1
2 and a = ã± = 1

2 (1 ±
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5), for the first
integral becomes
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Hã−(φ, y) = φ2

[
y2 +

(7 + 3
√

5)

6
(βφ4 − 9gφ2 + 9)

]
= h, (1.11)

respectively.
We would like to point out that in [4], Kogelbauer and Rubin did not investigate

the dynamical behavior of system (1.3), while is the main focus in this work. More
precisely, by considering the dynamics of the travelling wave solutions determined
by system (1.3), we shall generally give all possible exact travelling wave solutions
explicitly for equation (1.1) under different parameter conditions (see, e.g., [5–8,12]).
More than 19 exact parametric representations are obtained by using the elliptic
functions and hyperbolic functions.

The rest of this paper is organized as follows. In section 2, we discuss bifurca-
tions of phase portraits of system (1.3). In section 3 and section 4, corresponding
to all bounded orbits given in section 2, we give all possible exact parametric rep-
resentations of the travelling wave solutions for equation (1.1) explicitly.

2. Bifurcations of the phase portraits of system (1.3)

As we know, the associated regular system of system (1.3) has the form

dφ

dζ
= (2 + 3a)yφ,

dy

dζ
= (1− 3a2)y2 − βφ4 + 6gφ2 − 3, (2.1)

where dξ = (2 + 3a)φdζ for φ 6= 0.
For convenience in the following discussion, we introduce f(φ) = βφ4−6gφ2 +3,

and always assume that ∆ = 9g2 − 3β > 0. Then:
(1) When β > 0, i.e., a > −1 and g > 0, f(φ) has four real zeros φj , j = 1, · · · , 4

satisfying φ1 < φ2 < 0 < φ3 < φ4 and φ1 = −φ4, φ2 = −φ3, where

φ3 =

(
3g −

√
∆

β

) 1
2

, φ4 =

(
3g +

√
∆

β

) 1
2

. (2.2)

(2) When β < 0, i.e., a < −1, for any given g, the function f(φ) has two real

zeros −φ1 and φ1, where φ1 =
(

3g−
√

∆
β

) 1
2

.

(3) When β > 0, g < 0, the function f(φ) has no real zero.
Clearly, if φj is a real zero of f(φ), then, the point Ej(φj , 0) in the φ−axis

of the (φ, y)−phase plane is an equilibrium point of system (1.3). In addition, if
|a| < 1√

3
, on the singular straight line φ = 0, there exist two equilibrium points

S±(0, ± ys) of system (2.1), where y2
s = 3

1−3a2 .
Let M(φj , 0) be the coefficient matrix of the linearized system of system (2.1)

at an equilibrium point (φj , 0) and J(φj , 0) be its Jacobin determinant. Then, we
have Trace(M(φj , 0)) = 0 and

J(φj , 0) = (2 + 3a)φjf
′(φj), J(0, ys) = 6(2 + 3a),

Trace(M(0, ys))
2 − 4J(0, ys) =

27a2(2a+ 1)2

1− 3a2
.

By the theory of planar dynamical systems, we know that for an equilibrium point
of a planar integrable system:
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(i) if J < 0, then the equilibrium point is a saddle point;

(ii) if J > 0 and Trace(M(φj, 0))2 − 4J(φj, 0) < 0, then it is a center point;

(iii) if J > 0 and Trace(M(φj, 0))2 − 4J(φj, 0) > 0, then it is a node;

(iv) if J = 0 and the Poincare index of the equilibrium point is 0, then it is a cusp.

Thus, if there exist two equilibrium points S∓(0, ∓ ys), then, they are both nodes
because of (1− 3a2) > 0.

We write that hj = H(φj , 0) for j = 1, · · · , 4. Taking the above fact into
account, we know that for all g > 0 satisfying ∆ > 0, the parameter a can be
taken as a bifurcation parameter such that a = −1, − 2

3 , ∓
1√
3

are bifurcation

values. As a increases, we have the bifurcations of phase portraits of system (1.3)
shown in Fig.1 (a)-(h). Notice that when a = − 2

3 , equation (1.2) becomes that
y2 + 3βφ4 − 18gφ2 + 9 = 0, where β = 1

3F 2H2 > 0. For g > 0, it gives rise to the
two families of closed orbits (see Fig.1 (c)).

(a) a ≤ −1 (b) −1 < a < − 2
3 (c) a = − 2

3 (d) − 2
3 < a < − 1√

3

(e) a = − 1√
3

(f) − 1√
3
< a < 1√

3
(g) a = 1√

3
(h) a > 1√

3

Figure 1. The bifurcations of phase portraits of system (1.3) when a varies.

3. Exact parametric representations of traveling wave
solutions of equation (1.1) for a = −1,−2

3 and

a = 1
2(1−

√
5)

In this section, we consider the exact parametric representations of traveling wave
solutions of equation (1.1) given by the bounded orbits in Fig.1.

3.1. The case a = −1 (see Fig.1 (a))

In this case, system (1.3) has two equilibrium points E1(−φ1, 0) and E2(φ1, 0),
where φ1 = 1

2
√
g . The level curves defined by H−1(φ, y) = h, h ∈ (h1, 0)
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in equation (1.5) give the two families of periodic orbits of system (1.3), where
h1 = −6g2. We see from equation (1.5) and the first equation of system (1.3)

that
√
|h|ξ =

∫ φ
b

dφ√
(a2−φ2)(φ2−b2)

, where a2 = 1
|h|

(
3g +

√
9g2 + 3

2 |h|
)

and b2 =

1
|h|

(
3g −

√
9g2 + 3

2 |h|
)
. Thus, we obtain the following exact parametric represen-

tations of the two families of periodic wave solutions of equation (1.1):

φ(ξ) = ± b

dn
(
a
√
|h|ξ, k

) , (3.1)

where k2 = a2−b2
a2 .

3.2. The case a = −2
3
(see Fig.1 (c))

In this case, it deduces from equation (1.2) that

β̃φ2 +
1

2φ2
+

1

18

(
φξ
φ

)2

= g. (3.2)

Thus, from β = 6β̃ and first equation of system (1.3), equation (3.2) gives rise to
the curve equation

y2 + 3βφ4 − 18gφ2 + 9 = 0. (3.3)

Clearly, for β > 0, g > 0, equation (3.2) defines two closed curves enclosing the

points E±

(
±
√

3g±∆
β , 0

)
, respectively. Equation (3.2) can be rewritten as y2 =

3β(φ2
4 − φ2)(φ2 − φ2

3), where φ3, φ4 given by (2.2). Hence, we have the exact
parametric representations of the two families of periodic wave solutions of equation
(1.1) as follows:

φ(ξ) = ± φ3

dn
(
φ4

√
3βξ, k

) , (3.4)

where k2 =
φ2
4−φ

2
3

φ2
4
.

3.3. The case a = 1
2
(1−

√
5) = −0.618 · · · (see Fig.1 (d))

In this case, for Hã−(φ, y) = h given by equation (1.11), we have h3 = 1
2β (7 +

3
√

5)(g
√

∆ − 3g2 + 2β)φ2
3 and h4 = − 1

2β (7 + 3
√

5)(g
√

∆ + 3g2 − 2β)φ2
4. When h

varies, the changes of the level curves defined by Hã−(φ, y) = h are shown in Fig.2
(a)-(d).

We see from equation (1.11) that

y2 =
h

φ2
− (7 + 3

√
5)

6
[9− 9gφ2 + βφ4]

=
(7 + 3

√
5)β

6φ2

[
6h

(7 + 3
√

5)β
−
(

9

β
− 9g

β
φ2 + φ4

)
φ2

]
.

By using the first equation of system (1.3), we have

ω0ξ =

∫ φ

φ0

φdφ√
h
ω2

0
− ( 9

β −
9g
β φ

2 + φ4)φ2
, (3.5)
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(a) h ∈ (h4, 0] (b) h ∈ (0, h3) (c) h = h3 (d) h ∈ (h3,∞)

Figure 2. The changes of the level curves defined by Hã− (φ, y) = h when ã− = 1
2 (1−

√
5).

where ω0 =

√
(7+3

√
5)β

6 . We can use equation (3.5) to calculate all parametric

representations of the bounded orbits of system (1.3) in Fig.2.
(i) Corresponding to the two periodic orbit families defined by Hã−(φ, y) =

h, h ∈ (h4, 0], letting ψ = φ2, equation (3.5) becomes 2ω0ξ=
∫ ψ
r2

dψ√
(r1−ψ)(ψ−r2)(ψ−r3)

,

where r3 < 0 < r2 < φ2
4 < r1. Hence, we obtain the exact parametric representations

of the two families of periodic wave solutions of equation (1.1) (see Fig.3 (a)):

φ(ξ) = ±
(
r2 − k2r3sn2(Ω1ξ, k)

dn2(Ω1ξ, k)

) 1
2

, (3.6)

where Ω1 = ω0
√
r1 − r3 and k2 = (r1−r2)

(r1−r3) .

We notice that the existence of uncountably infinitely many bounded breaking
wave solutions is an important property of a singular travelling wave system. For
example, we consider the two families of open curves defined by Hã−(φ, y) = h with
h ∈ (0, h3), (h3, ∞) (see Fig.2 (b), (d)), which lie on the two sides of the singular
straight line φ = 0, respectively. Obviously, along each open curve as |ξ| increases,
φ(ξ) approaches to φ = 0 and φ(ξ) → 0, |y(ξ)| → ∞. By the theory of singular
traveling wave systems developed in [6], we know that these open curves give rise
to uncountably infinitely many bounded two-sided breaking wave solutions of φ(ξ).
In other words, these traveling wave solutions have compact supports, that is, they
vanish identically outside finite core regions. Such compact support solutions are
called compactons.

(ii) Corresponding to the two periodic orbit families and the two open curve
families which approach the straight line φ = 0 when |y| → ∞ (see Fig.2 (b)),
defined by Hã−(φ, y) = h, h ∈ (0, h3), equation (3.5) can be rewritten as 2ω0ξ =∫ ψ
r2

dψ√
(r1−ψ)(ψ−r2)(ψ−r3)

and 2ω0ξ =
∫ r3
ψ

dψ√
(r1−ψ)(r2−ψ)(r3−ψ)

, where 0 < r3 < φ2
3 <

r2 < φ2
4 < r1.

For the two periodic wave solution families of system (1.3), we have the same
exact parametric representations of the two families of periodic wave solutions of
equation (1.1) as (3.6).

For the two open curve families, we obtain the two families of compacton solution
of equation (1.1) as follows (see Fig.3 (c)):

φ(ξ) = ±
(
r3 − r2sn2(Ω1ξ, k)

cn2(Ω1ξ, k)

) 1
2

, (3.7)
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where k2 = r1−r2
r1−r3 and ξ ∈

(
− 1

Ω1
sn−1

(√
r3
r2
, k
)
, 1

Ω1
sn−1

(√
r3
r2
, k
))

.

(iii) Corresponding to the level curves defined by Hã−(φ, y) = h3, there are two
homoclinic orbits of system (1.3) to the equilibrium points E3(φ3, 0) and E2(φ2, 0),
enclosing the equilibrium points E4(φ4, 0) and E1(φ1, 0), respectively. Now, equa-

tion (3.5) becomes 2ω0ξ =
∫ ψM

ψ
dψ

(ψ−ψ3)
√

(ψM−ψ)
, where ψ3 = φ2

3, ψM = φ2
M . Thus,

we obtain the following parametric representations of the two solitary wave solutions
of equation (1.1) (see Fig.3 (c)):

φ(ξ) = ±
(
φ2

3 + (φ2
M − φ2

3)sech2(ω1ξ)
) 1

2 , (3.8)

where ω1 =
√

2(φ2
M − φ2

3).
(iv) Corresponding to the level curves defined by Hã−(φ, y) = h, h ∈ (h3, ∞),

there exist the two families of open orbits of system (1.3) which tend to the straight
line φ = 0, when |y| → ∞ (see Fig.2 (d)). Now, equation (3.5) can be rewrit-
ten as 2ω0ξ =

∫ r1
ψ

dψ√
(r1−ψ)[(ψ−b1)2+a21]

. It gives rise to the following parametric

representations of the two compacton solution families of equation (1.1) (see Fig.3
(d)):

φ(ξ) = ±
(
r1 −A1 + (r1 +A1)cn(Ω2ξ, k)

1 + cn(Ω2ξ, k)

) 1
2

, ξ ∈ (−ξ0, ξ0), (3.9)

provided A2
1 =(b1−r1)2+a2

1, k
2 = A1−b1+r1

2A1
, Ω2 =2ω0

√
A1 and ξ0 =cn−1

(
A1−r1
A1+r1

, k
)
.

(a) Periodic wave (b) Solitary wave (c) Two compactons (d) Two compactons

Figure 3. The profiles of solitary wave, periodic wave and compactons of equation (1.1).

Similarly, for a = 1
2 (1 +

√
5), we have Hã+(φ, y) = h given by equation (1.10).

Instead of ω0 by

√
(7−3

√
5)β

6 , we arrive at the same results for the case a = 1
2 (1−

√
5).

To sum up, we have the following conclusions.

Theorem 3.1. (i) When a = −1 and g > 0, equation (1.1) has the two exact
periodic wave solution families given by (3.1).

(ii) When a = − 2
3 and g > 0, equation (1.1) has the two exact periodic wave

solutions families given by (3.4).
(iii) When a = 1

2 (1 −
√

5), 1
2 (1 +

√
5) and ∆ > 0, equation (1.1) has the two

exact periodic wave solution families given by (3.6), the two exact solitary wave
solutions given by (3.8), and equation (1.1) has the four exact compacton solution
families given by (3.7) and (3.9).
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4. Exact parametric representations of traveling wave
solutions of equation (1.1) for a = 0 and a = −1

2

In this section, we consider the exact parametric representations of traveling wave
solutions of equation (1.1) given by the bounded orbits in Fig.1 (f). In this case, we
have h3 = − 1

φ3

(
3− 1

3βφ
4
3 + 6gφ2

3

)
, h4 = − 1

φ4

(
3− 1

3βφ
4
4 + 6gφ2

4

)
, h1 = −h4 and

h2 = −h3 from equation (1.8).
When h varies, the changes of the level curves defined by H0(φ, y) = h are

shown in Fig.4 (a)-(g).

(a) h ∈ (−∞, h4] (b) h ∈ (h4, h3) (c) h = h3 (d) h ∈ (h3, h2)

(e) h = h2 (f) h ∈ (h2, h1) (g) h ∈ (h1, ∞)

Figure 4. The changes of the level curves defined by H0(φ, y) = h when provided a = 0.

It follows from equation (1.8) that y2 = 1
3β
(

9
β + 3h

β φ+ 18g
β φ2 − φ4

)
. Thus, it

deduces from the first equation of system (1.3) that√
β

3
ξ =

∫ φ

φ0

dφ√
9
β + 3h

β φ+ 18g
β φ2 − φ4

. (4.1)

By using equation (4.1), we can obtain all parametric representations of the bounded
orbits of system (1.3).

We see from Fig.4 that there exist two node points of the associated regular
system (2.1) on the singular straight line φ = 0, then the singular system has no
peakon, periodic peakon and compacton solutions. In this case, the traveling wave
system has no curve triangle surrounding a periodic annulus of a center. Instead,
there exist smooth periodic waves, solitary waves of the singular system, because
the singular system and its associated regular system define different vector fields
respectively. As shown by Fig.1 (f), on the left-hand side of the singular straight
line φ = 0, the direction of the orbits of the vector field defined by the singular
system (1.3) is the inverse direction of the orbits of the vector field defined by its
associated regular system (2.1).



358 J. Song & J. Li

(i) Corresponding to the level curves defined by H0(φ, y) = h, h ∈ (−∞, h4],
there exists a family of periodic orbits of system (1.3) (see Fig.4 (a)), with its
boundary passing through two equilibrium points S±(0, ± ys). Now, equation

(4.1) can be written as
√

β
3 ξ =

∫ φ
r2

dφ√
(r1−φ)(φ−r2)[(φ−b1)2+a21]

. Therefore, we obtain

the following exact parametric representation of a periodic wave solution family of
equation (1.1):

φ(ξ) =
r1B1 + r2A1 − (r1B1 − r2A1)cn(Ω3ξ, k)

(A1 +B1) + (A1 −B1)cn(Ω3ξ, k)
, (4.2)

where A2
1 = (r1 − b1)2 + a2

1, B
2
1 = (r2 − b1)2 + a2

1, k
2 = (r1−r2)2−(A1−B1)2

4A1B1
and

Ω3 =
√

βA1B1

3 .

(ii) Corresponding to the level curves defined by H0(φ, y) = h, h ∈ (h4, h3),
there exist the two families of periodic orbits of system (1.3), enclosing the equilibri-
um points E1(φ1, 0) and E4(φ4, 0), respectively (see Fig.4 (b)). For the right family

of periodic orbits, equation (4.1) can be written as
√

β
3 ξ=

∫ φ
r2

dφ√
(r1−φ)(φ−r2)(φ−r3)(φ−r4)

.

Thus, it gives rise to the following a periodic wave solution family of equation (1.1):

φ(ξ) =
r2 − r3α̃

2
1sn2(Ω4ξ, k)

1− α̃2
1sn2(Ω4ξ, k)

, (4.3)

where α̃2
1 = r1−r2

r1−r3 , k
2 =

α̃2
1(r3−r4)
(r2−r4) and Ω4 =

√
β(r1−r3)(r2−r4)

12 .

For the left family of periodic orbits, now equation (4.1) can be written as√
β

3
ξ =

∫ φ

r4

dφ√
(r1 − φ)(r2 − φ)(r3 − φ)(φ− r4)

.

Hence, one has

φ(ξ) =
r4 − r1α̃

2
2sn2(Ω4ξ, k)

1− α̃2
2sn2(Ω4ξ, k)

, (4.4)

where α̃2
2 = r4−r3

r1−r3 , k
2 =

−α̃2
2(r1−r2)
r2−r4 and Ω4 =

√
β(r1−r3)(r2−r4)

12 .

(iii) Corresponding to the level curves defined by H0(φ, y) = h3, there exist
the two homoclinic orbits of system (1.3) enclosing the equilibrium point E4(φ4, 0)

and E1(φ1, 0), respectively (see Fig.4 (c)). Now, equation (4.1) becomes
√

β
3 ξ =∫ φM

φ
dφ

(φ−φ3)
√

(φM−φ)(φ−φm)
and

√
β
3 ξ=

∫ φ
φm

dφ

(φ3−φ)
√

(φM−φ)(φ−φm)
, respectively. From

this, we have the following solitary wave solutions of equation (1.1):

φ(ξ) = φ3 +
2(φM − φ3)(φ3 − φm)

(φM − φm) cosh(ω2ξ)− (φm + φM − 2φ3)
(4.5)

and

φ(ξ) = φ3 −
2(φM − φ3)(φ3 − φm)

(φM − φm) cosh(ω2ξ) + (φm + φM − 2φ3)
, (4.6)

where ω2 = 1√
3

√
β(φM − φ3)(φ3 − φm).

(iv) Corresponding to the level curves defined by H(φ, y) = h, h ∈ (h3, h2),
there is a family of periodic orbits of system (1.3) (see Fig.4 (d)), with its boundary



Bifurcations and exact travelling wave... 359

passing through two equilibrium points S±(0, ±ys), enclosing the four equilibrium
points Ej(φj , 0), j = 1, · · · , 4. It gives rise to a periodic wave solution family of
equation (1.1), which has the same parametric representation as equation (4.2).

(v) Corresponding to the level curves defined by H0(φ, y) = h2, there are t-
wo homoclinic orbits of system (1.3) enclosing two equilibrium points E4(φ4, 0)
and E1(φ1, 0), respectively (see Fig.4 (e)). Now, equation (4.1) can be written as√

β
3 ξ =

∫ φM

φ
dφ

(φ−φ2)
√

(φM−φ)(φ−φm)
and

√
β
3 ξ =

∫ φ
φm

dφ

(φ2−φ)
√

(φM−φ)(φ−φm)
, respec-

tively. Thus, we have the following solitary wave solutions of equation (1.1):

φ(ξ) = φ2 +
2(φM − φ2)(φ2 − φm)

(φM − φm) cosh(ω3ξ)− (φm + φM − 2φ2)
(4.7)

and

φ(ξ) = φ2 −
2(φM − φ2)(φ2 − φm)

(φM − φm) cosh(ω3ξ) + (φm + φM − 2φ2)
, (4.8)

where ω3 = 1√
3

√
β(φM − φ2)(φ2 − φm).

(vi) Corresponding to the level curves defined by H(φ, y) = h, h ∈ (h2, h1),
there exist the two families of periodic orbits of system (1.3) enclosing two equilibri-
um points E4(φ4, 0) and E1(φ1, 0), respectively. The two families of periodic wave
solutions of equation (1.1) have the same parametric representations as equation
(4.3) and (4.4).

(vii) Corresponding to the level curves defined by H(φ, y) = h, h ∈ (h1, ∞),
there is a family of periodic orbits of system (1.3) enclosing three equilibrium points,
which gives rise to a family of periodic wave solutions of equation (1.1) with the
exact parametric representations as equation (4.2).

As for a = − 1
2 , we have similar results as the above conclusions.

With the above estimates at hand, we give the following main results.

Theorem 4.1. Assume a = 0,− 1
2 , ∆ > 0 and g > 0. Then

(i) Equation (1.1) has the exact periodic wave solution families given by (4.2)-
(4.4).

(ii) Equation (1.1) has the exact solitary wave solutions given by (4.5)-(4.8).
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