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STABILITY ANALYSIS AND APPROXIMATE
SOLUTION OF SIR EPIDEMIC MODEL WITH

CROWLEY-MARTIN TYPE FUNCTIONAL
RESPONSE AND HOLLING TYPE-II

TREATMENT RATE BY USING HOMOTOPY
ANALYSIS METHOD

Parvaiz Ahmad Naik1, Jian Zu1,† and Mohammad Ghoreishi2

Abstract In this paper, SIR epidemic model with Crowley-Martin type func-
tional response and Holling type-II treatment rate is investigated. The anal-
ysis of the model shows that it has two equilibria, namely disease-free and
endemic. We investigate the existence and stability results of equilibria by
using LaSalle’s invariant principle and Lyapunov function. R0 has been found
to ensure the extinction or persistence of the infection. Furthermore, homo-
topy analysis method is employed to obtain the series solution of the proposed
model. By using the homotopy solutions, firstly, several ℏ-curves are plot-
ted to demonstrate the regions of convergence, then the residual and square
residual errors are obtained for different values of these regions. Secondly, the
numerical solutions are presented for various iterations and the absolute error
functions are applied to show the accuracy of the applied homotopy analysis
method.
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1. Introduction
Epidemiology has its roots in the study of infectious diseases. While modern epi-
demiology deals with a host of different health-related topics, infectious diseases are
still an important component. The classical study approach of epidemiology, based
on randomized controlled trials, cohort studies, case-control studies, and related
designs can be successfully applied to infectious diseases [7]. Modern infectious dis-
ease epidemiology makes heavy use of computational model-based approaches and
a dynamical systems perspective. The importance of analyzing infectious diseases
in such a way keeps increasing. Human Immunodeficiency Virus (HIV) is a virus
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that causes worldwide devastation. Its host cells are CD4+ T-cells, which are part
of the immune system component that signals to the rest of the immune system
that infection is present [7, 24]. HIV is a retrovirus that targets the CD4+ T lym-
phocytes, which are the most abundant white blood cells of the immune system.
Although HIV infects other cells also, it wreaks the most havoc on the CD4+ T-
cells by causing their decline and destruction, thus decreasing the resistance of the
immune system [5,23,25]. In the field of epidemiology, a crucial issue in the study of
the spread of an infectious disease is how it is transmitted. The transmission of an
infectious disease is determined by the incidence rate, which is defined as the rate at
which susceptible becomes infectious. The incidence rate therefore plays a key role
in study of the qualitative description of the transmission dynamics of infectious
diseases. The form of the incidence rate that is used in the classical Kermack-
Mckendrick model [2, 24] is the simple mass action βSI, where S and I denote the
number of susceptible and infectious, respectively, β is called the infection coeffi-
cient. The standard incidence is βSI

N , where N is the total population size and β is
called the daily contact rate. Another kind of incidence is the saturation incidence
βSI
d+S , where d is a constant. When the number of susceptible S is large compared
to d that incidence is approximately βI . This kind of incidence was proposed by
Anderson and May [3, 37]. Many researchers [1, 14, 21, 26] have proposed a general
incidence rate as βIpS

1+χIq .
On the other hand, interventions such as treatment, quarantine, vaccination

etc. play an important role in controlling the disease spread. It is well known that
a proper and timely treatment methodology can substantially reduce the effect of
disease on society. In classical epidemic models, the treatment rate of infected indi-
viduals is assumed to be either constant or proportional to the number of infected
individuals. There are many diseases for which treatment is available like flu, tu-
berculosis, measles [12,15,38] treatment is a useful tool to eradicate them. Several
researchers [22, 30, 31, 36, 46], have studied the effect of treatment using different
type of treatment functions. In classical models treatment rate is considered to be
proportional to the number of infectives. This treatment rate is not suitable in case
of large number of infectives due to availability of limited resources in a commu-
nity. To study this effect of limited resources, Wang and Ruan [48] developed the
constant removal rate (i.e. recovery per unit time), which is given by

g(I) =

{
r, I > 0,

0, I = 1,

where r is a positive constant and I is the number of infected individuals. They
studied stability analysis and showed that this model exhibits various bifurcations.
Wang [49] in his study further improved the removal rate given by Wang and Ruan
[48] by taking the following removal rate as a function [49]

g(I) =

{
rI, 0 ≤ I ≤ I0,

rI0, I > I0,

where r and I0 are positive constants. This removal rate shows that when the
capacity of treatment is not reached then the removal rate is proportional to the
number of infectives otherwise it takes the maximum capacity. Further, Zhou and
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Fan [52] modified the treatment rate to Holling type-II

g(I) =
βI

1 + γI
, 0 ≤ β, 0 ≤ I, 0 ≤ γ.

In their study, they have shown that, with varying amount of medical resources
and their supply efficiency, the target model admits both backward bifurcation and
Hopf bifurcation. Dubey et al. [8] have also used Holling type-III treatment rate
given by

g(I) =
βI2

1 + γI2
, 0 ≤ β, 0 ≤ I, 0 ≤ γ

and Holling type-IV treatment rate given by

g(I) =
βI

I2/a+ I + b
, 0 ≤ β, 0 ≤ a, 0 < b.

In recent years the use of approximate analytical methods has become very
popular for solving a wide class of science and engineering problems involving al-
gebraic, integro-differential, delay differential, integral equation, system of linear
and nonlinear ordinary and partial differential equations such as strongly coupled
reaction-difusion system [16], age structure population model [17], flow between
two coaxial rotating disks [11], EIAV infection [18], q-difference equations [43],
HIV infection CD4+ T-cell [20], fractional partial differential equations [35], inner-
resonance of tangent nonlinear cushioning packaging system with critical compo-
nents [19] and several others. The approximate analytical methods provide the
solution in a rapidly convergent series with components that can be elegantly com-
puted. Therefore, these methods are useful for obtaining both a closed form and the
explicit solution and numerical approximation of linear and nonlinear differential
equations.

The homotopy analysis method was first developed by Liao [27,28] who utilized
the idea of homotopy in topology. It has been reported that homotopy analysis
method, as an analytical method, has an advantage over perturbation methods in
that it is not dependent on small or large parameters. Perturbation methods are
based on the existence of small or large parameters and they cannot be applied to all
nonlinear equations. Non-perturbative methods, such as δ-expansion and adomian
decomposition method, are independent of small parameters. Both perturbation
techniques and non-perturbative methods [17] cannot provide a simple procedure
to adjust or control the convergence region and rate of convergence of given ap-
proximate series. Homotopy analysis method allows for fine tuning of convergence
region and rate of convergence by allowing an auxiliary parameter to vary [19]. The
proper choice of the initial condition, the auxiliary linear operator, and auxiliary
parameter will guarantee the convergence of the homotopy analysis method solution
series. Compared to the homotopy perturbation method [39] the homotopy analysis
method solution series will be convergent by considering two factors: the auxiliary
linear operator and initial guess.

The aim of this paper is to introduce and apply an effective method so-called
homotopy analysis method to obtain a series solution of SIR epidemic model along
Crowley-Martin incidence rate and Holling type-II treatment rate. Semi analyti-
cal schemes such as variational iteration method, adomian decomposition method,
homotopy perturbation method, and homotopy analysis method have been widely
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employed to solve various linear and nonlinear ordinary and partial differential
equations. One of the advantages of the semi approximate analytical methods is
that these methods generate an infinite series solution and, unlike finite difference
methods, semi approximate analytical methods do not have the problem of round-
ing error. Therefore, in contrast to implicit finite difference methods that require
the solution of systems of equation, the semi analytical schemes require only the
solution of recursive process.

In the deterministic epidemic model, individuals in the population are assigned
to different subgroups or compartments, these compartments are defined with re-
spect to disease status of the epidemic. To the best knowledge of the authors,
an SIR epidemic model with Crowley-Martin type functional response [6, 40] and
Holling type-II treatment rate [8,52] has not been considered. Taking these impor-
tant facts into account, in this paper, we have analysed the SIR epidemic model by
incorporating Crowley-Martin type functional response and Holling type-II treat-
ment rate for better understanding of disease dynamics. Further, we evaluate the
basic reproduction number R0 , analysed the dynamical behaviour of the model and
also discussed the stability of the model. The stability analysis of the model has
been done by Laselle’s principle, Lyapunov function and Routh- Hurwitz criterion.
Finally, homotopy analysis method in employed to obtained the series solution of
the modified SIR or xyz model.

The present paper has been organized as follows: after the abstract and in-
troduction, Section 2 discusses the formulation of the mathematical model and
well-posedness of the model. In Section 3, we discuss the mathematical analysis of
the proposed model along with equilibrium points and the stability of equilibrium
points. Further, in Section 4, application of the homotopy analysis method is per-
formed on the proposed model and the numerical simulations are done to validate
the analytical studies. In Section 5, numerical results are given to illustrate the
capability of HAM. In Section 6, we discuss on the solution obtained by using HAM
and the convergence of the series solution along with the ℏ-curves is obtained. In
this Section we also improve the solution obtained by applying the least squares
method. Finally, Section 7 concludes all the major findings of the present research
study.

2. Model Formulation
In the following section, we develop a mathematical model for the dynamics of
susceptible-infected-recovered population by introducing the Crowley-Martin type
functional response and Holling type-II treatment rate in the existing SIR or xyz
epidemic model. In the compartmental epidemiological models, the total popula-
tion is often divided into several disjoint classes. Here, it is assumed that the entire
population is divided into three classes: susceptible individuals (x), infected indi-
viduals (y), and removed or recovered individuals (z). Susceptible individuals are
those who are healthy and can contract disease under appropriate conditions. In-
fected individuals are the one who have contracted the disease and are now infected
with it. These individuals are capable of transferring the disease to susceptible in-
dividuals via contacts. As time progresses, infected individuals lose infectivity and
move to the removed or recovered compartment (by auto recovery due to immune
response of the body or by treatment). These recovered individuals are immune to
infectious microbes and thus do not acquire the disease again. The proposed model
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is represented by the following system of non-linear ordinary differential equations

x
′
= Λ− α0x− axy

(1 + bx)(1 + cy)
,

y
′
=

axy

(1 + bx)(1 + cy)
− α0y − α1y − α2y −

βy

1 + δy
, (2.1)

z
′
= α2y − α0z +

βy

1 + δy
.

The initial conditions for the above model are

x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, z(0) = z0 ≥ 0. (2.2)

In the above model (2.1), x′
= dx

dt , y′
= dy

dt and z
′
= dz

dt . Let the susceptibles be
recruited at a constant rate Λ and α0 be the natural death rate of the population in
each class. Let α1 be the death rate of infected individuals due to infection and α2

be the natural recovery rate at which infected individuals get recovered by immunity
to join the recovered class. We take the incidence rate as the Crowley-Martin type
in the model (2.1) as

κ(x, y) =
axy

(1 + bx)(1 + cy)
,

where a is a transmission rate and b is a measure of inhibition effect, such as
preventive measure taken by susceptible individuals, and c is a measure of inhibition
effect such as treatment with respect to infectives. The term

h(y) =
βy

1 + δy
, β ≥ 0, y ≥ 0, δ ≥ 0,

represents Holling type-II treatment rate, where β and δ are non-negative con-
stants and can be understood as treatment given to the infected individuals and
limitation to the treatment availability, respectively. Unlike the Holling type-III
treatment rate which grows first very fast and later on increases slowly with in-
crease in number of infection and gets saturated to its maximum level β

δ (treatment
capacity of community) due to limited availability of resources in the community.

From the above system of equations (2.1), we can infer that x and y are free
from the effect of z. Thus it is enough to consider the following reduced system for
the study

x
′
= Λ− α0x− axy

(1 + bx)(1 + cy)
,

y
′
=

axy

(1 + bx)(1 + cy)
− λy − βy

1 + δy
, (2.3)

where λ = α0 + α1 + α2 and x(0) = x0 ≥ 0, y(0) = y0 ≥ 0.

3. Mathematical analysis of the model
3.1. Boundness and positivity of the solution
Theorem 3.1. For all time t ≥ 0 , the solutions of the equations of system (2.3)
are eventually confined in a positively invariant compact set

ϕ(x, y) = {(x, y) ∈ ℜ2
+ : 0 ≤ x+ y ≤ Λ

α0
, x, y ≥ 0}
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Figure 1. Schematic diagram of the modified SIR epidemic model.

Table 1. Parameters with their values for the proposed model [7,8,12,33,34,37,48,49,52]
Parameter symbol Meaning Values

Λ Recruitment rate 2 person day−1

α0 Natural death rate of each sub-population 0.05 day−1

α1 Disease induced death rate of infected 0.001 day−1

α2 Recovery rate of infected due to auto immunity 0.002 person−1

β Treatment rate 0.02 person−1

δ Limitation rate in treatment availability 0.0004 person−1

a Transmission rate 0.004 person−1

b Inhibition rate due to susceptible 0.004 person−1

c Inhibition rate due to infected 0.002 person−1 day−1

x0 Initially susceptibles 20
y0 Initially infected 15
z0 Initial recovered 10

Proof. To prove this, let ϕ(x, y) = {(x, y) ∈ ℜ2
+ : 0 ≤ x + y ≤ Λ

α0
, x, y ≥ 0} be

any solution of the system of equations (2.3) with non-zero initial conditions. Also
let N be the total population available, then N = x+ y and

dN

dt
=
dx

dt
+
dy

dt
,

dN

dt
= Λ− α0N − (α1 + α2)y −

βy

1 + δy
.

Then
N(t) = N(0)e−α0t +

Λ

α0
(1− e−α0t). (3.1)

Therefore, as t→ ∞ in equation (3.15), the total populationN → Λ
α0

. Clearly, it has
been proved that all the solutions of system (2.3) which initiate in ℜ2

+ confined in the
region ϕ , i.e., the solutions are bounded in the interval [0,∞), i.e. lim

t→∞
Sup(x, y) ≤

Λ
α0

. Furthermore, N ′
< 0 if N > Λ

α0
, where N ′

= dN
dt . This shows that solutions

of system (2.3) point towards the region ϕ. Hence ϕ is positively invariant and
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solutions of system (2.3) are bounded. The Theorem 3.1 shows that all solutions of
the model (2.3) are non-negative and bounded. Thus the model is biologically well
behaved. In the next section, we show the existence of equilibrium points of system
(2.3).

3.2. Equilibria and their feasibility criteria
In this section, we discuss the local as well as the global stability of disease-free
and endemic equilibrium of the modified SIR model by analyzing the corresponding
characteristic equations respectively. By defining reasonable Lyapunov functions,
we resolve the global dynamics of equilibria without requiring any extra conditions.
We see that system (2.3) has only two equilibria:

Disease-free equilibrium E0 : The equilibrium state with the absence of
infection is known as disease-free equilibrium or zero equilibrium. The disease-free
equilibrium has been always feasible, as in this equilibrium the infection dies out
from the population. The disease-free equilibrium is given by E0 = (x0, y0) =
( Λ
α0
, 0) i.e., the state when infection (y = 0) dies out from the population.
Endemic equilibrium E∗:The positive endemic equilibrium is that state of

the system, where the infection spreads throughout the population and causes the
disease persistence. For the system (2.3), the endemic equilibrium is considered
as E∗ = (x∗, y∗). i.e., the state in which infection spreads in the susceptible pop-
ulation. We can infer from system (2.3) that the disease-free equilibrium E0 is
the equilibrium point which exists trivially. To study the local stability of the
disease-free equilibrium, we compute the basic reproduction number by using next
generation matrix method [9, 10,29,41].

Basic reproduction number: The basic reproduction number ℜ0 is arguably
the most important quantity in infectious disease epidemiology. It is among the
quantities most urgently estimated for emerging infectious diseases in outbreak sit-
uations, and its value provides insight when designing control interventions for
established infections. From a theoretical point of view ℜ0 plays a vital role in the
analysis of, and consequent insight from, infectious disease models. It is defined as
the number of secondary cases produced by a typical infected individual during its
entire period of infectiousness in a completely susceptible population. The basic
reproduction number ℜ0 is the threshold quantity in the disease transmission that
determines whether an infection will spread in a susceptible population or not. It
shows that if ℜ0 < 1 , then the disease/infection does not spread and the infection
dies. On the other hand if ℜ0 > 1, then the disease persists in the whole population.
We find ℜ0 using the next generation matrix [9, 10, 29, 41]. This next generation
matrix approach is now illustrated by returning to the model compartments. we
define θ∗ = F (θ) − V (θ) , where θ = [y, x]T , F (θ) is the matrix of new infection
terms, and V (θ) is the matrix of transfer terms into compartment and out of com-
partment. At the disease-free equilibrium (DFE) matrices F and V are obtained
as

F =

[
∂fi
∂θj

]
E0

, V =

[
∂vi
∂θj

]
E0

, i, j = 1, 2

f =

 axy
(1+bx)(1+cy)

0

 (3.2)
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and

v =

 λy + βy
1+δy

α0x+ axy
(1+bx)(1+cy)

 . (3.3)

Then

F =

 αΛ
α0+bΛ 0

0 0

 (3.4)

and

V =

λ+ β 0

αΛ
α0+bΛ 0

 . (3.5)

This implies

F =

 αΛ
α0+bΛ 0

0 0

 (3.6)

and

V −1 =

 1
λ+β 0

αΛ
α0(α0+bΛ)(Λ+β)

1
α0

 (3.7)

then

FV −1(E0) =

 αΛ
(α0+bΛ)(Λ+β) 0

0 0

 . (3.8)

So FV −1 has eigenvalues 0 and ℜ0, where ℜ0 is the spectral radius (largest eigen-
value) given by

ℜ0 = ρ(FV −1) =
αΛ

(β + λ)(α0 + bΛ)
.

When ℜ0 < 1 , one infected person on average produces less than one newly infected
person, and the infection population fails to spread and goes extinct, thus the system
converges to the disease-free equilibrium E0 . However, when ℜ0 > 1, one infected
person on average gives rise to more than one newly infected persons, and the
infection can spread, the system will converge to the positive endemic equilibrium
E∗.

3.3. Local and Global Stability of the Equilibria
In this section, we discuss the local as well as global stability analysis of equilibrium
points. For this, we state the results in the form of theorems and prove them.

3.4. Disease-free equilibrium E0 and its stability
The global stability of the disease-free equilibrium E0 is proved by using common
quadratic and linear Lyapunov functions and LaSalle’s invariance principle.



1490 P. A. Naik, J. Zu & M. Ghoreishi

Theorem 3.2. The disease-free equilibrium E0 is locally asymptotically stable if
ℜ0 < 1 and occurs as a saddle point with stable manifold locally in the x-direction
and unstable manifold locally in the y-direction for ℜ0 > 1 .

Proof. In epidemiological sense, the above result depicts that small inflow of
infected individuals will not be able to spread infection if ℜ0 < 1. In this case the
spread of infection is dependent on initial sizes of sub-population. To prove the
above Theorem 3.2, the general variatonal matrix and the matrices corresponding
to each equilibrium point will be obtained. Therefore, the variational matrix is
given by

Γ =

−α0 − ay
(1+cy)

(
(1+bx)−bx
(1+bx)2

)
ax

(1+by)

(
(1+cy)−cy
(1+cy)2

)
ay

(1+cy)

(
(1+bx)−bx
(1+bx)2

)
ax

(1+by)

(
(1+cy)−cy
(1+cy)2

)
− λ− β (1+δy)−δy

(1+δy)2

 . (3.9)

Now at the disease-free equilibrium E0,

Γ(E0) =

−α0 − αΛ
α0+bΛ

0 αΛ
α0+bΛ − λ− β

 , (3.10)

Γ(E0) =

−α0 − αΛ
α0+bΛ

0
(

αΛ
(α0+bΛ)(λ+β) − 1

)
(β + λ)

 , (3.11)

Γ(E0) =

−α0 − αΛ
α0+bΛ

0 (β + λ)[ℜ0 − 1]

 . (3.12)

The eigenvalues of the variational matrix which is upper triangular at disease-free
equilibrium E0 are λ1 = −α0 and λ2 = (β + λ)[ℜ0 − 1] . Therefore, we have seen
the eigenvalue λ1 = −α0 is negative at disease-free equilibrium and the eigenvalue
λ2 = (β+λ)[ℜ0−1] is negative if ℜ0 < 1. Again λ2 = (β+λ)[ℜ0−1] > 0 if ℜ0 > 1.
This proves the Theorem 3.2.

Theorem 3.3. The disease-free equilibrium E0 is globally asymptotically stable in
ℜ+

2 whenever ℜ0 ≤ 1 and unstable otherwise.

Proof. To prove this, let us define the positive definite function ϕ(x, y) : ℜ+
2 → ℜ+

2

by
ϕ(x, y) =

1

(1 + bx0)

(
−x0 ln

x

x0
+ x− x0

)
+ y (3.13)

where x0 = Λ
α0

. Differentiating the above function with respect to the time t along
the solutions of model (2.3), we get from equation (3.13)

ϕ
′
(x, y) =

1

(1 + bx0)

(
x

′
− x0

1
x
x0

x
′

x0

)
+ y

′
,

ϕ
′
(x, y) =

1

(1 + bx0)

(
x− x0
x

)
x

′
+ y

′
,

ϕ
′
(x, y) =

1

(1 + bx0)

(
x− x0
x

)(
Λ− α0x− axy

(1 + bx)(1 + cy)

)
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+

(
axy

(1 + bx)(1 + cy)
− λy − βy

(1 + δy)

)
.

After simplification with some manipulations, the above equation leads to

ϕ
′
(x, y) = −

[
α0(x− x0)

2

x(1 + bx0)
+

(
β

1 + δy
+

(β + λ)c

1 + cy

)
y

]
+

(β + λ)y

1 + cy
[ℜ0 − 1].

This shows ϕ
′
(x, y) < 0 if ℜ0 ≤ 1 and ∀x, y > 0 therefore ϕ

′
(x, y) = 0 only

when x = x0 = Λ
α0

and y = y0 = 0, this implies that the maximum invariant set in
{(x, y) ∈ ϕ : ϕ

′
= 0} is the singleton set [E0 = (x0, y0)]. Hence by LaSalle’s invariant

principle [9,29,41], the disease-free equilibrium E0 is globally asymptotically stable
in ℜ+

2 whenever ℜ0 ≤ 1. It is apparent from the above result that the infection can
be cleared from the population if the basic reproduction number is less than one
which is independent of the initial concentrations of sub populations.

3.5. Analysis at ℜ0 = 1

In this section, we analyze the behavior of system (2.3) when the basic reproduction
number ℜ0 = 1. We notice that the Jacobian matrix of system (2.3) evaluated at
ℜ0 = 1 and a = a∗ = (β+λ)(α0+bΛ)

Λ has a simple zero eigenvalue and another
eigenvalue with negative real part. Stability behavior of equilibrium points at ℜ0 =
1 cannot be determined using linearization, so we use Center manifold theory [4,8,
12, 42]. In order to proceed, we state and prove the following Theorem 3.4 which
provides the behavior of disease-free equilibrium E0 at ℜ0 = 1.

Theorem 3.4. The disease-free equilibrium E0 changes its stability from stable to
unstable at ℜ0 = 1 in ℜ+

2 and system (2.3) exhibits transcritical bifurcation with
bifurcation parameter a = a∗ = (β+λ)(α0+bΛ)

Λ .

Proof. To prove this, the Jacobian matrix of the system (2.3) at disease-free
equilibrium E0 and bifurcation constant a = a∗ = (β+λ)(α0+bΛ)

Λ is given by

Γ =

−α0 − α∗Λ
α0+bΛ

0 α∗Λ
α0+bΛ − λ− β

 . (3.14)

Let ξ = [ξ1, ξ2] and η = [η1, η2]
T be the left eigenvector and right eigenvector of

the Jacobian matrix corresponding to the zero eigenvalue respectively. Therefore,
ξ = [0, 1] and η =

[
− α∗Λ

α0(α0+bΛ) , 1
]T

, then we have

ξ1 = 0, ξ2 = 1, η1 =
α∗Λ

α0(α0 + bΛ)
, η2 = 1.

Then from first Theorem of Castillo-Chavez and Song [4], the bifurcation constants
µ1 and µ2 are given by

µ1 =

2∑
l,m,n

ξlηmηn

(
∂2fl

∂xm∂yn

)
E0,a∗

, µ2 =

2∑
l,m

ξlηm

(
∂2fl

∂xm∂a∗

)
E0,a∗

.
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The nonzero partial derivatives associated with the functions of the system (2.3)
evaluated at ℜ0 = 1 and a = a∗ are

∂f2
∂y

=
ax

1 + bx

[
1

(1 + cy)2

]
− λ− β

(1 + δy)2
,

∂2f2
∂x∂y

=
a

(1 + cy)2

[
1

(1 + bx)

]
=

a∗α2
0

(α0 + bΛ)2
.

This implies (
∂2f2
∂x∂y

)
E0,a∗

=
a∗α2

0

(α0 + bΛ)2
.

Again
∂2f2
∂y2

=
−2acx

(1 + bx)(1 + cy)3
− 2βδ

(1 + δy)3
.

This implies (
∂2f2
∂x∂y

)
E0,a∗

= −2

(
a∗cΛ

(α0 + bΛ)
+ βδ

)
.

Similarly,
∂2f2
∂y∂a∗

=
x

1 + bx

[
1

(1 + cy)2

]
.

This implies (
∂2f2
∂x∂a∗

)
E0,a∗

=
Λ

(α0 + bΛ)
.

Now

µ1 =

2∑
l,m,n

ξlηmηn

(
∂2fl

∂xm∂yn

)
E0,a∗

,

µ1 =

2∑
l,m,n

ξlηmηn

(
∂2fl

∂xm∂yn

)
E0,a∗

= ξ2

[
µ1µ2

a∗α2
0

(α0 + bΛ)2
+ µ2

2

(
−2

(
a∗cΛ

α0 + bΛ
+ βδ

))]
=

[
a∗α2

0

(α0 + bΛ)2
a∗Λ

α0(α0 + bΛ)
+

(
−2

(
a∗cΛ

α0 + bΛ
+ βδ

))]
=

[
a∗α0

(α0 + bΛ)2
a∗Λ

(α0 + bΛ)
+

(
−2

(
a∗cΛ

α0 + bΛ
+ βδ

))]
.

This implies

µ1 =

[
− a∗Λ

(α0 + bΛ)

(
a∗α0

(α0 + bΛ)2
+ 2

(
c+ βδ

α0 + bΛ

a∗Λ

))]
< 0

and

µ2 =

2∑
l,m

ξlηm

(
∂2fl

∂xm∂a∗

)
E0,a∗
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= ξ2

(
η2

∂2fl
∂y∂a∗

)
E0,a∗

=
Λ

(α0 + bΛ)
> 0.

This shows that, at ℜ0 = 1 and a = a∗ = (β+λ)(α0+bΛ)
Λ , µ1 < 0 and µ2 > 0.

This implies from first Theorem of Castillo-Chavez and Song [4], the disease-free
equilibrium E0 changes its stability from stable to unstable when ℜ0 crosses the
threshold value i.e., ’one’ and exhibits transcritical bifurcation. This proves the
above Theorem 3.4.

3.6. Endemic equilibrium E∗ = (x∗, y∗) and its stability
In this section, we will now show the existence of endemic equilibrium E∗ = (x∗, y∗)
by using isocline method under certain threshold value or conditions. Let us assume
that

Φ(x, y) = Λ− α0x− axy

(1 + bx)(1 + cy)
, (3.15)

Ψ(x, y) =
axy

(1 + bx)(1 + cy)
− λ− βy

1 + δy
. (3.16)

From the first isocline (3.15), we observe that if y = 0 then x = Λ
α0

= x0 and

dx

dy
= −

∂Φ
∂y

∂Φ
∂x

where

∂Φ

∂x
= −α0 −

ay

(1 + bx)2(1 + cy)
,

∂Φ

∂y
= − ax

(1 + bx)(1 + cy)2
.

This implies that
dx

dy
= −

ax
(1+bx)(1+cy)2

α0 +
ay

(1+bx)2(1+cy)

< 0.

Hence, it is seen that the first isocline (3.15) is decreasing function of y. Now,
from the second isocline (3.16), we have the following observations y = 0 then
x = β+λ

a−b(β+λ) = x̂ that implies

x̂ > 0 if a > b(β + λ), (3.17)

and
dx

dy
= −

∂Ψ
∂y

∂Ψ
∂x

where

∂Ψ

∂x
= − a

(1 + bx)2(1 + cy)
,

∂Ψ

∂y
= − acx

(1 + bx)(1 + cy)2
+

βδ

(1 + δy)2
.
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This implies that
dx

dy
=

acx
(1+bx)(1+cy)2 − βδ

(1+δy)2

a
(1+bx)2(1+cy)

.

It can be seen from the above expression that the denominator is always positive
and the numerator is positive if

acx

(1 + bx)(1 + cy)2
>

βδ

(1 + δy)2
.

After substituting the maximum values of x and y
(
i.e.x = Λ

α0
, y = 0

)
, we get the

inequality acΛ
α0+bΛ > βδ. Thus dx

dy is positive if acΛ
α0+bΛ > βδ and Ψ(x, y) is increasing

function of y. This implies that the two isoclines (3.15) and (3.16) intersects at a
unique point E∗ = (x∗, y∗) i.e., if ℜ0 = aΛ

(β+λ)(α0+bΛ) > 1. Thus we can state the
existence and uniqueness of the endemic equilibrium in the Theorem 3.5.

Theorem 3.5. The endemic equilibrium E∗ = (x∗, y∗) exists if the following in-
equalities hold true

acΛ

α0 + bΛ
> βδ, (3.18)

ℜ0 =
aΛ

(β + λ)(α0 + bΛ)
> 1. (3.19)

Proof. It may be noted that if condition (3.19) hold, then condition (3.17) is
satisfied by default. Also, if the condition (3.18) fails, then dx

dy for isocline (3.16)
may be positive or negative depending upon the values of parameters. In such a
case there may exist more than one endemic equilibrium.

3.7. Uniform persistence of the system
The uniform persistence of system (2.3) in biological sense means that the sub-
populations exists always and will never extinct if they are present initially. Now
in the next Theorem 3.6, we obtain the conditions for the uniform persistence of
system (2.3) as

Theorem 3.6. From the Theorem 3.1 which holds, lets us assume that the following
inequality is satisfied:

max

{
aΛ

(α0 + bΛ)(α0 + cΛ)
,

β

(α0 + δΛ)

}
< 1.

Then the system (2.3) is uniformly persistent.

Proof. To prove this, we have x(0) > 0 and y(0) > 0 . Then the system (2.3) is
said to be uniformly persistent [45,47] if there exists positive constants K1 and K2

such that

K1 ≤ lim
t→∞

inf x(t) ≤ lim
t→∞

supx(t) ≤ K2,

K1 ≤ lim
t→∞

inf y(t) ≤ lim
t→∞

sup y(t) ≤ K2.
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Now from Theorem 3.1, we have

lim
t→∞

supx(t) ≤ Λ

α0
,

lim
t→∞

sup y(t) ≤ Λ

α0
.

This implies, for any ϵ > 0 there exists a T > 0 such that

x(t) ≤ Λ

α0
+ ϵ = x̂1,

y(t) ≤ Λ

α0
+ ϵ = x̂1.

From the equation first of model (2.3), we have

dx

dt
≥ Λ− α0x− ax̂1

2

(1 + bx̂1)(1 + cx̂1)
.

This implies that

lim
t→∞

inf x(t) ≥ 1

α0

(
Λ− ax̂1

2

(1 + bx̂1)(1 + cx̂1)

)
which is true for every sufficiently small ϵ > 0. Hence for large t , it follows that

lim
t→∞

inf x(t) ≥ Λ

α0

(
1− aΛ

(1 + bΛ)(1 + cΛ)

)
= x̂2

and x̂2 > 0 if aΛ
(1+bΛ)(1+cΛ) < 1 or ℜ0 <

α0+cΛ
β+λ .

Again from the system (2.3), we have

d

dt
(x+ y) ≥ Λ− λm(x+ y)− βy

1 + δy

where λm = max{α0, λ}.
This implies

lim
t→∞

inf(x(t) + y(t)) ≥ Λ

λm

(
1− β

(α0 + δΛ)

)
= x̂3.

This shows that x̄3 > 0 if β
(α0+δΛ) < 1. This proves the above Theorem 3.6.

Now we will discuss the local and global stability of the endemic equilibrium
E∗ = (x∗, y∗) for that we state and prove the following Theorem 3.7.

Theorem 3.7. The endemic equilibrium E∗ is locally asymptotically stable iff the
following inequalities holds true

ax∗

(1 + bx∗)(1 + cy∗)2
< Q1, (3.20)

aα0x
∗

(1 + bx∗)(1 + cy∗)2
< Q2 (3.21)



1496 P. A. Naik, J. Zu & M. Ghoreishi

where

Q1 =

[
α0 + λ+

β

(1 + δy∗)2
+

ay∗

(1 + bx∗)2(1 + cy∗)

]
,

Q2 =

[(
α0 +

ay∗

(1 + bx∗)2(1 + cy∗)

)(
λ+

β

(1 + δy∗)2

)]
.

Proof. To prove the local stability of the endemic equilibrium E∗ = (x∗, y∗) , the
Jacobian matrix associated with the system (2.3) at the endemic equilibrium E∗ is
given by

Γ∗(E∗) =

−α0 − ay∗

(1+bx∗)2(1+cy∗) − ax∗

(1+bx∗)(1+cy∗)2

ay∗

(1+bx∗)2(1+cy∗)
ax∗

(1+bx∗)(1+cy∗)2 − λ− β
(1+δy∗)2

 .
After simplification, we get the characteristic polynomial associated with the Jaco-
bian matrix at the endemic equilibrium E∗ as

∆2 + ξ1∆+ ξ2 = 0, (3.22)

where

ξ1 =

[
α0 +

ay∗

(1 + bx∗)2(1 + cy∗)
+

ax∗

(1 + bx∗)(1 + cy∗)2
+ λ+

β

(1 + δy∗)2

]
,

ξ2 =

[(
α0 +

ay∗

(1 + bx∗)2(1 + cy∗)

)(
λ+

β

(1 + δy∗)2

)
− aα0x

∗

(1 + bx∗)(1 + cy∗)2

]
.

According to the Routh-Hurwitz criteria, It can be seen that the eigenvalues of the
Jacobian matrix at the endemic equilibrium have negative real parts if and only
if ξ1 > 0 and ξ2 > 0. This implies that the endemic equilibrium E∗ = (x∗, y∗) is
locally asymptotically stable if and only if inequalities (3.20) and (3.21) hold true.
It can be seen that conditions (3.20) and (3.21) holds if

ax∗

(1 + bx∗)(1 + cy∗)2
< λ+

β

(1 + δy∗)2
.

In the next Theorem 3.8, we show the endemic equilibrium E∗ is globally asymp-
totically stable. The globally asymptotic stability of the endemic equilibrium E∗

is proved by constructing a global Lyapunov function. We obtain the Lyapunov
function of a suitable combination of Volterra type functions

Theorem 3.8. If ℜ0 > 1 then the unique endemic equilibrium E∗ = (x∗, y∗) is
globally asymptotically stable in the interior of ϕ.

Proof. To prove the global stability of endemic equilibrium, let us define a Lya-
punov function ϕ̂ : {(x, y) ∈ ϕ : x, y > 0} → ℜ by

ϕ̂(x, y) =
(
x− x∗ − x∗ ln

x

x∗

)
+

(
y − y∗ − y∗ ln

y

y∗

)
. (3.23)

This function is defined, continuous and positive definite for all x, y > 0. It can be
verified that the function ϕ̂(x, y) takes the value ϕ̂(x, y) = 0 at the steady state E∗,
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and thus, the global minimum of ϕ̂(x, y) occurs at the endemic steady state E∗ .
Since (x∗, y∗) is an endemic steady state point of (2.3), we have

Λ = α0x
∗ +

ax∗y∗

(1 + bx∗)(1 + cy∗)
, (3.24)

ax∗y∗

(1 + bx∗)(1 + cy∗)
= λy∗ +

βy∗

(1 + δy∗)
. (3.25)

Computing the derivative of ϕ̂(x, y) along the solutions of system (2.3), we obtain

ϕ̂
′
(x, y) =

(
x− x∗

x

)
x

′
+

(
y − y∗

y

)
y

′
,

ϕ̂
′
(x, y) =

(
x− x∗

x

)[
Λ− α0x+

axy

(1 + bx)(1 + cy)

]
+

(
y − y∗

y

)[
axy

(1 + bx)(1 + cy)
− λy − βy

(1 + δy)

]
,

ϕ̂
′
(x, y) =

(
x− x∗

x

)[
α0x

∗ +
ax∗y∗

(1 + bx∗)(1 + cy∗)
− α0x− axy

(1 + bx)(1 + cy)

]
+

(
y − y∗

y

)[
λy∗ +

βy∗

(1 + δy∗)
− λy − βy

(1 + δy)

]
.

This implies

ϕ̂′(x, y) ≤ − (x− x∗)2

x

[
α0x+

ay

(1 + bx)(1 + cy)

]
− (y − y∗)2

y

[
λ+

β

(1 + δy)

]
.

(3.26)
Therefore, ϕ̂′

(x, y) ≤ 0 for all x, y > 0, where the equality ϕ̂
′
(x, y) = 0 holds only

when x = x∗ and y = y∗. It is easy to see that the endemic equilibrium E∗ is
the only largest invariant set in {(x, y) ∈ ϕ : ϕ̂′(x, y) = 0}. Therefore, by LaSalles
invariance principle [9,29,41], the endemic equilibrium E∗ is globally asymptotically
stable in the interior of ϕ. This proves that the endemic equilibrium E∗ is globally
asymptotically stable and hence the proof of the Theorem 3.8.

Theorem 3.9. The model (2.3) does not have any periodic solution in the interior
of the positive quadrant of the xy-plane if the following inequalities hold βc > βδ.

Proof. To prove the above Theorem, let us take the following real valued function
in the interior of positive quadrant of the xy-plane as

Π(x, y) =
(1 + bx)(1 + cy)

xy
> 0. (3.27)

Consider

Π1(x, y) = Λ− α0x− axy

(1 + bx)(1 + cy)
,

Π2(x, y) =
axy

(1 + bx)(1 + cy)
− λy − βy

(1 + δy)
,
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div(ΠΠ1,ΠΠ2) =
∂

∂x
(ΠΠ1) +

∂

∂y
(ΠΠ2)

=
∂

∂x

(
Λ(1 + bx)(1 + cy)

xy
− α0

(1 + bx)(1 + cy)

xy
− a

)
+

∂

∂y

(
a− Λ(1 + bx)(1 + cy)

xy
− βy

(1 + δy)

1 + cy

y

)
,

(3.28)

div(ΠΠ1,ΠΠ2) = −Λ
1 + cy

x2y
− α0b

1 + cy

y
− λc

1 + bx

x
− 1 + bx

x(1 + δy)2
(βc− βδ).

It can be seen that the above expression is not equal to zero and this will not change
sign in the positive quadrant of the xy-plane if the inequality βc > βδ holds. Then
from Dulac’s criterion [42], we can say that model (2.3) does not have any periodic
solution in the interior of the positive quadrant of the xy-plane. The meaning of
the above Theorem 3.9 in epidemiological sense is that if the inequality βc > βδ
holds good then the disease will not reoccur in the population.

4. Homotopy analysis solution
4.1. Basic idea
As in the proposed SIR epidemic model explored in this study, many practical
situations in engineering, biology and science can be modeled with different types
of systems of ordinary differential equations of the form

θi = fi(t, θ1, θ2, . . . , θn), θi(t0) = θi,0, i = 1, 2, . . . , n. (4.1)

As per the homotopy analysis method proposed by Liao [27], each equation of the
system (4.1) is written in the form

Ni[(u1(θ1, t), u2(θ2, t), . . . , un(θn, t)] i = 1, 2, . . . , n (4.2)

where N1, N2, . . . , Nn are nonlinear operators, θ and t denote the independent vari-
ables and u1, u2, . . . , un are unknown functions. For simplicity, we ignore all bound-
ary or initial conditions, which can be treated in a similar way. By means of the
homotopy analysis method, we first construct the so-called zeroth-order deformation
equation

(1− q)L[ψi(t; q)− ui,0(t)]=qℏHi(t)Ni[ψ1(t; q), ψ2(t; q), . . . , ψn(t; q)], i = 1, 2, . . . , n
(4.3)

where q ∈ [0, 1] is the embedding parameter, ℏ ̸= 0 is an auxiliary artificial param-
eter, L is an auxiliary linear operator, ψi(t; q) are unknown functions, , ui(θ0, t) =
ui,0(t) is an initial guess of ψi(t; q) and Hi denotes a nonzero auxiliary function. It
is important to emphasize that, in the frame of homotopy analysis method, there is
a great freedom to choose auxiliary entities such as ℏ , Hi(t) and L base functions
for the representation of the solution ui(t). Specifically, we can use in the construc-
tion of the solution ui(t) base functions such as polynomials, exponentials, rational
functions, etc. It is obvious that when the embedding parameter q = 0 and q = 1
equation (4.3) becomes

q(t; 0) = ui,0(t) and qi(t; 1) = ui(t) i = 1, 2, . . . , n
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respectively. Thus as q increases from 0 to 1 , the solution varies from the initial
guess ui,0(t) to the solution ui(t) . Expanding ψi(t; q) in Taylor series with respect
to q, one obtain

ψi(t; q) = ui,0(t) +

∞∑
m=1

ui,m(t)qm i = 1, 2, . . . , n (4.4)

where

ui,m(t) =
1

m!

∂mψi(t; q)

∂qm

∣∣∣∣
q=0

.

The convergence of the series (4.4) depends upon the auxiliary artificial parameter,
the auxiliary linear operators and the base functions. If these are properly chosen
then at q = 1, the series is convergent and one has

ui(t) = ψi(t; 1) = ui,0(t) +

∞∑
m=1

ui,m(t) i = 1, 2, . . . , n (4.5)

which must be one of the solutions of the original nonlinear equations, as proven
by Liao [27]. Define the vectors

u⃗n = {u1(t), u2(t), . . . , un(t)}.

Differentiate the zeroth-order deformation equation (4.3) m-times with respect to
q and then dividing them by m! and finally setting q = 0, we get the following
mth-order deformation equation

L[ui,m(t)−χmui,m−1(t)]=ℏHi(t)ℜi,m[u1,m−1(t), u2,m−1(t), . . . , ui,m−1(t)], i=1, 2, . . . , n
(4.6)

where

ℜi,m[u1,m−1(t), u2,m−1(t), . . . , ui,m−1(t)]

=
1

(m− 1)!

∂m−1Ni[(u1(θ1, t), u2(θ2, t), . . . , un(θn, t)]

∂qm−1

∣∣∣∣
q=0

and

χm :=

{
0, m ≤ 1,
1, m > 1.

A one-parameter family of explicit series solutions is obtained by solving the linear
equation (4.6). It should be emphasized that ui,m(t) for m ≥ 1 is governed by the
linear equation (4.6) with linear boundary conditions that comes from the original
problem, which can be solved by the symbolic computation software such as MAT-
LAB, Mathematica or Maple. In this way the homotopy analysis method converts
a complicated nonlinear problem into simpler linear sub-problems. If equation (4.1)
admits unique solution, then this method will produce the unique solution. If equa-
tion (4.1) does not possess a unique solution, the homotopy analysis method will
give a solution among many other possible solutions.
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4.2. Application of HAM for SIR or xyz modified model
Mostly researchers focus only on discussing the stability analysis, bifurcation anal-
ysis and the limit cycles of the system and thus giving the qualitative analysis of
the system. The direct and simple numerical simulation is lack. So finding explicit
analytic solution of the system is extremely important in epidemiology. In this
section, we employ the homotopy analysis method [27,28,32] to obtain an approxi-
mate solution of the proposed SIR epidemic model. To construction the homotopy
analytical solution for the proposed modified SIR model, we nondimensionalize our
system (2.1) by using the following rescaling [13,45,50]

x = x1, y = x2, z = x3.

subject to the initial conditions

x1(0) = IC1, x2(0) = IC2, x3(0) = IC3.

Following the homotopy analysis method, it is straightforward to choose

x1,0(0) = IC1, x2,0(0) = IC2, x3,0(0) = IC3.

as our initial approximations of x1(t) , x2(t) and x3(t), respectively. In this work
we will use

IC1 = 20, IC2 = 15, IC3 = 10.

The dimensionless equations for system (2.1) are written as [13,45,50]

dx1
dt

+
dx1
dt

[a1,1x1 + a1,2x2 + a1,3x1x2] + x1[a1,4 + a1,6x1]

+ x2[a1,5 + a1,8x1 + a1,7x
2
1] + a1,9 = 0,

dx2
dt

+
dx2
dt

[a2,1x2 + a2,2x1 + a2,3x1x2 + a2,4x
2
2 + a2,5x1x

2
2]

+ x2[a2,6 + a2,7x2 + a2,10x
2
2] + x1x2[a2,8 + a2,9x2 + a2,11x

2
2] = 0, (4.7)

dx3
dt

+
dx3
dt

[a3,1x1 + a3,2x2 + a3,3x1x2 + a3,4x
2
2 + a3,5x1x

2
2]

+ x2[a3,6 + a3,7x2 + a3,8x
2
2] + x1x2[a3,9 + a3,10x2 + a3,11x

2
2] + a3,12x1x2x3

+ x3[a3,14 + a3,15x1 + a3,13x2]− x22x3[a3,16 + a3,17x1] = 0,

Due to governing equations, we choose the auxiliary linear operators

L[ψi(t; q)] =
∂ψi(t; q)

∂t

with the property L[Ci] = 0, where Ci are integral constants (hereafter i = 1, 2, 3).
We define the homotopy maps as [27,28,32]

Ψ1(ψ1(t; q), ψ2(t; q), ψ3(t; q)) =(1− q)L[ψ1(t; q)− x1,0(t)]

− qℏH1(t)N1[ψ1(t; q), ψ2(t; q), ψ3(t; q)],

Ψ2(ψ1(t; q), ψ2(t; q), ψ3(t; q)) =(1− q)L[ψ2(t; q)− x2,0(t)]

− qℏH2(t)N2[ψ1(t; q), ψ2(t; q), ψ3(t; q)],
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Ψ3(ψ1(t; q), ψ2(t; q), ψ3(t; q)) =(1− q)L[ψ3(t; q)

− x3,0(t)]− qℏH3(t)N3[ψ1(t; q), ψ2(t; q), ψ3(t; q)],

where ℏ ̸= 0 and Hi(t) ̸= 0 denote the so-called auxiliary parameter and auxiliary
function, respectively and due to system (4.7), the nonlinear operators N1, N2 and
N3 are defined as

N1[ψ1(t; q), ψ2(t; q), ψ3(t; q)] =
dψ1(t; q)

dt
+
dψ1(t; q)

dt
[a1,1ψ1(t; q) + a1,2ψ2(t; q)

+ a1,3ψ1(t; q)ψ2(t; q)] + ψ1(t; q)[a1,4 + a1,6ψ1(t; q)]

+ ψ2(t; q)[a1,5 + a1,8ψ1(t; q) + a1,7ψ
2
1(t; q)]

+ a1,9,

N2[ψ1(t; q), ψ2(t; q), ψ3(t; q)] =
dψ2(t; q)

dt
+
dψ2(t; q)

dt
[a2,1ψ2(t; q) + a2,2ψ1(t; q)

+ a2,3ψ1(t; q)ψ2(t; q) + a2,4ψ
2
2(t; q)

+ a2,5ψ1(t; q)ψ
2
2(t; q)] + ψ2(t; q)[a2,6 + a2,7ψ2(t; q)

+ a2,10ψ
2
2(t; q)] + ψ1(t; q)ψ2(t; q)[a2,8

+ a2,9ψ2(t; q) + a2,11ψ
2
2(t; q)] = 0,

N3[ψ1(t; q), ψ2(t; q), ψ3(t; q)] =
dψ3(t; q)

dt
+
dψ3(t; q)

dt
[

a3,1ψ1(t; q) + a3,2ψ2(t; q) + a3,3ψ1(t; q)ψ2(t; q)

+ a3,4ψ
2
2(t; q) + a3,5ψ1(t; q)ψ

2
2(t; q)]

+ ψ2(t; q)[a3,6 + a3,7ψ2(t; q) + a3,8ψ
2
2(t; q)]

+ ψ1(t; q)ψ2(t; q)[a3,9 + a3,10ψ2(t; q) + a3,11ψ
2
2(t; q)]

+ a3,12ψ1(t; q)ψ2(t; q)ψ3(t; q) + ψ3(t; q)[a3,14

+ a3,15ψ1(t; q) + a3,13ψ2(t; q)]

− ψ2
2(t; q)ψ3(t; q)[a3,16 + a3,17ψ1(t; q)] = 0.

Clearly, when q = 0, we have the homotopy maps are

Ψ1(ψ1(t; 0), ψ2(t; 0), ψ3(t; 0)) = L[ψ1(t; q)− x1,0(t)],

Ψ2(ψ1(t; 0), ψ2(t; 0), ψ3(t; 0)) = L[ψ2(t; q)− x2,0(t)],

Ψ3(ψ1(t; 0), ψ2(t; 0), ψ3(t; 0)) = L[ψ3(t; q)− x3,0(t)]

and when q = 1 will be

Ψ1(ψ1(t; 1), ψ2(t; 1), ψ3(t; 1)) = −ℏH1(t)N1[ψ1(t; 1), ψ2(t; 1), ψ3(t; 1)],

Ψ2(ψ1(t; 1), ψ2(t; 1), ψ3(t; 1)) = −ℏH2(t)N2[ψ1(t; 1), ψ2(t; 1), ψ3(t; 1)],

Ψ3(ψ1(t; 1), ψ2(t; 1), ψ3(t; 1)) = −ℏH3(t)N3[ψ1(t; 1), ψ2(t; 1), ψ3(t; 1)].

Thus, by using the embedding parameter q ∈ [0, 1] and ℏ the non-zero auxiliary pa-
rameter, we construct a family of equations the zeroth-order deformation equations
in the following form

(1− q)L[ψi(t; q)− ui,0(t)] = qℏHi(t)Ni[ψ1(t; q), ψ2(t; q), ψ3(t; q)], i = 1, 2, 3 (4.8)
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subject to the initial conditions

ψ1(0; q) = 20, ψ2(0; q) = 15, ψ3(0; q) = 10.

For q = 0 and q = 1, the above zeroth-order Eq. (4.8) have the solutions

ψ1(t; 0) = x1,0(t), ψ2(t; 0) = x2,0(t), ψ3(t; 0) = x3,0(t) (4.9)

and

ψ1(t; 1) = x1(t), ψ2(t; 1) = x2(t), ψ3(t; 1) = x3(t). (4.10)

Therefore, as the embedding parameter q increases from 0 to 1, the functions
ψ1(t; q), ψ2(t; q) and ψ3(t; q) vary from the initial values x1,0(t), x2,0(t) and x3,0(t)
to the exact solution x1(t), x2(t) and x3(t), respectively. This is the basic idea of
the homotopy and this kind of variation is called deformations in topology. Ex-
panding ψ1(t; q), ψ2(t; q) and ψ3(t; q) in Taylor series with respect to q, we have the
homotopy-Maclaurin series

ψi(t; q) = xi,0(t) +

∞∑
m=1

xi,m(t)qm, i = 1, 2, 3 (4.11)

where
xi,m(t) =

1

m!

∂mψi(t; q)

∂qm

∣∣∣∣
q=0

(4.12)

where ℏ is chosen in such a way that these series are convergent at q = 1. Thus,
through Eqs. (4.9)-(4.12), we have the homotopy series solutions

xi(t) = xi,0(t) +

∞∑
m=1

xi,m(t), i = 1, 2, 3. (4.13)

Taking the mth-order homotopy derivative of zeroth-order Eq. (4.8), and using the
properties

Dm(ψi) = xi,mDm(qkψi) = Dm−k(ψi) =

{
xi,m−k, 0 ≤ k ≤ m,
0, k > m,

Dm(ψ2
i ) =

m∑
k=0

xi,m−kxi,k

and
Dm(ψiϕi) =

m∑
k=0

Dk(ψi)Dm−k(ϕi) =

m∑
k=0

xi,kyi,m−k

where Dm means the mth-order derivative with respect to q, we obtain the mth-
order deformation equations

L[xi,m(t)− χmxi,m−1(t)] = ℏHi(t)ℜi,m[[x1,m−1(t), x2,m−1(t), x3,m−1(t)] (4.14)

where

χm :=

{
0, m ≤ 1,

1, m > 1,
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and the following initial conditions

x1,m(0) = 0, x2,m(0) = 0, x3,m(0) = 0. (4.15)

Defining the vector

x⃗m−1(t) = {x1,m−1(t), x2,m−1(t), x3,m−1(t)}

we drive

ℜ1,m[x⃗m−1(t)] =ẋ1,m−1(t) + a1,1

[
m−1∑
k=0

x1,k(t)ẋ1,m−1−k(t)

]

+ a1,2

[
m−1∑
k=0

x2,k(t)ẋ1,m−1−k(t)

]

+ a1,3

m−1∑
k=0

 k∑
j=0

x1,k−j(t)x2,j(t)

 ẋ1,m−1−k(t)


+ a1,4 [x1,m−1(t)] + a1,5[x2,m−1(t)]

+ a1,6

[
m−1∑
k=0

x1,k(t)x1,m−1−k(t)

]

+ a1,7

m−1∑
k=0

 k∑
j=0

x1,k−j(t)x1,j(t)

x2,m−1−k(t)

 (4.16)

+ a1,8

[
m−1∑
k=0

x1,k(t)x2,m−1−k(t)

]
+ a1,9,

ℜ2,m[x⃗m−1(t)] =ẋ2,m−1(t) + a2,1

[
m−1∑
k=0

x2,k(t)ẋ2,m−1−k(t)

]

+ a2,2

[
m−1∑
k=0

x1,k(t)ẋ2,m−1−k(t)

]

+ a2,3

m−1∑
k=0

 k∑
j=0

x1,k−j(t)x2,j(t)

 ẋ2,m−1−k(t)


+ a2,4

m−1∑
k=0

 k∑
j=0

x2,k−j(t)x2,j(t)

 ẋ2,m−1−k(t)


+ a2,5

m−1∑
k=0

 k∑
j=0

x1,k−j(t)ẋ2,j(t)

k∑
i=0

x1,k−i(t)x1,i(t)


+ a2,6x2,m−1(t) + a2,7

m−1∑
k=0

x2,k(t)x2,m−1−k(t) (4.17)

+ a2,8

[
m−1∑
k=0

x1,k(t)x2,m−1−k(t)

]
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+ a2,9

m−1∑
k=0

 k∑
j=0

x1,k−j(t)x2,j(t)

x2,m−1−k(t)

 ,
+ a2,10

m−1∑
k=0

 k∑
j=0

x2,k−j(t)x2,j(t)

x2,m−1−k(t)


+ a2,11

m−1∑
k=0

 k∑
j=0

x1,k−j(t)x2,j(t)

k∑
i=0

x2,k−i(t)x2,i(t)

 ,

ℜ3,m[x⃗m−1(t)] =ẋ3,m−1(t) + a3,1

[
m−1∑
k=0

x1,k(t)ẋ3,m−1−k(t)

]

+ a3,2

[
m−1∑
k=0

x2,k(t)ẋ3,m−1−k(t)

]

+ a3,3

m−1∑
k=0

 k∑
j=0

x1,k−j(t)x2,j(t)

 ẋ3,m−1−k(t)


+ a3,4

m−1∑
k=0

 k∑
j=0

x2,k−j(t)x2,j(t)

 ẋ3,m−1−k(t)


+ a3,5

m−1∑
k=0

 k∑
j=0

x1,k−j(t)ẋ3,j(t)

k∑
i=0

x2,k−i(t)x2,i(t)


+ a3,6x2,m−1(t) + a3,7

[
m−1∑
k=0

x2,k(t)x2,m−1−k(t)

]
(4.18)

+ a3,8

m−1∑
k=0

 k∑
j=0

x2,k−j(t)x2,j(t)

x2,m−1−k(t)


+ a3,9

[
m−1∑
k=0

x1,k(t)x2,m−1−k(t)

]

+ a3,10

m−1∑
k=0

 k∑
j=0

x2,k−j(t)x2,j(t)

x1,m−1−k(t)


+ a3,11

m−1∑
k=0

 k∑
j=0

x1,k−j(t)x2,j(t)

k∑
i=0

x2,k−i(t)x2,i(t)


+ a3,12

m−1∑
k=0

 k∑
j=0

x1,k−j(t)x2,j(t)

x3,m−1−k(t)


+ a3,13

[
m−1∑
k=0

x2,k(t)x3,m−1−k(t)

]
+ a3,14[x3,m−1(t)]
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+ a3,15

[
m−1∑
k=0

x1,k(t)x3,m−1−k(t)

]

− a3,16

m−1∑
k=0

 k∑
j=0

x2,k−j(t)x2,j(t)

x3,m−1−k(t)


+ a3,17

m−1∑
k=0

 k∑
j=0

x2,k−j(t)x2,j(t)

k∑
i=0

x1,k−i(t)x3,i(t)


and

χm :=

{
0, m ≤ 1,

1, m > 1.

According to the notations and definitions provided above and by putting Hi(t) =
1, i = 1, 2, 3, the solution of the linear non-homogeneous Eq. (4.14) at initial con-
ditions (4.15) for all m ≥ 1, becomes

xi,m(t) = χmxi,m−1(t) + ℏ
∫ t

0

ℜi,m[x⃗m−1]dτ. (4.19)

Finally, the mth-order approximate solution of non-linear system (2.1), can be ob-
tained as

xi(t) = xi,0 +

m∑
n=1

xi,n(t), i = 1, 2, 3. (4.20)

The exact solutions are given by the limits

xi(t) = lim
m→+∞

xi,m(t), i = 1, 2, 3.

5. Numerical results
In this section, we present numerical results for the model (2.1) with the help of
Mathematica software for homotopy analysis method. To illustrate the capability
of the homotopy analysis method, we have chosen the following set of parameter
values described in table 1 and in the appendix. By using Mathematica software,
8th-order approximations for susceptibles x(t), infected y(t) and recovered z(t) were
calculated and are presented below

ψx,8(t; q)=

7∑
m=0

xm(t) =20 + 0.4473ℏt+ 1.492737ℏ2t+ 2.76752ℏ3t+ 3.07859ℏ4t

+ 2.05477ℏ5t+ 0.76191ℏ6t
+ 0.12108ℏ7t+0.0943628ℏ2t2+0.350478ℏ3t2+0.58578ℏ4t2

+ 0.52217ℏ5t2 + 0.24243ℏ6t2

+ 0.046307ℏ7t2 + 0.0043493ℏ3t3 + 0.014575ℏ4t3

+ 0.019536ℏ5t3 + 0.012123ℏ6t3

+ 0.0029018ℏ7t3 + 0.00006297ℏ4t4 + 0.0001701ℏ5t4
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+ 0.0001595ℏ6t4 + 0.00005129ℏ7t4

+ 1.11301× 10−7ℏ5t5 + 1.11301× 10−7ℏ5t5

+ 1.1975× 10−7ℏ7t5 − 3.41717× 10−9ℏ6t6

− 3.19538× 10−9ℏ7t6

− 1.5972× 10−11ℏ7t7 + 2.28516× 10−7ℏ7t6, (5.1)

ψy,8(t; q) =

7∑
m=0

ym(t) =15 + 0.17831ℏt+ 0.59862ℏ2t+ 1.11648ℏ3t+ 1.2494ℏ4t

+ 0.83889ℏ5t+ 0.31293ℏ6t
+ 0.050026ℏ7t− 0.035782ℏ2t2 − 0.13292ℏ3t2

− 0.22218ℏ4t2 − 0.19807ℏ5t2 − 0.091968ℏ6t2

− 0.017569ℏ7t2 − 0.003048ℏ3t3 − 0.010215ℏ4t3

− 0.013691ℏ5t3 − 0.008495ℏ6t3

− 0.002033ℏ7t3 − 0.000063743ℏ4t4 − 0.00017165ℏ5t4

− 0.00016048ℏ6t4

− 0.000051442ℏ7t4 − 2.98764× 10−7ℏ5t5

− 5.71816× 10−7ℏ6t5 − 2.81208× 10−7ℏ7t5

− 2.49227× 10−9ℏ6t6 − 2.31991× 10−9ℏ7t6

− 1.6326× 10−11ℏ7t7, (5.2)

ψz,8(t; q) =

7∑
m=0

zm(t) =10− 6.24762ℏt− 20.9744ℏ2t− 39.1193ℏ3t− 43.7768ℏ4t

− 29.3933ℏ5t− 10.9643ℏ6t
− 1.75282ℏ7t− 0.54129ℏ2t2 − 2.02408ℏ3t2 − 3.40591ℏ4t2

− 3.05654ℏ5t2 − 1.42863ℏ6t2

− 0.27472ℏ7t2 − 0.0148338ℏ3t3 − 0.0502404ℏ4t3

− 0.068057ℏ5t3 − 0.0426775ℏ6t3

− 0.0103217ℏ7t3 − 0.00013785ℏ4t4 − 0.000381295ℏ5t4

− 0.00036590ℏ6t4 − 0.000012029ℏ7t4

− 2.81857× 10−7ℏ5t5 − 6.18926× 10−7ℏ6t5

− 3.41791× 10−7ℏ7t5 − 5.61582× 10−12ℏ6t6

− 2.07272× 10−10ℏ7t6

− 6.68787× 10−12ℏ7t7,
(5.3)

6. Discussion
The homotopy terms depend on both the physical variable t and the convergence
control parameter ℏ. The artificial parameter ℏ can be freely chosen to adjust and
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control the interval of convergence, and even more, to increase the convergence at
a reasonable rate, fortunately at the quickest rate. This concept plays a key role
in the HAM and is generally used to gain sufficiently accurate approximations with
the smallest number of homotopy terms in the homotopy series (4.20). In fact,
the use of such an auxiliary parameter clearly distinguishes the HAM from other
perturbation-like analytical techniques. According to convergence theorem [39,53],
it is to be noted that the homotopy series solution contain the auxiliary parameter
which provides a simple way to adjust and control the convergence of the series
(5.1)-(5.3). In fact, it is very important to ensure that the series Eqs. (4.20)-(4.22)
are convergent. To this end, the ℏ-curves of x(t), y(t) and z(t) under 8th-order
approximation of the homotopy analysis method are plotted in Fig. 2.

Figure 2. Samples of ℏ-curves for x(t), y(t) and z(t) under 8th-order approximation for t = 0.5.

According to these ℏ-curves, it is easy to gain the valid region the interval of
convergence and optimum value for parameter ℏ which corresponds to the line
segment nearly parallel to the horizontal axis. For better presentation, these valid
regions have been listed in table 2. We exhibit the interval of convergence of ℏ and
the respective optimum value ℏ∗ corresponding to the dynamical regime presented
in Fig. 2. It is to be noted that these valid regions ensure the convergence of the
obtained series.

Table 2. The admissible values of ℏ derived from Fig. 2.

ℏ∗1 ℏ∗2 ℏ∗3

[−1.3,−0.5] [−1.15,−0.65] [−1.25,−0.55]

When ℏ = −1 the solution obtained by the HAM is the same as the series solu-
tion obtained by using homotopy perturbation method (HPM) [28,39]. A procedure
to check the convergence of a homotopy-series solution is to substitute this series
into the original governing equations and initial conditions, and then to evaluate
the corresponding squared residual errors-the more quickly the residual error decays
to zero, the faster the homotopy-series converges. In this context, an error analysis
is performed in the following lines [13]. We substitute Eqs. (5.1)-(5.3) into model
(2.1) and obtain the residual functions ERi(x, y, z; ℏi), i = 1, 2, 3 as follows

ER1,m(x, y, z, ℏ1) =
dψx(t; ℏ1)

dt
+
dψx(t; ℏ1)

dt
[a1,1ψx(t; ℏ1) + a1,2ψy(t; ℏ1)

+ a1,3ψx(t; ℏ1)ψy(t; ℏ1)] + ψx(t; ℏ1)[a1,4 + a1,6ψx(t; ℏ1)]
+ ψy(t; ℏ1)[a1,5 + a1,8ψx(t; ℏ1) + a1,7ψ

2
x(t; ℏ1)] + a1,9, (6.1)
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ER2,m(x, y, z, ℏ2) =
dψy(t; ℏ2)

dt
+
dψy(t; ℏ2)

dt
[a2,1ψy(t; ℏ2) + a2,2ψx(t; ℏ2)

+ a2,3ψx(t; ℏ2)ψy(t; ℏ2) + a2,4ψ
2
y(t; ℏ2)

+ a2,5ψx(t; ℏ2)ψ2
y(t; ℏ2)] + ψy(t; ℏ2)[a2,6

+ a2,7ψy(t; ℏ2) + a2,10ψ
2
y(t; ℏ2)]

+ ψx(t; ℏ2)ψy(t; ℏ2)[a2,8 + a2,9ψy(t; ℏ2) + a2,11ψ
2
y(t; ℏ2)] = 0,

(6.2)

ER3,m(x, y, z, ℏ3) =
dψz(t; ℏ3)

dt
+
dψz(t; ℏ3)

dt
[a3,1ψx(t; ℏ3)

+ a3,2ψy(t; ℏ3) + a3,3ψx(t; ℏ3)ψy(t; ℏ3) + a3,4ψ
2
y(t; ℏ3)

+ a3,5ψx(t; ℏ3)ψ2
y(t; ℏ3)] + ψy(t; ℏ3)[a3,6 + a3,7ψy(t; ℏ3)

+ a3,8ψ
2
y(t; ℏ3)]

+ ψx(t; ℏ3)ψy(t; ℏ3)[a3,9 + a3,10ψy(t; ℏ3) + a3,11ψ
2
y(t; ℏ3)]

+ a3,12ψx(t; ℏ3)ψy(t; ℏ3)ψz(t; ℏ3) + ψz(t; ℏ3)[a3,14
+ a3,15ψx(t; ℏ3)
+ a3,13ψy(t; ℏ3)]− ψ2

y(t; ℏ3)ψz(t; ℏ3)[a3,16 + a3,17ψx(t; ℏ3)] = 0.

(6.3)

Yabushita et al. [51] in 2007 suggested an optimization method for convergence
control parameters. Their work is based on the squared residual error. Inspired by
their approach, and following the studies carried out in [20,27], we define the square
residual error for the mth-order approximation to be

∆xm(ℏ1) =
∫ 1

0

(ER1,m(x, y, z, ℏ1))2dt (6.4)

∆ym(ℏ2) =
∫ 1

0

(ER2,m(x, y, z, ℏ2))2dt, (6.5)

∆zm(ℏ3) =
∫ 1

0

(ER3,m(x, y, z, ℏ3))2dt. (6.6)

Values of ℏ1, ℏ2 and ℏ3 can be obtained for which ∆xm(ℏ1), ∆ym(ℏ2) and ∆zm(ℏ3)
are minimum. The optimal values ℏ∗1, ℏ∗2 and ℏ∗3 are determined by solving the
system of equation as

d∆xm(ℏ∗1)
dt

= 0,
d∆ym(ℏ∗2)

dt
= 0,

d∆zm(ℏ∗3)
dt

= 0,

respectively. The optimal values for all of these considered cases are ℏ∗1, ℏ∗2 and ℏ∗3.
The curves of square residual errors for ∆xm(ℏ1), ∆ym(ℏ2) and ∆zm(ℏ3) regarding
8th-order approximation are shown in Fig. 3. For the central information regarding
the order of approximation, in table 3, the minimum values of ∆xm(ℏ1), ∆ym(ℏ2)
and ∆zm(ℏ3) have been given with the optimal values of ℏ∗1, ℏ∗2 and ℏ∗3 for 8th-order
approximation.
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Table 3. The minimum values of ∆xm(ℏ1), ∆ym(ℏ2) and ∆zm(ℏ3) .

ℏ∗1 ∆x7(ℏ∗1) ℏ∗2 ∆y7(ℏ∗2) ℏ∗3 ∆y7(ℏ∗2)

-0.89681 9.26098×10−16 -0.89724 6.14983×10−16 -0.88833 8.49430×10−13

In table 4, the absolute errors ER1,m(x, y, z, ℏ∗1), ER2,m(x, y, z, ℏ∗2) and
ER3,m(x, y, z, ℏ∗3) have been calculated for various t ∈ (0, 1) under 8th-order approx-
imation of homotopy analysis method. From the table, it can be clearly seen that
the HAM provides us the accurate approximate solution for the nonlinear modified
SIR epidemic model (2.1).

Table 4. The absolute errors ER1, ER2 and ER3 for various t ∈ (0, 1).
t ER1,7(x, y, z; ℏ∗1) ER2,7(x, y, z; ℏ∗2) ER3,7(x, y, z; ℏ∗3)
0.0 -4.44089×10−16 0.0 -3.55271×10−15

0.1 -4.72888×10−16 9.76336×10−17 -2.36161×10−15

0.2 -1.49074×10−15 2.73812×10−15 8.27016×10−15

0.3 -1.00877×10−14 1.86703×10−14 7.37585×10−16

0.4 -4.59364×10−14 7.45827×10−14 -2.84079×10−14

0.5 -1.49684×10−13 2.20912×10−13 -3.43425×10−14

0.6 -3.90665×10−13 5.39232×10−13 1.04278×10−13

0.7 -8.73963×10−13 1.14863×10−12 6.18178×10−13

0.8 -1.74634×10−12 2.21051×10−12 1.88543×10−12

0.9 -3.20055×10−12 3.9318×10−12 4.47497×10−12

1 -5.47761×10−12 6.56173×10−12 9.19622×10−12

In Fig. 3, the residual error for t = 0.5 and versus auxiliary parameter ℏ are demon-
strated. We have also shown the square residual error based of HAM in Fig. 4. Fi-

Figure 3. The residual error function for x(t), y(t) and z(t) at t = 0.5 under 8th-order approximation
versus auxiliary parameter ℏ.

nally, the absolute errors ER1,m(x, y, z, ℏ∗1), ER2,m(x, y, z, ℏ∗2) and ER3,m(x, y, z, ℏ∗3)
have been plotted in Fig.5 for t ∈ (0, 1) under 8th-order approximation. By consid-
ering these figures, it is to be noted that the solution obtained using HAM gives an
analytical solution with high order of accuracy.

7. Conclusion
In this paper, the SIR epidemic model with Crowley-Martin type incidence rate
and Holling type-II treatment rate was illustrated and we examined the local as
well as the global dynamics of the system by analysing the basic reproduction
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Figure 4. The square residual error function for x(t), y(t) and z(t) at t = 0.5 under 8th-order approxi-
mation versus auxiliary parameter ℏ.

Figure 5. The absolute error function for x(t), y(t) and z(t) at t = 0.5 under 8th-order approximation.

number ℜ0. We found that the system (2.1) exhibits two equilibria namely disease-
free equilibrium E0 and endemic equilibrium E∗. It is observed, that if ℜ0 > 1
, then the infection persists and if ℜ0 < 1 the infection is cleared. The stability
analysis i.e., local and global stability of disease-free equilibrium E0 and endemic
equilibrium E∗ were studied and found that persistence or eradication of infection is
independent of initial status of the subpopulation. From Theorem 3.6, we found the
system is uniformly persistent under the given condition in the said theorem. The
disease-free equilibrium E0 has been shown to be stable for ℜ0 < 1 , i.e., disease dies
out for ℜ0 < 1 and for ℜ0 > 1, it becomes unstable and the endemic equilibrium
exists. We also discussed the stability of disease-free equilibrium at ℜ0 = 1 using
center manifold theorem. We observed that at ℜ0 = 1 , the disease-free equilibrium
changes its stability from stable to unstable and undergoes transcritical bifurcation.
The endemic equilibrium is locally asymptotically stable for ℜ0 > 1 as shown in
the Theorem 3.7. Also, the global asymptotic stability of endemic equilibrium is
obtained in the Theorem 3.8 for ℜ0 > 1. We have found that system (2.1) has
periodic solution if inequalities as stated in Theorem 3.9 hold true and there is no
periodic solution if βc > βδ holds true. The existence of periodic solution shows
that the infection may reoccur in the future. Also, HAM was applied to obtain
an approximate analytical solution of the presented model. It is important to note
that in this method we have some auxiliary parameters and functions. One of these
parameters is the convergence control parameter which can be applied to adjust
and control the convergence region of obtained solutions. Thus, by plotting several
ℏ-curves and finding the regions of convergence, we showed the advantages and
abilities of the method. The residual and absolute errors were applied to show the
efficiency and accuracy of the method. The results obtained shown that the HAM
is an accurate and effective technique for obtaining the approximate solution of the
modified SIR epidemic model.

Here in the current paper, we have investigated the stability analysis as well
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as obtained the corresponding approximate solution of the proposed SIR epidemic
model. The stability analysis is performed in order to know the disease status
i.e., its persistence or eradication corresponding to Crowley-Martin type incidence
rate and the approximate solution is obtained for the better treatment strategies
according to the Holling type -II treatment rate because more appropriate solutions
leads towards proper treatment and control measures for the disease transmission.

The results presented in this article are likely to inspire applications of the HAM
analytical procedure for solving highly nonlinear problems in theoretical biology.
This study provides another illustration of how an integrated approach, involv-
ing numerical evidences and theoretical reasoning within the theory of dynamical
systems, can directly enhance our understanding of biologically motivated models.
Acknowledgments. The authors would like to thank the reviewers and editors
of this paper for their careful attention to detail and constructive feedback that
improved the presentation of the paper greatly.
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Apendix: Parameter Values.

a1,1 = b = 0.004, a1,2 = c = 0.002, a1,3 = bc = 0.000008, a1,4 = α0 − bΛ = 0.042,

a1,5 = α0c− Λc = −0.0039, a1,6 = α0b = 0.0002, a1,7 = α0bc = 0.0000004,

a1,8 = a = 0.004, a1,9 = −Λ = −2,

a2,1 = c+ δ = 0.0024, a2,2 = b = 0.004, a2,3 = bc+ bδ = 0.0000096,

a2,4 = δc = 0.0000008,

a2,5 = bcδ = 3.2× 10−9, a2,6 = λ+ λδ + β = 0.073021, a2,7 = λc+ βc = 0.000146

a2,8 = λb− a+ βb = −0.003708, a2,9 = λbc+ aδ + λbδ + βbc = 2.1248× 10−6,

a2,10 = λδc = 4.24× 10−8

a2,11 = λδbc = 1.696× 10−10,

a3,1 = b = 0.004, a3,2 = c+ δ = 0.0024, a3,3 = bc+ bδ = 0.0000096,

a3,4 = δc = 0.0000008, a3,5 = bcδ = 3.2× 10−9, a3,6 = −α2 − β = −0.022,

a3,7 = −α2 − α2δ − βc = −0.0020408,

a3,8 = −α2δc = 1.6× 10−9, a3,9 = −α2 − βb = −0.00208,

a3,10 = −α2bc− α2bδ − βbc = 1.792× 10−9,

a3,11 = α2bδc = 6.4× 10−12, a3,12 = −α0bc− α0bδ = −4.8× 10−7,

a3,13 = −α0c− α0δ = −0.00012,

a3,14 = α0 = 0.05, a3,15 = α0b = 0.0002, a3,16 = α0cδ = 4× 10−8,

a3,17 = α0bcδ = 1.6× 10−10.
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