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DYNAMICS OF A STOCHASTIC CHEMOSTAT
COMPETITION MODEL WITH

PLASMID-BEARING AND PLASMID-FREE
ORGANISMS

Miaomiao Gao1, Daqing Jiang1,2,3,†, Tasawar Hayat3,4, Ahmed
Alsaedi3 and Bashir Ahmad3

Abstract In this paper, we consider a chemostat model of competition be-
tween plasmid-bearing and plasmid-free organisms, perturbed by white noise.
Firstly, we prove the existence and uniqueness of the global positive solu-
tion. Then by constructing suitable Lyapunov functions, we establish sufficient
conditions for the existence of a unique ergodic stationary distribution. Fur-
thermore, conditions for extinction of plasmid-bearing organisms are obtained.
Theoretical analysis indicates that large noise intensity σ2

2 is detrimental to the
survival of plasmid-bearing organisms and is not conducive to the commercial
production of genetically altered organisms. Finally, numerical simulations
are presented to illustrate the results.

Keywords Stochastic chemostat model, plasmid-bearing, plasmid-free, sta-
tionary distribution.
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1. Introduction
The chemostat, a continuous culture device mainly used for various theoretical
studies related to the growth rate of microorganisms, plays an important role in
waste treatment and fermentation processes [20]. It has the advantage that the
parameters are readily measurable, and thus the mathematics is tractable [3]. Many
types of chemostat models have been investigated extensively in the literature (see
[1,2,12,17,19,26,38] as well as there references). Especially, competitive chemostat
models have been studied by many researchers (see e.g. [18, 21,22,27,31]).
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Genetically altered organisms are frequently used to produce desired products.
It has been widely used in agriculture, medicine, environmental protection and other
fields. The alteration is accomplished by the insertion of a recombinant DNA into
the cell in the form of a plasmid [5]. The plasmid-free organism is unencumbered
by the added metabolic load the plasmid imposes, and thus may be a better com-
petitor than plasmid-bearing organism. Moreover, the plasmid can be lost in the
reproduction, resulting in a plasmid-free organism [6]. Since commercial produc-
tion can take place on a scale of many generations, it is possible for the plasmid-free
organism to take over the culture. The study of chemostat models for the competi-
tion between plasmid-bearing and plasmid-free organisms has received considerable
attention (see e.g. [8, 23,24,29,32–35] and the references therein). For a chemostat
with plasmid-bearing, plasmid-free organisms and periodically pulsed substrate, Xi-
ang and Song [29] showed there exists a asymptotically stable two microorganisms
extinction periodic solution. They also established sufficient conditions for the ex-
tinction of plasmid-bearing organism and permanence of the other microorganism.
Using standard techniques of bifurcation theory, Shi et al. [24] proved the exis-
tence of positive periodic solution for a chemostat model with plasmid-bearing,
plasmid-free organisms competition and impulsive effect. In [23], Stephanopoulis
and Lapidus proposed the following chemostat competition model with Monod re-
sponse functions

dS(t)

dt
= D(S0 − S(t))− 1

γ

µ1S(t)x1(t)

K1 + S(t)
− 1

γ

µ2S(t)x2(t)

K2 + S(t)
,

dx1(t)

dt
=

(
µ1S(t)

K1 + S(t)
(1− q)−D

)
x1(t),

dx2(t)

dt
=

(
µ2S(t)

K2 + S(t)
−D

)
x2(t) +

qµ1S(t)x1(t)

K1 + S(t)
,

(1.1)

where S(t), x1(t) and x2(t) stand for the concentrations of nutrient, plasmid-bearing
and plasmid-free organisms at time t, respectively. S0 is the original input concen-
tration of nutrient and D is the common dilution rate. γ represents the yield con-
stant. µ1 and µ2 are the maximum growth rates of plasmid-bearing and plasmid-free
organisms, respectively. K1 and K2 are the corresponding half-saturation constants.
q is the probability that a plasmid is lost in reproduction. Hus et al. [5] studied this
model and provided a global analysis of the asymptotic behavior.

However, in reality, chemostat systems are inevitably subject to environmental
noise. To reveal the effect of white noise on the continuous culture of microorgan-
isms, some authors have investigated the dynamics of stochastic chemostat systems
(see e.g. [9, 25, 28, 30, 36, 37]). For example, for a classical chemostat model in
the stochastic environment, Zhao and Yuan [36] derived sharp conditions for the
existence of stationary distribution by using the property of Feller process and con-
cluded that noises have negative effects on persistence of the microorganism. Sun
et al. [25] considered a stochastic two-species Monod competition chemostat model,
which is subject to environmental noise. They analyzed the asymptotic behavior
of the solutions. Zhang and Jiang [37] discovered sufficient conditions which guar-
antee that the principle of competitive exclusion holds for a stochastic chemostat
model with Holling type II functional response. Inspired by the relevant works, we
assume the environmental noise is proportional to the variables and consider the
following stochastic chemostat model with plasmid-bearing, plasmid-free organisms
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competition. For the sake of simplicity, we use S, x1 and x2 to denote S(t), x1(t)
and x2(t), respectively.



dS =

[
D(S0 − S)− 1

γ

µ1Sx1

K1 + S
− 1

γ

µ2Sx2

K2 + S

]
dt+ β1SdW1(t),

dx1 =

[(
µ1S

K1 + S
(1− q)−D

)
x1

]
dt+ β2x1dW2(t),

dx2 =

[(
µ2S

K2 + S
−D

)
x2 +

qµ1Sx1

K1 + S

]
dt+ β3x2dW3(t),

(1.2)

where the same notations are used as in (1.1). Wi(t), i = 1, 2, 3 are standard one-
dimensional independent Brownian motion defined on a complete probability space
(Ω,F , {Ft}t≥0,P) with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it
is right continuous and F0 contains all P−null sets). β2

i > 0 represents the intensity
of Wi(t).

Stationary distribution can enrich the dynamical behavior of the stochastic
chemostat system. It not only means random weak stability, but also provides
a better description of persistence [14], which gives us a deeper understanding of
how environmental noise affects the steady state for persistence. To the authors
best knowledge, there are few studies on stationary distribution of the stochastic
chemostat model with plasmid-bearing, plasmid-free organisms competition in the
existing literature. In this paper, we attempt to do some work in this area. Our
main effort is to construct suitable Lyapunov functions and find a bounded domain
so that the diffusion operator is negative outside the domain.

The organization of the paper is as follows. In the next section, we analyze model
(1.2) and give a lemma, which is necessary for later discussion. For the equivalent
system (2.1) of model (1.2), we prove the existence and uniqueness of the global
positive solution in Section 3. In Section 4, sufficient conditions for the existence
of a unique ergodic stationary distribution are established. In Section 5, we obtain
conditions for extinction of plasmid-bearing organisms. In Section 6, numerical
simulations are carried out to support the theoretical results and we make a further
discussion.

2. Model analysis and preliminaries

The variables in system (1.2) may be rescaled by S0. Let

s =
S

S0
, x =

x1

γS0
, y =

x2

γS0
, τ = Dt,

σj = βj

√
1

D
, Bj(τ) =

Wj(
τ
D )√
1
D

, j = 1, 2, 3.
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Then system (1.2) is transformed into the following equations (replacing τ with t)

ds =

[
1− s− m1sx

a1 + s
− m2sy

a2 + s

]
dt+ σ1sdB1(t),

dx =

[(
m1s

a1 + s
(1− q)− 1

)
x

]
dt+ σ2xdB2(t),

dy =

[(
m2s

a2 + s
− 1

)
y +

qm1sx

a1 + s

]
dt+ σ3ydB3(t),

(2.1)

where mi =
µi

D , ai =
Ki

S0 , i = 1, 2. So we can find out the dynamical properties of
system (1.2) by studying above model. The corresponding deterministic system to
(2.1) is 

ds =

[
1− s− m1sx

a1 + s
− m2sy

a2 + s

]
dt,

dx =

[(
m1s

a1 + s
(1− q)− 1

)
x

]
dt,

dy =

[(
m2s

a2 + s
− 1

)
y +

qm1sx

a1 + s

]
dt.

(2.2)

This model has three equilibria E1 : (1, 0, 0), E2 : (s̄, 0, ȳ), where s̄ and ȳ satisfy
m2s̄
a2+s̄ = 1 and ȳ = 1 − s̄, Ec : (s∗, x∗, y∗), where s∗, x∗ and y∗ satisfy 1 − s∗ −
m1s

∗x∗

a1+s∗ − m2s
∗y∗

a2+s∗ = 0,
(

m1s
∗

a1+s∗ (1− q)− 1
)
x∗ = 0 and

(
m2s

∗

a2+s∗ − 1
)
y∗+ qm1s

∗x∗

a1+s∗ = 0.
About the properties of these three equilibria, the reader can refer to Table 1 in
Ref. [5].

Next, we present a lemma [11] which gives a criterion for the existence of a
unique ergodic stationary distribution. Let X(t) be a homogeneous Markov process
in Rl (Rl represents euclidean l-space) satisfying the stochastic equation

dX(t) = h(X)dt+

k∑
m=1

gm(X)dBm(t).

The diffusion matrix is

A(x) = (aij(x)), aij(x) =

k∑
m=1

g(i)m (x)g(j)m (x).

Lemma 2.1. Assume there exists a bounded open domain G ⊂ Rl with regular
boundary Γ, which has the following properties

(A1) In the domain G and some neighborhood thereof, the smallest eigenvalue of
the diffusion matrix A(x) is bounded away from zero;

(A2) There exists a non-negative C2-function V such that LV is negative for any
Rl \G.

Then the Markov process X(t) has a unique stationary distribution π(·). Let f(x)
be a function integrable with respect to the measure π. For all x ∈ Rl, the following
formula holds

P
{

lim
t→∞

1

t

∫ t

0

f(X(s))ds =

∫
Rl

f(x)π(dx)

}
= 1.
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For simplicity, we denote

Rd
+={x ∈ Rd :xi > 0 for all 1 ≤ i ≤ d},Rd

+={x ∈ Rd :xi ≥ 0 for all 1 ≤ i ≤ d}.

If f(t) is an integrable function on [0,∞), define ⟨f⟩t = 1
t

∫ t

0
f(s)ds.

3. Existence and uniqueness of positive solution
To research the dynamical behavior of a chemostat model, the first concern is
whether the solution is positive and global. In this section, we shall show that
system (2.1) has a unique global positive solution for any given initial value by
making use of the Lyapunov function method as mentioned in [15].

Theorem 3.1. For any given initial value (s(0), x(0), y(0)) ∈ R3
+, system (2.1) has

a unique solution (s(t), x(t), y(t)) ∈ R3
+ for all t ≥ 0 almost surely (a.s.).

Proof. Since the coefficients of model (2.1) satisfy the local Lipschitz condition,
for any given initial value (s(0), x(0), y(0)) ∈ R3

+, there exists a unique local solution
(s(t), x(t), y(t)) on t ∈ [0, τe), where τe denotes the explosion time.

Next we show this solution is global. we only need to prove τe = ∞ a.s. Let
k0 ≥ 1 be sufficiently large such that s(0), x(0) and y(0) all lie within the interval
[ 1
k0
, k0]. For each integer k ≥ k0, define the stopping time

τk = inf

{
t ∈ [0, τe) : min{s(t), x(t), y(t)} ≤ 1

k
or max{s(t), x(t), y(t)} ≥ k

}
,

where throughout this paper, we set inf ∅ = ∞ (as usual ∅ denotes the empty set).
Obviously, τk is increasing as k → ∞. Set τ∞ = limk→+∞ τk, whence τ∞ ≤ τe
a.s. If we can show that τ∞ = ∞ a.s., then τe = ∞ a.s. and (s(t), x(t), y(t)) ∈ R3

+

a.s. for all t ≥ 0. In other words, in order to complete the proof, we need to show
τ∞ = ∞ a.s. If this statement is false, then there is a pair of constants T > 0 and
ϵ ∈ (0, 1) such that

P{τ∞ ≤ T} > ϵ.

So there is an integer k1 ≥ k0 such that

P{τk ≤ T} ≥ ϵ for all k ≥ k1. (3.1)

Construct a non-negative C2-function Ṽ : R3
+ → R+ by

Ṽ (s, x, y) = (s− 1− log s) + (x− 1− log x) + (y − 1− log y) + 1

:=W̃ + 1,

where W̃ = (s− 1− log s) + (x− 1− log x) + (y − 1− log y). Making use of Itô’s
formula, we obtain

dṼ (s, x, y) = LṼ (s, x, y)dt+ σ1(s− 1)dB1(t) + σ2(x− 1)dB2(t) + σ3(y − 1)dB3(t),

where

LṼ (s, x, y) =

(
1− 1

s

)(
1− s− m1sx

a1 + s
− m2sy

a2 + s

)
+

σ2
1

2
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+ (x− 1)

(
m1s

a1 + s
(1− q)− 1

)
+

σ2
2

2

+

(
1− 1

y

)[(
m2s

a2 + s
− 1

)
y +

qm1sx

a1 + s

]
+

σ2
3

2

≤4 +m1q +
m1

a1
x+

m2

a2
y +

σ2
1

2
+

σ2
2

2
+

σ2
3

2

:=C1 +
m1

a1
x+

m2

a2
y,

in which C1 = 4 +m1q +
σ2
1

2 +
σ2
2

2 +
σ2
3

2 . By the inequalities x ≤ 2(x− 1− log x) +

2 log 2 ≤ 2(W̃ + log 2) and y ≤ 2(y − 2− log y) + 2 log 2 ≤ 2(W̃ + log 2), we get

LṼ (s, x, y) ≤C1 +

(
m1

a1
+

m2

a2

)
2(W̃ + log 2))

=C1 + 2

(
m1

a1
+

m2

a2

)
log 2 + 2

(
m1

a1
+

m2

a2

)
W̃

≤max

{
C1 + 2

(
m1

a1
+

m2

a2

)
log 2, 2

(
m1

a1
+

m2

a2

)}
(1 + W̃ )

:=C2Ṽ ,

where C2 = max
{
C1 + 2

(
m1

a1
+ m2

a2

)
log 2, 2

(
m1

a1
+ m2

a2

)}
. Then

dṼ (s, x, y) ≤ C2Ṽ (s, x, y)dt+ σ1(s− 1)dB1(t) + σ2(x− 1)dB2(t) + σ3(y− 1)dB3(t).

Integrating and taking the expectation yield

EṼ (s(τk ∧ T ), x(τk ∧ T ), y(τk ∧ T )) ≤Ṽ (s(0), x(0), y(0))

+ C2

∫ τk∧T

0

EṼ (s(t), x(t), y(t))dt.

By Growrall inequality, we have

EṼ (s(τk ∧ T ), x(τk ∧ T ), y(τk ∧ T )) ≤Ṽ (s(0), x(0), y(0))eC2(τk∧T )

≤Ṽ (s(0), x(0), y(0))eC2T . (3.2)

Set Ωk = {τk ≤ T} for k ≥ k1 and according to (3.1), we have P(Ωk) ≥ ϵ. Note
that for every ω ∈ Ωk, there is s(τk, ω), x(τk, ω) or y(τk, ω) equals either k or 1

k . So
Ṽ (s(τk, ω), x(τk, ω), y(τk, ω)) is no less than either

k − 1− log k or 1

k
− 1− log

1

k
=

1

k
− 1 + log k.

Hence

Ṽ (s(τk, ω), x(τk, ω), y(τm, ω)) ≥ (k − 1− log k) ∧
(
1

k
− 1 + log k

)
.

By (3.2), one can see that

Ṽ (s(0), x(0), y(0))eC2T ≥E[IΩm(ω)Ṽ (s(τk, ω), x(τk, ω), y(τk, ω))]
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≥ϵ

[
(k − 1− log k) ∧

(
1

k
− 1 + log k

)]
,

where IΩk
represents the indicator function of Ωk. Here k → ∞ leads to the

contradiction ∞>+∞, so we must have τ∞=∞ a.s. This completes the proof.

4. Existence of ergodic stationary distribution
In this section, for system (2.1), we establish sufficient conditions for the existence
of a unique ergodic stationary distribution, which implies the plasmid-bearing and
plasmid-free organisms can coexist in the chemostat.

Define
λ̄ :=

λ

2
− ls̄

(
s̄+

ȳ

2

)
σ2
1 −

σ2
2

2
− l

(a2 + s̄)(s̄+ ȳ)ȳ

2a2
σ2
3 ,

where λ = m1s̄
a1+s̄ (1− q)− 1, l = m2

1(1−q)2

2λ(a1+s̄)2(1−σ2
1)

.

Theorem 4.1. Assume λ̄ > 0 and 1 − σ2
1 > 0, then system (2.1) admits a unique

stationary distribution and it has the ergodic property.

Proof. In order to prove Theorem 4.1, it suffices to verify conditions (A1) and
(A2) of Lemma 2.1. The diffusion matrix of system (2.1) is given by

A(s, x, y) =


σ2
1s

2 0 0

0 σ2
2x

2 0

0 0 σ2
3y

2

 ,

which is positive definite for any compact subset of R3
+. Clearly, (A1) in Lemma

2.1 holds.
Now we are in the position to validate the condition (A2) of Lemma 2.1. We

need to show there is a non-negative C2-function V and a bounded domain Dε ⊂ R3
+

such that LV is negative for any (s, x, y) ∈ R3
+ \Dε.

Define a C2-function V1 : R3
+ → R as follows

V1(s, x, y)=−log x+l

[
(s−s̄)2

2
+ȳ

(
s−s̄−s̄ log

s

s̄

)
+
(a2+s̄)(s̄+ȳ)

a2

(
y−ȳ−ȳ log

y

ȳ

)]
:=− log x+ l

[
U1 + ȳU2 +

(a2 + s̄)(s̄+ ȳ)

a2
U3

]
:=− log x+ lW,

where U1 = (s−s̄)2

2 , U2 = s − s̄ − s̄ log s
s̄ , U3 = y − ȳ − ȳ log y

ȳ , W = U1 + ȳU2 +
(a2+s̄)(s̄+ȳ)

a2
U3. By Itô’s formula, the basic inequality (a+b)2 ≤ 2(a2+b2), s̄+m2s̄ȳ

a2+s̄ =

1 and m2s̄
a2+s̄ = 1, we get

LU1 =(s− s̄)

(
1− s− m1sx

a1 + s
− m2sy

a2 + s

)
+

σ2
1

2
s2

=(s− s̄)

(
s̄− s+

m2s̄ȳ

a2 + s̄
− m2sy

a2 + s
− m1sx

a1 + s

)
+

σ2
1

2
(s− s̄+ s̄)2
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≤− (s− s̄)2 +m2(s− s̄)

(
s̄ȳ

a2 + s̄
− sy

a2 + s

)
+m1s̄x+ σ2

1 [(s− s̄)2 + s̄2]

=− (1− σ2
1)(s− s̄)2 +m2(s− s̄)

(
s̄ȳ

a2 + s̄
− sy

a2 + s
+

s̄y

a2 + s
− s̄y

a2 + s

)
+m1s̄x+ s̄2σ2

1

≤− (1− σ2
1)(s− s̄)2 +m2(s− s̄)

(
s̄ȳ

a2 + s̄
− s̄y

a2 + s

)
+m1s̄x+ s̄2σ2

1

=− (1− σ2
1)(s− s̄)2 +m2s̄(s− s̄)

(
ȳ

a2 + s̄
− y

a2 + s
+

ȳ

a2 + s
− ȳ

a2 + s

)
+m1s̄x+ s̄2σ2

1

=− (1− σ2
1)(a− ā)2 +

m2s̄

a2 + s̄

ȳ(s− s̄)2

a2 + s
−m2s̄

(s− s̄)(y − ȳ)

a2 + s
+m1s̄x+ s̄2σ2

1

≤− (1− σ2
1)(s− s̄)2 +

ȳ(s− s̄)2

s
−m2s̄

(s− s̄)(y − ȳ)

a2 + s
+m1s̄x+ s̄2σ2

1 , (4.1)

LU2 =
s− s̄

s

(
1− s− m1sx

a1 + s
− m2sy

a2 + s

)
+

s̄

2
σ2
1

=
s− s̄

s

(
s̄− s+

m2s̄ȳ

a2 + s̄
− m2sy

a2 + s
− m1sx

a1 + s

)
+

s̄

2
σ2
1

=− (s− s̄)2

s
− m2(s− s̄)2ȳ

(a2 + s̄)(a2 + s)s
− m2(s− s̄)(y − ȳ)

a2 + s
− m1(s− s̄)x

a1 + s
+

s̄

2
σ2
1

≤− (s− s̄)2

s
− m2(s− s̄)(y − ȳ)

a2 + s
+

m1s̄

a1
x+

s̄

2
σ2
1 , (4.2)

LU3 =
y − ȳ

y

[(
m2s

a2 + s
− 1

)
y +

qm1sx

a1 + s

]
+

ȳ

2
σ2
3

=(y − ȳ)

(
m2s

a2 + s
− m2s̄

a2 + s̄

)
+

qm1sx

a1 + s
− qm1ȳsx

(a1 + s)y
+

ȳ

2
σ2
3

≤ m2a2
a2 + s̄

(s− s̄)(y − ȳ)

a2 + s
+ qm1x+

ȳ

2
σ2
3 . (4.3)

Let h = s̄
(
1 + ȳ

a1

)
+ q(a2+s̄)(s̄+ȳ)

a2
. From (4.1)-(4.3), it then follows that

LW ≤ −(1− σ2
1)(s− s̄)2 +m1hx+ s̄

(
s̄+

ȳ

2

)
σ2
1 +

(a2 + s̄)(s̄+ ȳ)ȳ

2a2
σ2
3 . (4.4)

By virtue of Young inequality, we obtain

L(− log x) =− m1s

a1 + s
(1− q) + 1 +

1

2
σ2
2

=−
(

m1s̄

a1 + s̄
(1− q)− 1

)
+

(
m1s̄

a1 + s̄
− m1s

a1 + s

)
(1− q) +

1

2
σ2
2

≤− λ+
m1(1− q)|s− s̄|

a1 + s̄
+

1

2
σ2
2
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≤− λ

2
+

m2
1(1− q)2

2λ(a1 + s̄)2
(s− s̄)2 +

1

2
σ2
2 .

This, together with (4.4), yields

LV1 ≤ −λ̄+ lm1hx. (4.5)

Define a C2-function V2(s) = − log s. Applying Itô’s formula, we calculate that

LV2 = −1

s
+ 1 +

m1x

a1 + s
+

m2y

a2 + s
+

σ2
1

2
≤ −1

s
+ 1 +

m1x

a1
+

m2y

a2
+

σ2
1

2
. (4.6)

Define a C2-function V3(y) = − log y. Then

LV3 = − m2s

a2 + s
+ 1− qm1sx

(a1 + s)y
+

σ2
3

2
≤ 1− qm1sx

(a1 + s)y
+

σ2
3

2
. (4.7)

Define a C2-function V4 : R3
+ → R in the following form

V4(s, x, y) =
1

θ + 1
(s+ x+ y)θ+1,

where θ is a constant satisfying 0 < θ < 2
σ2
1∨σ2

2∨σ2
3
. Using Itô’s formula leads to

LV4 =(s+ x+ y)θ[1− (s+ x+ y)] +
θ

2
(s+ x+ y)θ−1(σ2

1s
2 + σ2

2x
2 + σ2

3y
2)

≤(s+ x+ y)θ −
[
1− θ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
(s+ x+ y)θ+1

≤K1 −
1

2

[
1− θ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
(sθ+1 + xθ+1 + yθ+1), (4.8)

where

K1 = (s+ x+ y)θ − 1

2

[
1− θ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
(sθ+1 + xθ+1 + yθ+1).

Then we define a C2-function F : R3
+ → R by

F (s, x, y) = MV1 + V2 + V3 + V4,

where M > 0 satisfies

−Mλ̄+K2 ≤ −2, (4.9)

and

K2 = sup
(s,x,y)∈R3

+

{
− 1

4

[
1− θ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
(sθ+1 + xθ+1 + yθ+1)

+
m1x

a1
+

m2y

a2
+K1 + 2 +

σ2
1 + σ2

3

2

}
. (4.10)

It is easy to check that lim inf
k→∞,(s,x,y)∈R3

+\Qk

F (s, x, y) = +∞, where Qk = ( 1k , k) ×

( 1k , k) × ( 1k , k). Furthermore, F is a continuous function. Hence, F (s, x, y) has a
minimum point F (s0, x0, y0) in the interior of R3

+.
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According to the above analysis, we construct a non-negative C2-function V :
R3

+ → R+ as follows

V (s, x, y) = F (s, x, y)− F (s0, x0, y0).

By (4.5)-(4.8) and (4.10), we derive

LV ≤−Mλ̄+Mlm1hx− 1

s
− qm1sx

(a1 + s)y

− 1

4

[
1− θ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
(sθ+1 + xθ+1 + yθ+1) +K2. (4.11)

Define a bounded closed domain

Dε =

{
ε ≤ s ≤ 1

ε
, ε ≤ x ≤ 1

ε
, ε3 ≤ y ≤ 1

ε3

}
,

where ε > 0 is a sufficiently small constant. In the set R3
+ \ Dε, we can choose ε

sufficiently small such that the following conditions hold

− 1

ε
+K3 ≤ −1, (4.12)

Mlm1hε ≤ 1, (4.13)

− qm1

(a1 + ε)ε
+K3 ≤ −1, (4.14)

− 1

8

[
1− θ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
1

εθ+1
+K4 ≤ −1, (4.15)

where K3, K4 are constants which can be found from (4.16) and (4.17). For conve-
nience, we divide R3

+ \Dε into six domains,

D1 = {(s, x, y) ∈ R3
+ : 0 < s < ε}, D2 = {(s, x, y) ∈ R3

+ : 0 < x < ε},

D3 = {(s, x, y) ∈ R3
+ : ε ≤ s, ε ≤ x, 0 < y < ε3}, D4 = {(s, x, y) ∈ R3

+ : s >
1

ε
},

D5 = {(s, x, y) ∈ R3
+ : x >

1

ε
}, D6 = {(s, x, y) ∈ R3

+ : y >
1

ε3
}.

Next we will show that LV (s, x, y) ≤ −1 on R3
+ \Dε, which is equivalent to proving

it on the above six domains, respectively.
Case 1. If (s, x, y) ∈ D1, by (4.11) and (4.12), one can derive

LV ≤− 1

s
+Mlm1hx− 1

4

[
1− θ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
(sθ+1 + xθ+1 + yθ+1) +K2

≤− 1

s
+K3 ≤ −1

ε
+K3 ≤ −1,

in which

K3 = sup
(s,x,y)∈R3

+

{
Mlm1hx− 1

4

[
1− θ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
(sθ+1 + xθ+1 + yθ+1) +K2

}
.

(4.16)



1474 M. Gao, D. Jiang, T. Hayat, A. Alsaedi & B. Ahmad

Therefore,
LV (s, x, y) ≤ −1 for any (s, x, y) ∈ D1.

Case 2. If (s, x, y) ∈ D2, it follows from (4.9), (4.11) and (4.13),that

LV ≤ −Mλ̄+Mlm1hε+K2 ≤ −2 + 1 ≤ −1.

Thus,
LV (s, x, y) ≤ −1 for any (s, x, y) ∈ D2.

Case 3. If (s, x, y) ∈ D3, in view of (4.11) and (4.14), one can obtain

LV ≤Mlm1hx− qm1sx

(a1 + s)y
− 1

4

[
1− θ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
(sθ+1 + xθ+1 + yθ+1) +K2

≤− qm1

(a1 + ε)ε
+K3 ≤ −1.

Hence,
LV (s, x, y) ≤ −1 for any (s, x, y) ∈ D3.

Case 4. If (s, x, y) ∈ D4, by (4.11) and (4.15), we get

LV ≤− 1

8

[
1− θ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
sθ+1 +Mlm1hx

− 1

8

[
1− θ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
(sθ+1 + xθ+1 + yθ+1) +K2

≤− 1

8

[
1− θ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
1

εθ+1
+K4 ≤ −1,

in which

K4= sup
(s,x,y)∈R3

+

{
Mlm1hx−

1

8

[
1− θ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
(sθ+1+xθ+1+yθ+1)+K2

}
.

(4.17)

So,
LV (s, x, y) ≤ −1 for any (s, x, y) ∈ D4.

Case 5. If (s, x, y) ∈ D5, from (4.11) and (4.15), it then follows that

LV ≤− 1

8

[
1− θ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
xθ+1 +Mlm1hx

− 1

8

[
1− θ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
(sθ+1 + xθ+1 + yθ+1) +K2

≤− 1

8

[
1− θ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
1

εθ+1
+K4 ≤ −1.

Thus,
LV (s, x, y) ≤ −1 for any (s, x, y) ∈ D5.

Case 6. Similarly, if (s, x, y) ∈ D6, we have

LV ≤− 1

8

[
1− θ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
yθ+1 +Mlm1hx
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− 1

8

[
1− θ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
(sθ+1 + xθ+1 + yθ+1) +K2

≤− 1

8

[
1− θ

2
(σ2

1 ∨ σ2
2 ∨ σ2

3)

]
1

ε3(θ+1)
+K4 ≤ −1.

Therefore,
LV (s, x, y) ≤ −1 for any (s, x, y) ∈ D6.

Based on the above six situations, we can conclude that for a sufficiently small ε,

LV (s, x, y) ≤ −1 for any (s, x, y) ∈ R3
+ \Dε.

The proof is complete.

5. Extinction
In this section, we investigate the extinction of plasmid-bearing organisms in system
(2.1). First of all, we give two useful lemmas.

Lemma 5.1. For any given initial value (s(0), x(0), y(0)) ∈ R3
+, the solution

(s(t), x(t), y(t)) of system (2.1) has the following property

lim sup
t→∞

log x(t)

t
≤ 0, lim sup

t→∞

log y(t)

t
≤ 0 a.s.

Lemma 5.2. Let Z(t) be the solution of the stochastic differential equation

dZ(t) = (1− Z(t))dt+ σ1Z(t)dB1(t),

with the initial value Z(0) = s(0) > 0. Then we have s(t) ≤ Z(t) by the comparison
theorem [16] and Z(t) converges weakly to the distribution ν, which has the density
ν(z) = Qz−(2+2/σ2

1)e−2/σ2
1z, z ∈ (0,∞), where Q = (2/σ2

1)
1+2/σ2

1Γ−1(2/σ2
1 +1) such

that
∫∞
0

ν(z)dz = 1 and
∫∞
0

zν(z)dz = 1.

Theorem 5.1. Let (s(t), x(t), y(t)) be the solution of system (2.1) with any given
initial value (s(0), x(0), y(0))∈R3

+. If m1(1−q)
∫∞
0

zν(z)
a1+z

dz<1+
σ2
2

2 and m2

∫∞
0

zν(z)
a2+z

dz>

1 +
σ2
3

2 , then

lim sup
t→∞

log x(t)

t
≤ m1(1− q)

∫ ∞

0

zν(z)

a1 + z
dz −

(
1 +

σ2
2

2

)
< 0 a.s.,

and
lim inf
t→∞

⟨y⟩t ≥
1

m2
2

[
m2

∫ ∞

0

zν(z)

a2 + z
dz −

(
1 +

σ2
3

2

)]
> 0 a.s.

That is to say, plasmid-bearing organisms will go extinct exponentially with proba-
bility one and plasmid-free organisms will survive.

Proof. An application of Itô’s formula yields

d log x(t) =

(
m1s

a1 + s
(1− q)−

(
1 +

σ2
2

2

))
dt+ σ2dB2(t).
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Integrating this from 0 to t and dividing by t on both sides result in

log x(t)

t
=m1(1− q)

⟨
s

a1 + s

⟩
t

−
(
1 +

σ2
2

2

)
+

σ2B2(t)

t
+

log x(0)

t

≤m1(1− q)

⟨
Z

a1 + Z

⟩
t

−
(
1 +

σ2
2

2

)
+

σ2B2(t)

t
+

log x(0)

t
. (5.1)

Similarly,

d log y(t) =

(
m2s

a2 + s
+

qm1sx

(a1 + s)y
−
(
1 +

σ2
3

2

))
dt+ σ3dB3(t). (5.2)

The strong law of large numbers [10] implies that

lim
t→∞

σiBi(t)

t
= 0, i = 2, 3 a.s. (5.3)

In view of (5.1) and (5.3), we obtain

lim sup
t→∞

log x(t)

t
≤ m1(1− q)

∫ ∞

0

zν(z)

a1 + z
dz −

(
1 +

σ2
2

2

)
< 0 a.s.,

which means that

lim
t→∞

x(t) = 0 a.s. (5.4)

Using Itô’s formula, one can derive

log s(t)

t
=
log s(0)

t
+

⟨
1

s

⟩
t

−m1

⟨
x

a1 + s

⟩
t

−m2

⟨
y

a2 + s

⟩
t

−
(
1 +

σ2
1

2

)
+

σ1B1(t)

t
, (5.5)

and

logZ(t)

t
=

log s(0)

t
+

⟨
1

Z

⟩
t

−
(
1 +

σ2
1

2

)
+

σ1B1(t)

t
. (5.6)

From (5.5) and (5.6), it follows that

0 ≥ log s(t)− logZ(t)

t
=

⟨
1

s
− 1

Z

⟩
t

−m1

⟨
x

a1 + s

⟩
t

−m2

⟨
y

a2 + s

⟩
t

≥
⟨
1

s
− 1

Z

⟩
t

− m1

a1
⟨x⟩t −

m2

a2
⟨y⟩t.

Thus, ⟨
1

s
− 1

Z

⟩
t

≤ m1

a1
⟨x⟩t +

m2

a2
⟨y⟩t. (5.7)

From (5.2), we get

log y(t)

t
=m2

⟨
s

a2 + s

⟩
t

+ qm1

⟨
sx

(a1 + s)y

⟩
t

−
(
1 +

σ2
3

2

)
+

σ3B3(t)

t
+

log y(0)

t



Stochastic chemostat competition model 1477

=m2

⟨
Z

a2 + Z

⟩
t

−m2a2

⟨
Z − s

(a2 + s)(a2 + Z)

⟩
t

+ qm1

⟨
sx

(a1 + s)y

⟩
t

−
(
1 +

σ2
3

2

)
+

σ3B3(t)

t
+

log y(0)

t

≥m2

⟨
Z

a2 + Z

⟩
t

−m2a2

⟨
1

s
− 1

Z

⟩
t

−
(
1 +

σ2
3

2

)
+

σ3B3(t)

t
+

log y(0)

t

≥m2

⟨
Z

a2 + Z

⟩
t

−m2a2

(
m1

a1
⟨x⟩t +

m2

a2
⟨y⟩t

)
−
(
1 +

σ2
3

2

)
+

σ3B3(t)

t
+

log y(0)

t
.

Then it is easy to see that

⟨y⟩t =
1

m2
2

[
m2

⟨
Z

a2 + Z

⟩
t

−
(
1 +

σ2
3

2

)]
− m1a2

m2a1
⟨x⟩t

+
1

m2
2

[
σ3B3(t)

t
+

log y(0)

t

]
− 1

m2
2

log y(t)

t
. (5.8)

Taking the inferior limit on both sides of (5.8) and combining with Lemma 5.1,
from (5.3) and (5.4), we obtain

lim inf
t→∞

⟨y⟩t ≥
1

m2
2

[
m2

∫ ∞

0

zν(z)

a2 + z
dz −

(
1 +

σ2
3

2

)]
> 0 a.s.

This completes the proof.

6. Numerical simulations and discussion
This paper is devoted to a chemostat model with plasmid-bearing, plasmid-free
organisms competition, which is disturbed by white noise. We first prove the sys-
tem has a unique global positive solution for any initial value. Then, using the
boundary equilibrium point E2 of system (2.2), we construct appropriate Lyapunov
functions and establish sufficient conditions for the existence of stationary distribu-
tion. Specifically, if λ̄ := λ

2 − ls̄
(
s̄+ ȳ

2

)
σ2
1−

σ2
2

2 − l (a2+s̄)(s̄+ȳ)ȳ
2a2

σ2
3 > 0 and 1−σ2

1 > 0,
then system (2.1) admits a unique ergodic stationary distribution. Moreover, we
show that if m1(1− q)

∫∞
0

zν(z)
a1+z dz < 1 +

σ2
2

2 and m2

∫∞
0

zν(z)
a2+z dz > 1 +

σ2
3

2 , then the
plasmid-bearing organism will go extinct exponentially with probability one and the
plasmid-free organism will survive. This implies large noise intensity σ2

2 is detri-
mental to the survival of plasmid-bearing organisms. In this case, the plasmid-free
organism will take over the chemostat and exclude the plasmid-bearing organism.
The results obtained in the present paper may be of interest in biotechnology. In
the commercial production process of genetically altered organisms, in order to
avoid capture by the plasmid-free organism, some measures can be taken to reduce
the noise intensity so that two microorganisms can coexist to produce the desired
products.

Now we are in the position to present some numerical examples which will
support our analytical results. Using Milstein’s Higher Order Method mentioned
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in [7], we get the following discretization transformation of system (2.1).
sj+1 = sj +

(
1− sj − m1sjxj

a1+sj
− m2sjyj

a2+sj

)
△t+ σ1sj

√
△tω1j +

σ2
1

2 sj(ω
2
1j − 1)△t,

xj+1 = xj +
(

m1sj
a1+sj

(1− q)− 1
)
xj△t+ σ2xj

√
△tω2j +

σ2
2

2 xj(ω
2
2j − 1)△t,

yj+1 = yj +
((

m2sj
a2+sj

− 1
)
yj +

qm1sjxj

a1+sj

)
△t+ σ3yj

√
△tω3j +

σ2
3

2 yj(ω
2
3j − 1)△t,

where the time increment △t > 0, ωij , i = 1, 2, 3 are the Gaussian random vari-
ables which follow the distribution N(0, 1). We take initial value (s(0), x(0), y(0)) =
(1, 1, 0.04). For the sake of convenience and simplicity, we always keep some pa-
rameters fixed as follows:

m1 = 1.9, m2 = 1.6, a1 = 0.18, a2 = 0.3.

Example 6.1. Chose environmental noise intensities σ2
1 = 0.0225, σ2

2 = 0.01, σ2
3 =

0.01 and q = 0.005. By computation, we get

λ̄ :=
λ

2
− ls̄

(
s̄+

ȳ

2

)
σ2
1 −

σ2
2

2
− l

(a2 + s̄)(s̄+ ȳ)ȳ

2a2
σ2
3 = 0.0369 > 0,

and
1− σ2

1 = 0.9775 > 0.

It follows from Theorem 4.1 that system (2.1) admits a unique ergodic stationary
distribution. Simulation in Figure 1 can confirm this.
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Figure 1. The pictures on the left are the solutions of system (2.1). The pictures on the right are the
density functions of system (2.1) with initial value (s(0), x(0), y(0)) = (1, 1, 0.04), σ2

1 = 0.0225, σ2
2 =

0.01, σ2
3 = 0.01, q = 0.005. (Color figure online)

Example 6.2. Let the environmental noise intensities σ2
1 = 0.0225, σ2

2 = 0.9025, σ2
3 =

0.01 and q = 0.5. Simple calculations show that

lim sup
t→∞

log x(t)

t
≤ m1(1− q)

∫ ∞

0

zν(z)

a1 + z
dz −

(
1 +

σ2
2

2

)
= −0.6473 < 0 a.s.,
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and

lim inf
t→∞

⟨y⟩t ≥
1

m2
2

[
m2

∫ ∞

0

zν(z)

a2 + z
dz −

(
1 +

σ2
3

2

)]
= 0.2233 > 0 a.s.

By Theorem 5.1, we can conclude that plasmid-bearing organisms will become ex-
tinct and plasmid-free organisms will survive, which is supported by Figure 2.
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Figure 2. The solutions of system (2.1) with initial value (s(0), x(0), y(0)) = (1, 1, 0.04), σ2
1 =

0.0225, σ2
2 = 0.9025, σ2

3 = 0.01, q = 0.5. (Color figure online)

Some interesting topics deserve further consideration. Notice that some scholars
[4,13] have studied the dynamics of stochastic chemostat models with pulsed input.
Next, we will investigate the effects of impulsive perturbations on system (1.2) and
find the optimal period of impulsive input. In addition, the chemostat is inevitably
affected by temperature, humidity or illumination. At the micro level, the system
continuously experiences a transition from one state to another. It is interesting to
study model (1.2) with regime switching.
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