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DISCONTINUOUS STURM-LIOUVILLE
PROBLEMS INVOLVING AN ABSTRACT

LINEAR OPERATOR

Oktay Sh. Mukhtarov1,2,† and Kadriye Aydemir3

Abstract In this paper we introduce to consideration a new type boundary
value problems consisting of an “Sturm-Liouville” equation on two disjoint
intervals as

−p(x)y′′ + q(x)y +By|x = µy, x ∈ [a, c) ∪ (c, b]

together with two end-point conditions whose coefficients depend linearly on
the eigenvalue parameter, and two supplementary so-called transmission con-
ditions, involving linearly left-hand and right-hand values of the solution and
its derivatives at point of interaction x = c, where B : L2(a, c) ⊕ L2(c, b) →
L2(a, c)⊕L2(c, b) is an abstract linear operator, non-selfadjoint in general. For
self-adjoint realization of the pure differential part of the main problem we de-
fine “alternative” inner products in Sobolev spaces, “incorporating” with the
boundary-transmission conditions. Then by suggesting an own approaches we
establish such properties as topological isomorphism and coercive solvability
of the corresponding nonhomogeneous problem and prove compactness of the
resolvent operator in these Sobolev spaces. Finally, we prove that the spec-
trum of the considered eigenvalue problem is discrete and derive asymptotic
formulas for the eigenvalues. Note that the obtained results are new even in
the case when the equation is not involved an abstract linear operator B.

Keywords Sturm-Liouville problems, transmission conditions, coerciveness,
spectrum, resolvent operator.
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1. Introduction
Boundary value problem for the Sturm-Liouville equation with discontinuous lead-
ing coefficients arises in geophysics, electromagnetics, elasticity, and other fields of
engineering and physics; for example, modeling toroidal vibrations and free vibra-
tions of the earth, reconstructing the discontinuous material properties of a nonab-
sorbingmedia, as a rule leads to direct and inverse problems for the Sturm-Liouville
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equation with discontinuous coefficients. The applications of Sturm-Liouville prob-
lems in physics and engineering are numerous. Their use in problems of vibration,
heat transfer, quantum mechanics, and a host of other areas have proven successful
for many years, and indeed go back to the early 18th century. For example, consider
the initial-boundary value problem for the heat equation

ut = uxx − q(x)u, 0 < x < 1, t > 1,

u(0, t) = u(1, t) = 0, t ≥ 1 u(x, 0) = f(x), 0 ≤ x ≤ 1,

where q is a given coefficient function. This problem describes the temperature of a
heat conducting bar with a nonuniform heat loss term given by −q(x)u. Applying
the method of separation of variables we obtain the Sturm-Liouville problem

Au := −u′′ + qu = λu, u(0) = u(1) = 0.

It is important to find a complete set of eigenvectors of A, or, equivalently, to
diagonalize A in suitable infinite dimensional Hilbert space. The problem of diag-
onalizing a linear map on an infinite-dimensional space arises in many other ways,
and is part of what is called spectral theory. Spectral theory provides a powerful
way to understand linear operators by decomposing the space on which they act into
invariant subspaces on which their action is simple. In the finite-dimensional case,
the spectrum of a linear operator consists of its eigenvalues. The action of the oper-
ator on the subspace of eigenvectors with a given eigenvalue is just multiplication by
the eigenvalue. Spectral theory of bounded linear operators on infinite-dimensional
spaces is more involved. For example, an operator may have a continuous spectrum,
in addition to, or instead of, a point spectrum of eigenvalues. A particularly simple
and important case is that of compact, self-adjoint operators since such operators
may be approximated by finite-dimensional operators, and their spectral theory is
close to that of finite-dimensional symmetric operators. Sturm-liouville problems of
spectral analysis consist in recovering operators from their spectral characteristics.
Many thousands of papers, by Mathematicians and by others, have been published
on this topic since then. Although the history of the subject is long, it remains an
active area of research as new applications and concepts as well as computational
difficulties continue to arise. The general results on the eigenvalue distribution of
the eigenvalues of ordinary differential operators were obtained by Birkhoff [6], and
for partial differential operators by Weyl [39]. In 1910 Weyl proved that the essential
spectrum, which in this case is just the set of accumulation points of the spectrum,
is stable when the boundary condition is modified. Tamarkin [31] introduced a con-
cept of regular boundary conditions and proved that the system of root functions,
i.e. eigenfunctions and associated functions of the regular boundary value problem
is complete. In 1957 several remarkable papers were published. Rosenblum [27] and
Kato [12] proved stability of absolutely continuous spectra for self-adjoint opera-
tors under trace class perturbations and Aronszajn [4] showed that the absolutely
continuous Darts of spectral measures of Sturm-Liouville problems corresponding
to different boundary conditions are equivalent, whereas their singular parts are
mutually singular measures. Keldysh [14] elaborated expansions over root func-
tions for weak perturbations of compact self-adjoint operators. Different challenges
emerged with the development of Sturm theory and a corresponding awareness of
the importance of distinguishing the absolutely continuous component from other
parts of the essential spectrum, in connection with existence and completeness of
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the wave operators [3, 13, 40]. The most complete and sharp results for compact
perturbations and for the so-called β-subordinate perturbations of self-adjoint op-
erators are due to Markus and Matsaev [16] (see more details in [17]). Some recent
developments of higher order differential operators whose boundary conditions de-
pend on the eigenvalue parameter, including spectral asymptotics and basis prop-
erties, have been investigated in [18, 30]. General characterizations of self-adjoint
boundary conditions have been presented in [38] for singular and regular problems.
Gesztesy and Simon [8] found new uniqueness results with partial information on
the spectrum for Sturm-Liouville operators with scalar and matrix coefficients, re-
spectively. They showed that more information on the potential can compensate
for less information about the spectrum. Martinyuk and Pivovarchik [19] proposed
a new method for reconstructing the potential on half the interval. Sakhnovich [28]
studied the existence of solutions of half inverse problems. Singular potentials were
studied by Hryniv and Mykytyuk [9]. Buterin studied half inverse problem for dif-
ferential pencils with the spectral parameter in boundary conditions [7]. Trooshin
and Yamamoto [35] obtained Hochstadt-Lieberman type theorems for nonsymmet-
ric first order systems. For quadratic pencils of Sturm-Liouville operators without
the spectral parameter and transmission conditions Yang and Zettl [41] proved that
if p(x) and q(x) are known on half of the domain interval, then one spectrum suf-
fices to determine them uniquely on the other half. These references are certainly
not intended to be comprehensive but are given to indicate the wide interest in and
variety of half inverse type problems. For the background and applications of the
boundary value problems to different areas, we refer the reader to the monographs
and some recent contributions as [13,16,20,25,26,31,34,37,40].

In this study we consider a ”Sturm-Liouville” equation involving an abstract
linear operator B, namely the differential-operator equation

Ψy := −p(x)y′′ + q(x)y +By|x = µy (1.1)

on [a, c)∪(c, b], together with eigendependent boundary conditions at the end-points
x = a and x = b

Ψ1(µ)y := α10y(a)− α11y
′(a)− µ(α′

10y(a)− α′
11y

′(a)) = 0, (1.2)

Ψ2(µ)y := α20y(b)− α21y
′(b) + µ(α′

20y(b)− α′
21y

′(b)) = 0 (1.3)

and transmission conditions at one interior point x = c

Ψ3y := β−
11y

′(c−) + β−
10y(c−) + β+

11y
′(c+) + β+

10y(c+) = 0, (1.4)

Ψ4y := β−
21y

′(c−) + β−
20y(c−) + β+

21y
′(c+) + β+

20y(c+) = 0, (1.5)

where p(x) = p1 > 0 for x ∈ [a, c), p(x) = p2 > 0 for x ∈ (c, b], the potential q(x) is
real-valued function which continuous in each of the intervals [a, c) and (c, b], and
has a finite limits q(c∓ 0), µ is a complex spectral parameter, αij , β±

ij , α
′
ij (i =

1, 2 and j = 0, 1) are real numbers. B is an abstract linear operator in Hilbert space
L2(a, c)⊕ L2(c, b) ( non-selfadjoint in general) .

This Sturm-Liouville problem is a non-classical eigenvalue problem since it con-
tains an abstract linear operator in the equation, eigenvalue parameter appears also
in the boundary conditions and two new conditions added to boundary conditions
(so-called transmission conditions). Naturally the spectral theory of this problem
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is more involved. Boundary value problems with the spectral parameter in bound-
ary conditions and/or with supplementary transmission conditions arise in various
problems of mathematics and physical as well as in applications. For example, some
boundary value problems with transmission conditions arise in heat and mass trans-
fer problems [15], in vibrating string problems when the string loaded additionally
with point masses [32], in diffraction problems [37] and etc. Such properties, as iso-
morphism, coerciveness with respect to the spectral parameter, completeness and
Abel bases of a system of root functions of the similar boundary value problems with
transmission conditions and its applications to the corresponding initial boundary
value problems for parabolic equations have been investigated in [22] and [23]. Also
some problems with transmission conditions which arise in mechanics (thermal con-
duction problem for a thin laminated plate) were studied in the article [33]. Similar
problems for differential equations with discontinuous coefficients were investigated
by Rasulov in monograph [26]. Detailed studies on spectral problems for ordinary
differential operators depending on the parameter and/or with transmission condi-
tions can be found in various publications, see e.g. [1,2,5,10,11,21,22,24,29,36,42],
where further references and links to applications can be found.

Remark 1.1. Note that such generalization of Sturm-Liouville problems involving
abstract linear operator in the equation has been investigated by us for the first
time in literature. Naturally, the considered problem (1.1)–(1.5) covered a wide
class of classical and nonclassical BVP’s. For instance, our results is applicable
to the following type nonstandard equations together with the same boundary-
transmission conditions (1.2)–(1.5).

i)− p(x)y′′(x) + q(x)y(x) + r0(x)y(ξ0) + r1(x)y
′(ξ1) = µy(x), x ∈ [a, c) ∪ (c, b]

where the functions ri(x)(i = 0, 1) are satisfy the same conditions as q(x), ξi(i =
0, 1) ∈ (a, c) ∪ (c, b) are any interior points.

ii) −p(x)y′′(x) + q(x)y(x) +

1∑
j=0

(∫ c−0

a

K1j(x, ξ)y
(j)(ξ)dξ

+

∫ b

c+0

K2j(x, ξ)y
(j)(ξ)dξ

)
= µy(x)

where the Kernels K1j(x, ξ) and K2j(x, ξ)(j = 0, 1) are defined and continuous in
[a, b] × [a, c] and [a, b] × [c, b], respectively.

2. Sobolev spaces with “alternative” inner-products
“incorporating” with the considered problem

At first we shall introduce an “alternative” inner product in classical Sobolev spaces
such a way that the pure differential part of the considered problem can be inter-
preted as self-adjoint problem in these spaces.

Denote the determinant of the boundary-matrix Bi =

αi1 αi0

α′
i1 α

′
i0

 by θi(i = 1, 2)

and the determinant of the k-th and j-th columns of the transmission-matrix
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T =

β+
10 β

+
11 β

−
10 β

−
11

β+
20 β

+
21 β

−
20 β

−
21

 by ∆kj(1 ≤ k < j ≤ 4). Throughout in this study we shall

assume that the conditions

θ1 > 0, θ2 > 0, ∆12 > 0 and ∆34 > 0 (2.1)

is hold. For self-adjoint realization we shall introduce some “new” Hilbert spaces
with alternative inner products. Recall that the direct sum space L2(a, c)⊕L2(c, b)
is the Hilbert space consisting of all functions f on [a, c) ∪ (c, b] for which f1 :=
f |[a,c) ∈ L2(a, c) and f2 := f |(c,b] ∈ L2(c, b) and the direct sum of classical Sobolev
spaces Wn

2 (a, c) ⊕ Wn
2 (c, b) is the Hilbert space consisting of all functions f ∈

L2(a, c)⊕L2(c, b) such that f1 and f2 has generalized n-th derivatives (in the sense
of distributions) in L2(a, c) and L2(c, b), respectively, with the inner product

< f, g >Wn
2
=

n∑
k=0

(< f
(k)
1 , g

(k)
1 >Wn

2 (a,c) + < f
(k)
2 , g

(k)
2 >Wn

2 (c,b),

and the finite norm ∥f∥
Wn

2
= (< f, f >

Wn
2
)

1
2 . Naturally, W 0

2 (a, c) ⊕W 0
2 (c, b) ≡

L2(a, c) ⊕ L2(c, b) ≡ L2(a, b). The standard inner products in direct sum spaces
L2(a, c)⊕ L2(c, b) and (L2(a, c)⊕ L2(c, b))⊕ C2 which is given by

< f(.), g(.) >L2
:=< f1, g1 >L2(a,c) + < f2, g2 >L2(c,b) (2.2)

and

< F,G >L2⊕C2 :=< f(.), g(.) >L2
+f1g1 + f2g2 (2.3)

we shall replace by the “alternative” inner products as

⟨f, g⟩H1
:=

∆34

p1

∫ c−

a

f(x)g(x)dx+
∆12

p2

∫ b

c+

f(x)g(x)dx

and

⟨F,G⟩H := ⟨f, g⟩H1 +
∆34

θ1
f1g1 +

∆12

θ2
f2g2 (2.4)

respectively and apply operator theory in the new Hilbert space

H := (L2(a, c)⊕ L2(c, b))⊕ C2, < ., . >H), (2.5)

where F = (f(.), f1, f2), G = (g(.), g1, g2) ∈ (L2(a, c)⊕ L2(c, b))⊕ C⊕ C.

Remark 2.1. The new inner product (2.4) is equivalent to the inner product (2.3),
so H is also Hilbert space and can be seen as different realization of the Hilbert
space (L2(a, c)⊕L2(c, b))⊕C2. But such realization of this direct sum space allow
as to interpret the conditions (1.2)–(1.5) as “self-adjoint boundary-transmission
conditions.”

Let us we define the boundary functionals:

Ba(f) := α10f(a)− α11f
′(a), B′

a(f) := α′
10f(a)− α′

11f
′(a)
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Bb(f) := α20f(b)− α21f
′(b), B′

b(f) := α′
20f(b)− α′

21f
′(b)

and differential operator
Φu := −pu′′ + q(x)u. (2.6)

A suitable inner-product space in which to search for solution of the equation µy−
Ψy = f(x), is the linear space

H̃ =
{
F =

(
f(.), f1, f2

)
: f(.) ∈W 2

2 (a, c)⊕W 2
2 (c, b),

Ψ3(f) = Ψ4(f) = 0, f1 = B′
a(f), f2 = −B′

b(f)
}

(2.7)

equipped with the inner product

< (f(.), f1, f2), (g(.), g1, g2) >H̃=< f(.), g(.) >W 2
2

(2.8)

and corresponding norm

∥(f(.), f1, f2)∥H̃ = ∥f(.)∥W 2
2
. (2.9)

It can be verify easily that, all axioms of inner product are satisfied.

Lemma 2.1. The inner-product space H̃ is a Hilbert space.

Proof. Let Fn = (fn(.), f1n, f2n) ∈ H̃, n = 1, 2, ... be any Cauchy sequence
with respect to the norm (2.9). Then by (2.9) the sequence (fn(.)), which con-
sist of the first components of (Fn), will be a Cauchy sequence in the Hilbert
space W 2

2 (a, c) ⊕ W 2
2 (c, b). Thus, there exists f = f(.) ∈ W 2

2 (a, c) ⊕ W 2
2 (c, b)

such that ∥fn − f∥2W 2
2 (a,c)⊕W 2

2 (c,b)
→ 0. By virtue of the fact that, the embed-

dings W 2
2 (a, c) ⊂ C[a, c] and W 2

2 (c, b) ⊂ C[c, b] are continuous, the sequences
Ψ3(fn) and Ψ4(fn) are converges to Ψ3(f) and Ψ4(f), accordingly. Thus, Ψ3(f) =

Ψ4(f) = 0 for all n by (2.7). Now, defining F = (f(.), B′
a(f),−B′

b(f)) ∈ H̃ we
see that ∥Fn − F∥H̃ → 0 as n → ∞, so, the arbitrary Cauchy sequence in H̃ is
convergent. The proof is complete.

3. Topological isomorphism and coercive solvabil-
ity. The resolvent operator.

Let us construct the operator £̃ : H → H with the domain

dom(£̃) :=

{
F = (f(x), f1, f2) : f(x), f

′(x) ∈ ACloc(a, c) ∩ACloc(c, b),

with the a finite limits f(c∓ 0) and f ′(c∓ 0); ΨF ∈ L2(a, c)⊕ L2(c, b);

Ψ3(f) = Ψ4(f) = 0; f1 = B′
a(f), f2 = −B′

b(f)

}
and action low

£̃(f(x), B′
a(f),−B′

b(f)) = (Ψf,Ba(f), Bb(f)).
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Obviously, the operator £̃ is well-defined in the Hilbert space H. Then the problem
(1.1)–(1.5) acquires the operator equation form

£̃F = µF, F = (f(x), B′
a(f),−B′

b(f)) ∈ dom(£̃)

in the Hilbert space H.

Remark 3.1. The eigenvalues µk of the problem (1.1)–(1.5) and those of the op-
erator £̃ coincide and there exist a correspondence

yk(x) ↔ Yk = (yk(x), B
′
a(yk),−B′

b(yk))

between eigenfunctions yk(x) of the problem (1.1) − (1.5) and eigenelements Yk of
the operator £̃.

Lemma 3.1. The linear operator £̃ is densely defined on H, i.e. dom(£̃) = H.

Proof. Suppose that, G0 = (g0(.), g1, g2) ∈ H is orthogonal to all F = (f(.), B′
a(f),

−B′
b(f)) ∈ D(£̃), i.e.

< F,G0 >H =
∆34

p−

∫ c−

a

f(x)g0(x)dx+
∆12

p+

∫ b

c+

f(x)g0(x)dx

+
∆34

θ1
B′

a(f)g1 −
∆12

θ2
B′

b(f)g2 = 0 (3.1)

for all F ∈ D(£̃). Denote by C∞
0 [a, c) ∪ C∞

0 (c, b] the set of infinitely differentiable
functions on [a, c)∪(c, b], each of which vanishes on some neighborhoods of the points
x = a, x = c and x = b. Since (f(.), 0, 0) ∈ D(£̃) for all f(.) ∈ C∞

0 [a, c)⊕C∞
0 (c, b],

we have from (3.1) that ⟨f, g0⟩H1 = 0 for all f(.) ∈ C∞
0 [a, c) ⊕ C∞

0 (c, b], which in
turn implies that ⟨f, g0⟩L2(a,c) = ⟨f, g0⟩L2(c,b) = 0 for all f ∈ C∞

0 [a, c) ⊕ C∞
0 (c, b] .

Taking into account that C∞
0 [a, c] and C∞

0 [c, b] are dense in L2(a, c) and L2(c, b),
respectively, we have that the function g0(x) vanishes on [a, c) ∪ (c, b]. It is easy
to see that, there is an element F̃0 = (f̃0(.), B

′
a(f̃0),−B′

b(f̃0)) ∈ D(£̃) such that
B′

a(f̃0) = g1 and B′
b(f̃0) = −g2. Putting F = F̃0 in (3.1) we have g1 = g2 = 0.

Consequently (dom(£̃))⊥ = (0, 0, 0). The proof is complete.
Now, consider the nonhomogeneous boundary value-transmission problem

Ψy − µy = f(x) x ∈ [a, c) ∪ (c, b], (3.2)
Ψ1(µ)y = f1, Ψ2(µ)y = f2, Ψ3y = Ψ4y = 0 (3.3)

for f ∈ L2(a, c)⊕L2(c, b), f1, f2 ∈ C. Denote Y (x) := (y(x), B′
a(y),−B′

b(y)) ∈ D(£̃)
and F = (f(x), f1, f2) ∈ H. Then the problem (3.2)-(3.3) reduces to the operator
equation

(µI − £̃)Y = F, F ∈ H (3.4)

in the Hilbert space H. Throughout in below we shall use the notations

Gδ = {µ ∈ C | δ < argµ < 2π − δ}, 0 ≤ δ < 2π

and
U∞(r) = {µ ∈ C :| µ |> r}, r > 0.
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Theorem 3.1. Suppose that the linear operator B is compact from W 2
2 (a, c) ⊕

W 2
2 (c, b) into L2(a, c)⊕ L2(c, b). Then, for any δ > 0 there exists rδ > 0 such that

for all complex numbers µ ∈ Gδ ∩ U∞(rδ) the operator µI − £̃ is an topological
isomorphism from H̃ onto H and for these µ the coercive estimate

||Yµ(.)||H̃ + |µ| ||Yµ(.)||H ≤ Cδ ||F ||H (3.5)
holds for the solution Y = Yµ(.) of the equation (3.4) where Cδ is a constant,
which depend only of δ.

Proof. From the definitions of £̃,H and H̃ it follows immediately that the linear
operator µI − £̃ acts from H̃ into H continuously for all µ ∈ C. Following the
same procedure as in [23], we obtain that for any δ > 0 there exists rδ > 0 such
that for all complex numbers µ ∈ Gδ ∩ U∞(rδ) the operator ℑ(µ) : y → (µy −
Ψ(µ)y,Ψ1(µ)y,Ψ2(µ)y) is an isomorphism from W 2

2 (a, c)⊕W 2
2 (c, b) onto (L2(a, c)⊕

L2(c, b))⊕ C2 and for these µ the coercive estimate

||y||W 2
2
+ |µ|( ||y||L2 + |B

′

a(y)|+ |B
′

b(y)|) ≤ Cδ(||f ||L2 + |f1|+ |f2|) (3.6)
holds for a solution y(x) of the problem (3.2)–(3.3). Consequently, the operator
£̃−µI is an isomorphism from H̃ onto H. The estimate (3.5) follows from (3.6).

Corollary 3.1. If the linear operator B is compact from W 2
2 (a, c)⊕W 2

2 (c, b) into
L2(a, c)⊕ L2(c, b) then, for any δ > 0 there exists rδ > 0 such that for all complex
numbers µ ∈ Gδ ∩ U∞(rδ) are regular point of the operator £̃ and for the resolvent
operator of £̃ the estimate

∥(£̃− µI)−1∥H→H ≤ Cδ |µ|−1 (3.7)
holds, where Cδ > 0 is a constant which depend only of δ.

Corollary 3.2. The resolvent operator R(µ, £̃) = (£̃−µI)−1 acted boundedly from
H into H̃.

Theorem 3.2. Let the conditions of the Theorem 3.1 be satisfied. Then for any
δ > 0 there exists rδ > 0 such that for all complex numbers µ ∈ Gδ ∩ U∞(rδ) the
resolvent operator R(µ, £̃) from H into H is compact.

Proof. At first show that the embedding H̃ ⊂ H is compact. For this, let
Fn = (fn(.), B

′
a(fn),−B′

b(fn)), n = 1, 2, ... be any bounded sequence in H̃. Then
the sequence (fn(.)) consisting of the first components of (Fn) will be bounded
in the direct sum space W 2

2 (a, c) ⊕ W 2
2 (c, b). Since the embeddings W 2

2 (a, c) ⊂
L2[a, c] and W 2

2 (c, b) ⊂ L2[c, b] are compact, the sequence (fn(.)) has an convergent
subsequence (fnk

(.)) in the space L2(a, c)⊕ L2(c, b). Let f0(.) ∈ L2(a, c)⊕ L2(c, b)
be limit of this subsequence. Further, since the embeddings W 2

2 (a, c) ⊂ C[a, c] and
W 2

2 (c, b) ⊂ C[c, b] are compact, the sequence(fnk
(.)) has an convergent subsequence

(fnks
(.)) in spaces C[a, c] and C[c, b] respectively. Consequently the numerical se-

quences (B′
a(fnks

)) and (B′
b(fnks

)) are convergent. Let f1, f2 ∈ C are limits of this
numerical sequences respectively. Now defining F0 = (f0(.), f1, f2), we see that
F0 ∈ H and the subsequence (Fnks

) converges to F0 in the Hilbert space H, so
the embedding H̃ ⊂ H is compact. Further, from Corollary 3.2, follows that the
resolvent operator R(µ, £̃) is bounded from H into H̃. Consequently, the resolvent
operator R(µ, £̃) is compact from H into itself.
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4. A pure differential operator associated with the
problem

Consider the pure differential part (i.e. without operator B) of the considered
problem (1.1)–(1.5). Let £ be linear differential operator in Hilbert space H with
domain D(£) = D(£̃) and action low

£(f(x), B′
a[f ],−B′

b[f ]) = (Φf,Ba[f ], Bb[f ]).

Lemma 4.1. The operator £ is symmetric in H.

Proof. Let F = (f(x), B′
a(f),−B′

b(f)), G = (g(x), B′
a(g),−B′

b(g)) ∈ dom(£). By
partial integration we have

⟨£F,G⟩H − ⟨F,£G⟩H =∆34 W (f, g; c−)−∆34 W (f, g; a)

+ ∆12 W (f, g; b)−∆12 W (f, g; c+)

+
∆34

θ1
(Ba(f)B′

a(g)−B′
a(f)Ba(g))

+
∆12

θ2
(B′

b(f)Bb(g)−Bb(f)B′
b(g)) (4.1)

where, as usual, W (f, g;x) denotes the Wronskians of the functions f and g. From
the definitions of boundary functionals we get that

Ba(f)B′
a(g)−B′

a(f)Ba(g) = θ1W (f, g; a), (4.2)
B′

b(f)Bb(g)−Bb(f)B′
b(g) = −θ2W (f, g; b). (4.3)

By using the transmission conditions (1.4)–(1.5) we derive that

W (f, g; c−) =
∆12

∆34
W (f, g; c+). (4.4)

Finally, substituting (4.2), (4.3) and (4.4) in (1.2) we have

⟨£F,G⟩H = ⟨F,£G⟩H for every F,G ∈ dom(£),

so the operator £ is symmetric in H. The proof is complete.

Corollary 4.1. The eigenvalues of £ are real.

Theorem 4.1. £ is self-adjoint linear operator in the Hilbert space H.

Proof. Since £ is symmetric, it is enough to prove that D(£∗) = D(£). Let
F ∈ D(£∗). Then for all G ∈ D(£)

⟨£G,F ⟩H = ⟨G,£∗F ⟩H.

Let µ0 be any regular value of £ such that Imµ0 ̸= 0. Then

⟨(µ0I −£)G,F ⟩H = ⟨G, (µ0I −£∗)F ⟩H, ∀ G ∈ D(£). (4.5)

Since µ0 is a regular point of £ the operator µ0I −£ has the inverse (µ0I −£)−1

which is defined on whole Hilbert space H. Then defining F0 ∈ D(£) as

F0 = (µ0I −£)−1(µ0F −£∗F ),
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we have
(µ0I −£)F0 = µ0F −£∗F.

By using the last equalities and applying the previous Theorem we have

⟨(µ0I−£)G,F ⟩H = ⟨G, (µ0I −£∗)F ⟩H=⟨G, (µ0I −£)F0⟩H
= ⟨G,µ0F0⟩H−⟨G,£F0⟩H = ⟨µ0G,F0⟩H − ⟨£G,F0⟩H
= ⟨(µ0I −£)G,F0⟩H

for an arbitrary G ∈ D(£). Consequently, for an arbitrary element G ∈ D(£) the
equality

⟨(µ0I −£)G,F − F0⟩H = 0,

holds. Since µ0 is a regular point of £, we can put G = R(µ0,£)(F − F0) in the
last equality. Then we have ∥F − F0∥H = 0, namely, F = F0. Thus we find that
F ∈ D(£) i.e. D(£∗) = D(£). The proof is complete.

Let µ = s2. Following the same procedure as in [24] we have the next Theorem.

Theorem 4.2. The operator £ has precisely denumerable many real eigenvalues,
whose behavior may be expressed by two sequence {sn,1}∞1 and {sn,2}∞1 with follow-
ing asymptotics as n→ ∞.
i) If α′

21 ̸= 0 and α′
11 ̸= 0, then

sn,1 =

√
p1(n− 3)π

(c− a)
+O

(
1

n

)
, sn,2 =

√
p2nπ

(b− c)
+O

(
1

n

)
. (4.6)

ii) If α′
21 ̸= 0 and α′

11 = 0, then

sn,1 =

√
p1(2n+ 1)π

2(c− a)
+O

(
1

n

)
, sn,2 =

√
p2(n− 2)π

(b− c)
+O

(
1

n

)
. (4.7)

iii) If α′
21 = 0 and α′

11 ̸= 0, then

sn,1 =

√
p1(n− 2)π

(c− a)
+O

(
1

n

)
, sn,2 =

√
p2(2n+ 1)π

2(b− c)
+O

(
1

n

)
. (4.8)

iv) If α′
21 = 0 and α′

11 = 0, then

sn,1 =

√
p1(2n− 3)π

2(c− a)
+O

(
1

n

)
, sn,2 =

√
p2(2n+ 1)π

2(b− c)
+O

(
1

n

)
. (4.9)

5. The structure of the spectrum and asymptotic
behaviour of the eigenvalues in complex plane

Let us present here some needed basic definitions about spectrum of the general
linear operators in Hilbert space( see, for example, [24]).

Let A be densely defined closed operator in complex Hilbert space E. The point
µ of the complex plane is called a regular point of an operator A in E, if the operator
A − µI is invertible(i.e has a bounded inverse operator (A − µI)−1 which defined
on whole E). In this case the operator R(µ,A) = (A− µI)−1 is called the resolvent
of the operator A.The complement of the set of regular points ρ(A) to the entire
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complex plane is called the spectrum σ(A) of the operator(obviously, all eigenvalues
belongs to the spectrum).

Let µ0 be eigenvalue of A. The linear manifold

Nµ0
= ∪∞

n=1{f ∈ E : f ∈ D(An), (A− µ0I)
nf = 0}

is called a root lineal corresponding to eigenvalue µ0. The dimension of the lineal
Nµ0

is called an algebraic multiplicity of the eigenvalue µ0. The spectrum σ(A) of
the operator A is called discrete if σ(A) consist of isolated eigenvalues with finite
algebraic multiplicities and infinity is the only possible limit point of σ(A).

Theorem 5.1. The spectrum of the problem (1.1)–(1.5) is discrete.

Proof. Since the operator £̃ has a compact resolvent in the Hilbert space H, by
virtue of well-known Theorem of Functional Analysis [ [13], chapter III, section 6)]
the spectrum of £̃ is discrete.

Now, let us denote by B̃ the linear operator in the Hilbert space H with domain
D(B̃) = D(£̃) and action low

B̃Y =
(
By |x, 0, 0

)
(5.1)

for Y = (y(x), y1, y2) ∈ D(B̃). Then, the main problem can be written in the
operator-equation form as

(£+ B̃)F = µF, F ∈ D(£̃). (5.2)

Let A be an linear operator with discrete spectrum and let S be a subset of
complex plane C. In below we shall denote by N(r, S,A) the sum of the algebraic
multiplicities of all the eigenvalues of A contained in S ∩ {µ ∈ C : |µ| < r}.

Definition 5.1. Let A1 be any closed linear operator having at least one regular
point. A linear operator A2 is said to be A1-compact (or compact with respect
to A1 ) if D(A2) ⊇ D(A1) and if for some regular point µ0 ∈ ρ(A1) the operator
A2R(µ0, A1) = A2(A1 − µ0I)

−1 is compact (see, for example, [16]).

The next theorem follows immediately from the [17]

Theorem 5.2. Let ℑ be a self-adjoint linear operator in Hilbert space with discrete
spectrum and let T be ℑ-compact operator. Then if ℑ has a precisely denumerable
many positive eigenvalues and

N
(
r(1 + ε), R+,ℑ

)
∼ N(r,R+,ℑ) as r → ∞, ε→ 0 (5.3)

then for any δ (0 < δ < π
2 )

N (r,Gδ,ℑ+ T ) ∼ N(r,R+,ℑ) as r → ∞ (5.4)

where R+ = (0,∞), Gδ := {µ ∈ C | δ < argµ < 2π − δ} and f(µ) ∼ g(µ)
as r → ∞ is the abbreviation for lim

r→∞
f(r)/g(r) = 1.

Theorem 5.3. Let the linear operator B be £− compact operator in the Hilbert
space H. Then the spectrum of £̃ = £ + B̃ is discrete and consist of precisely
denumerable many eigenvalues. For any arbitrary small α > 0 all eigenvalues of
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£̃ with the possible exception of a finite number lie in the sector ψα = {µ ∈ C :
|argµ| < α} of angular 2α and for the sequence of eigenvalues {µn,α}∞1 , n ≥ 0,
belonging to the sector ψα, which when listen according to nondecreasing modulus
and repeated according to algebraic multiplicity the asymptotic expression

|µn,α| =
( √

p1p2√
p1(b− c) +

√
p2(c− a)

)2
π2n2 + o(n2) (5.5)

is valid, where the expression an = o(n2) is the abbreviation for lim
n→∞

an

n2 = 0.

Proof. Denote by {µn(£)}∞1 , n = 0, 1, ... the eigenvalues of £, which counted with
their algebraic multiplicity and listed as µ1(£) ≤ µ2(£) ≤ ... Then from (4.6)-(4.9)
it follow that there are real numbers ξ1 > 0 and ξ2 > 0 such that( √

p1p2√
p1(b−c)+

√
p2(c−a)

)2
π2n2+ξ1n≤µn(£) ≤

( √
p1p2√

p1(b−c)+
√
p2(c− a)

)2
π2n2+ξ2n.

(5.6)
From these inequalities it follows that

N
(
r,R+,£

)
=

1

π
(
(b− c)
√
p2

+
(c− a)
√
p1

)
√
r +O(

1√
r
), r → ∞.

Hence

N
(
r(1 + ε), R+,£

)
∼ N(r,R+,£), for r → ∞, ε→ ∞.

Applying Theorem 5.2 we have

N
(
r, α,£+ B̃

)
∼ N(r,R+,£), r → ∞. (5.7)

Consequently

N
(
r, ψα,£+ B̃

)
= N(r,R+,£) + o(N(r,R+,£)), r → ∞, (5.8)

where, as usual, the expression f(r) = o(g(r)), r → ∞ is the abbreviation for
lim

r−→∞
f(r)/g(r) = 0. Putting r = |µn,α| in the last equality we have the needed

asymptotic formula (5.5). The proof is complete.

Lemma 5.1. Suppose that the conditions of Theorem 5.3 is hold. Then the spec-
trum σ(£̃) of the operator £̃ is discrete and consist of denumerable many eigen-
values {µn(£̃)}∞1 which, when arranged in decreasing modulus and counted to their
algebraic multiplicity, has the following asymptotic behaviour

Reµn(£̃) =
( √

p1p2√
p1(b− c) +

√
p2(c− a)

)2
π2n2 + o(n2) (5.9)

and
|Imµn(£̃)| = o(n2) as n→ ∞. (5.10)

Proof. By using the fact that for all α > 0, small enough, there are at most finite
number eigenvalues of £̃ outside angle ψα = {µ ∈ C : |argµ| < α}, and applying
Theorem 5.3 we have the asymptotic formula

|µn,α(£̃)| =
( √

p1p2√
p1(b− c) +

√
p2(c− a)

)2
π2n2 + o(n2), as n −→ ∞. (5.11)
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Again, by the Theorem 3.1 for all α > 0, small enough, there is a natural number
nα such that for all n ≥ nα the inequalities

Reµn(£̃) > |µn(£̃)| cosα and |Imµn| < |µn(£̃)| sinα

are hold. Taking in view that α > 0 is arbitrary real number (small enough) it is
easy to see that

Reµn(£̃) ∼ |µn| and |Imµn(£̃)| = o(|µn(£̃)|) as n −→ ∞.

Putting (5.11) in these formulas yields the needed equalities (5.9)–(5.10).
Now, we are ready to prove the main result of this section.

Theorem 5.4. Let the operator B acted compactly from W 2
2 (a, c)⊕W 2

2 (c, b) into
L2(a, c). ⊕ L2(c, b). Then, the spectrum of the problem (1.1)–(1.5) is discrete and
consist of precisely denumerable many eigenvalues µn, n = 1, 2, ... which, when listed
according to decreasing real parts and repeated according to algebraic multiplicity,
has the following asymptotic representation:

µn =
( √

p1p2√
p1(b− c) +

√
p2(c− a)

)2
π2n2 + o(n2). as n −→ ∞. (5.12)

Proof. We know from Corollary 3.2 that the resolvent operator R(µ, £̃) acted
boundedly from H to H̃. It is clear that, the operator B̃ defined by (5.1) acted
compactly from H̃ to H by assumption on B and by definition of H̃. Hence the
operator B̃R(µ, £̃) is compact in the Hilbert space H, i.e. B̃ is compact with respect
to £̃. Now it is enough to apply the previous Theorem, to complete the proof.

6. Discussion of the results
Note that such generalization of Sturm-Liouville problems involving abstract linear
operator in the equation has been investigated by us for the first time in literature.
It is easy to verify that the pure differential part of the considered problem (1.1)–
(1.5) is not self-adjoint in the usual direct sum space L2[a, c) ⊕ L2(c, b] (i.e. the
generated differential operator is not self-adjoint in L2([a, c)⊕ L2(c, b])⊕ C2). For
self-adjoint realization of this problem we develop an own approach. Namely, we
define “alternative” inner product in this space “incorporating” with the considered
problem. We must emphasize that in our approach the sign of the boundary-
transmission determinants θi(i = 1, 2),∆12 and ∆34 play an important role. Indeed,
let us consider the following simple case of the problem (1.1)–(1.5) as

− y′′(x) = µy(x) x ∈ [−1, 0) ∪ (0, 1], (6.1)

y(−1) = 0, (µ− 1)y′(−1) + µy(1) = 0, (6.2)

y(0−) = y(0+), y′(0−) = −y′(0+). (6.3)

for which the condition (2.1) is not hold. By direct calculation we can show that
this problem has only one eigenvalue µ = 1 in contract with standard Sturm-
Liouville problems which has infinitely many eigenvalues. We find “minimal” con-
ditions (2.1) on coefficients of boundary and transmission conditions under which
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the pure differential part of the problem (1.1)–(1.5) can be interpreted as self-
adjoint eigenvalue problem in some “alternative realization” of usual direct sum
space L2[a, c) ⊕ L2(c, b] ⊕ C2. Even under condition (2.1) the spectral properties
of the considered problem is essentially different from the corresponding spectral
properties of standard Sturm-Liouville problem. For instance, the eigenvalues of
the problem (1.1)–(1.5) are not real numbers in general. But the leading term in
asymptotic expansion of eigenvalues is real sequence. Note also that, the second
term in asymptotic expansion of eigenvalues appears in the more “weak” form as
o(n2) because of the abstract linear operator B in the equation.
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