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INTERACTIONS OF DELTA SHOCK WAVES
FOR A CLASS OF NONSTRICTLY

HYPERBOLIC SYSTEM OF CONSERVATION
LAWS∗
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Abstract In this paper, we study the perturbed Riemann problem for a
class of nonstrictly hyperbolic system of conservation laws, and focuse on the
interactions of delta shock waves with the shock waves and the rarefaction
waves. The global solutions are constructed completely with the method of
splitting delta function. In solutions, we find a new kind of nonclassical wave,
which is called delta contact discontinuity with Dirac delta function in both
components. It is quite different from the previous ones on which only one state
variable contains the Dirac delta function. Moreover, by letting perturbed
parameter ε tend to zero, we analyze the stability of Riemann solutions.
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1. Introduction

In the past over two decades, the investigation for delta shock waves has been an
increasingly active topic on the study of conservation laws. As a generalization of an
ordinary shock wave, the delta shock wave is a new kind of discontinuity, on which
at least one of the state variables may develop an extreme concentration in the form
of a weighted Dirac delta function with the discontinuity as its support. Physically,
people often use the delta shock wave to represent the process of concentration of
the mass [2], or express the galaxies in the universe [22,30].

For delta shock waves, there are numerous excellent papers for various hyper-
bolic systems. In 1977, Korchinski first [13] used generalized delta-functions to con-
struct Riemann solution and called it overcompressive singular shock. Afterwards,
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more and more scholars started to concern about the existence and uniqueness of
nonclassical solutions involving delta functions developing in the state variables.
For instance, Keyfitz and Kranzer [12, 14] introduced the singular shock wave. Le
Floch [8] introduced the measure solutions. Tan and Zhang [27] independently
discovered the delta shock wave. Sheng and Zhang [24] discussed the Riemann
problem for the zero-pressure flow. Huang and Wang [11] proved the uniqueness of
the weak solution when the initial data are a Radon measure for the zero-pressure
flow. Yang [31] solved the Riemann problem for the generalized zero-pressure flow.
See also the results in [1, 4, 6, 20,28] and the references cited therein.

However, it is observed that these investigations on delta shock waves mentioned
above have mostly been focused on the case that only one state variable develops
the Dirac delta function and the others have bounded variations. Different from
these ones, the theory of delta shock waves with Dirac delta functions developing in
both state variables has been established by Yang and Zhang [32] for the following
class of nonstrictly hyperbolic system of conservation lawsut + (φ(u, v)u)x = 0,

vt + (φ(u, v)v)x = 0,
(1.1)

where φ(u, v) satisfies the following assumption:
(H1) φ = φ(r) is a given smooth function of r = au+ bv satisfying a2 + b2 6= 0, a

and b are constants.
The Riemann problem for system (1.1) with initial data

(u, v)(0, x) = (u±, v±) (±x > 0) (1.2)

was constructively solved. In solutions, a special kind of delta shock waves on
which both state variables simultaneously contain the Dirac delta functions was
found. Moreover, when φ(u, v) is a smooth function satisfying φ(u, v) = φ(αu, αv),
α > 0 is a constant, this kind of delta shock waves also appears in [33]. More on
the theory of delta shock waves with Dirac delta functions developing in multiple
state variables, see also [17–19,35], etc.

When the system (1.1) satisfies assumption (H1), many important systems can
be obtained with assignment for φ(r), a and b. For example, if φ(au + bv) =
1
2u, it is reduced to the system investigated in [13]; while taking φ(au + bv) = u,
it becomes one dimensional transport equations studied in [23, 28]. Moreover, if
φ(au+ bv) = 1+ 1

1−u+v or 1+ 1
1+v , it corresponds to the nonlinear chromatography

equation investigated in [5, 9, 34]. Letting φ(au + bv) = 1
1−u+v or 1

1+v , it is just
another form of nonlinear chromatography system considered in [25, 26, 29]. For
these special models, the Riemann solutions are constructed completely. The delta
shock waves occur in these systems, but they are different. Only one state variable
contains the Dirac delta function in [13,23,25,26,28,34], while both state variables
simultaneously develop Dirac delta functions in [5,9,29]. In addition, there are still
many other examples, and we will not list them one by one.

For these specific systems, besides the investigation of delta-shock solution, the
interaction of delta shock waves is also a very interesting topic. It has significance in
the general mathematical theory, numerical calculation and practical applications
of quasi-linear hyperbolic equations. For system (1.1), when φ(au+ bv) = u, Shen
and Sun [23] discussed the interactions of the delta shock waves with the shock
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waves and rarefaction waves when the initial data are three piece constant states.
When φ(au+ bv) = 1 + 1

1−u+v and 1 + 1
1+v , Guo et al. [9] and Zhang [34] consider

the perturbed Riemann problem. When φ(au + bv) = 1
1+v , Sun [26] studied the

Riemann problem with initial data of three piece constant states and constructed
the global structures of solutions completely.

Motivated by [9,23,26,34], in which they studied the interaction of delta shock
waves and elementary waves by splitting delta function, we in this paper aim to
studying the interactions of delta shock waves for the generalized system (1.1). To
this end, we consider (1.1) with the initial data of three piecewise constant states
as follows

(u, v)(0, x) =


(u−, v−), −∞ < x < −ε,
(um, vm), −ε < x < ε,

(u+, v+), ε < x < +∞,

(1.3)

where ui, vi (i = ±,m) are arbitrary constants and ε is arbitrarily small. Obviously,
the initial data (1.3) is a local perturbation of the Riemann initial data (1.2).

As delta shock waves interact with the other elementary waves, it will give rise
to the product of δ(x) and H(x). So we use the method of splitting delta function
along a regular curve in R2

+, which is proposed by Nedeljkov and Oberguggenberger
[15,16], to study the Riemann problem (1.1) and (1.3). Benefited from this method,
the product of the piecewise smooth function and discontinuity along such a curve
makes sense. This method has been applied to the various systems to investigate
the interactions of delta shock waves, such as [9,10,21,23,26,34,36]. Specially, when
delta shock wave interact with the rarefaction wave, using the wavefront tracking
algorithm [3], we approximate the rarefaction wave by a set of small non-admissible
shocks.

After attentive analysis of interaction between delta shock wave and elementary
wave, we find that the delta contact discontinuity appears in solutions, on which
both state variables simultaneously contain the Dirac delta functions. Generally
speaking, the delta contact discontinuity is a kind of nonclassical wave with at
least one Dirac delta function supported on it. The delta function propagates
along the line of the contact discontinuity and thereby the propagation speed and
strength do not change as it travels in space. This kind of discontinuity also appears
in [16,23,26,34], etc. In particular, the delta contact discontinuity with both state
variables simultaneously containing the Dirac delta functions was also found in [9]
for the nonlinear chromatography equations. However, the system in [9] is specific
and can be included in (1.1).

As dealing with the Riemann problem (1.1) and (1.3), the expression of the
Riemann solution can not be concretely and explicitly formulated, here we use some
new ideas and skills to obtain the existence and uniqueness of Riemann solutions
qualitatively and abstractly. Moreover, it can be established that the solutions of the
perturbed Riemann problem converge to nothing but the corresponding Riemann
solutions as ε→ 0, from which the stability of the Riemann solutions with respect
to this local small perturbations of the Riemann initial data is obtained.

It is not hard to find that the solutions we obtained presents generality, because
they contain some exact analytic solutions that are given in papers [9, 23, 26, 34].
That is, this paper to some extent extends their results and proofs. Therefore, we
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get more abroad and more common results, which is main objective and innovation
of this paper.

This paper is arranged as follows. In Section 2, the Riemann solutions of (1.1)
with two piecewise constant states is reviewed. Section 3 discusses the interactions
of the delta shock waves and classical waves. The Riemann solutions of (1.1), (1.3)
are constructed globally. By taking ε → 0, the stability of Riemann solutions of
(1.1), (1.3) is analyzed.

2. Riemann solutions

In this section, we briefly review the Riemann solutions of (1.1) and (1.2) under the
condition

φr > 0, (rφ)rr > 0, φ(0) = 0. (2.1)

The detailed study can be found in [32].
System (1.1) has two eigenvalues λ1 = φ and λ2 = φ + rφr with corresponding

right eigenvectors ~r1 = (b,−a)T and ~r2 = (u, v)T . Thus it is non-strictly hyperbolic
and the set of umbilical points, on which the strictly hyperbolicity fails, is

∑
=

{(u, v)|λ1 = λ2} = {(u, v)|rφr = 0}. Noticing ∇λ1 · ~r1 ≡ 0 and ∇λ2 · ~r2 = r(rφ)rr,
so λ1 is always linearly degenerate, λ2 is genuinely nonlinear if r(rφ)rr 6= 0 and
linearly degenerate if r(rφ)rr = 0.

Besides the constant state solution, the self-similar waves (u, v)(ξ)(ξ = x/t) of
the first family are contact discontinuities

J : ξ = φ(r−) = φ(r+), (r− = r+),

and those of the second family are rarefaction waves

R :


ξ = φ+ rφr,

u

v
=
u−
v−

, r− < r,

or shock waves

S :


ξ = σ =

r+φ(r+)− r−φ(r−)

r+ − r−
,

u+

v+
=
u−
v−

, 0 < r < r− or r < r− < 0.

For the case r− > 0 > r+, the delta shock wave appears. In order to define the
measure solutions, a two-dimensional weighted delta function β(s)δS supported on
a smooth curve S parameterized as t = t(s), x = x(s)(c 6 s 6 d) can be introduced
as 〈

β(t(s))δS , ϕ
(
t(s), x(s)

)〉
=

∫ d

c

β(t(s))ϕ
(
t(s), x(s)

)
ds (2.2)

for all test functions ϕ ∈ C∞0 ((−∞,+∞)× [0,+∞)).
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With this definition, we introduce a delta-shock solution to construct the solu-
tion of (1.1), which can be expressed as

u = U(x, t) + bβ(t)δs, v = V (x, t)− aβ(t)δs, (2.3)

where S = {(σt, t) : 0 6 t <∞},

U(x, t) = u− + [u]H(x− σt), V (x, t) = v− + [v]H(x− σt),

β(t) =
1

b
(σ[u]− [uφ(r)])t, φ(r)|x=σt = σ,

(2.4)

in which [p] = p+ − p− denotes the jump of function p across the discontinuity, σ
the velocity of the delta shock wave, and H(x) the Heaviside function.

As shown in [32], the solution (u, v) constructed above satisfy

〈u, ϕt〉+ 〈φu, ϕx〉 = 0,

〈v, ϕt〉+ 〈φv, ϕx〉 = 0

(2.5)

for all test functions ϕ ∈ C∞0
(
(−∞,+∞)× [0,+∞)

)
, where

〈u, ϕ〉 =

∫ +∞

0

∫ +∞

−∞
Uϕdxdt+ 〈bβδS , ϕ〉,

〈φu, ϕ〉 =

∫ +∞

0

∫ +∞

−∞
φ(aU + bV )Uϕdxdt+ 〈σbβδS , ϕ〉,

and v has the similar integral identities as above.
Then, a unique delta-shock solution of (1.1) can be constructed as

(u, v)(t, x) =


(u−, v−)(t, x), x < x(t),(
bβ(t),−aβ(t)

)
δ
(
x− x(t)

)
, x = x(t),

(u+, v+)(t, x), x > x(t),

(2.6)

in which x(t), β(t) and σ satisfy the following generalized Rankine-Hugoniot relation

dx

dt
= σ,

b
dβ(t)

dt
= σ[u]− [uφ(r)],

−adβ(t)

dt
= σ[v]− [vφ(r)],

(2.7)

and

φ(r)
∣∣
x=x(t)

= σ. (2.8)

Moreover, the delta shock wave should satisfy the entropy condition:

λ2(r1) > λ1(r1) > σ > λ1(r2) > λ2(r2), (2.9)
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which means that all characteristic curves run into the delta shock curve from both
sides. Overcompressibility reflects the fact that delta shock wave should arise only
from local concentrations of the quantities u and v due to the conservation law.

Under the entropy condition (2.9), solving the generalized Rankine-Hugoniot
relation (2.7) and (2.8) with the initial data x(0) = 0 and w(0) = 0 yields that

σ = r+φ(r+)−r−φ(r−)
r+−r− ,

x = σt,

β(t) = φ(r+)−φ(r−)
r+−r− (u+v− − u−v+) t,

φ(r)|x=σt = σ.

(2.10)

For the convenience of the discussion in the next section, we briefly review the
concept of left- and right-hand side delta functions, further details of which can be
found in [15,16].

Let R+
2 be divided into two disjoint open sets Ω1 and Ω2 with piecewise smooth

boundary curve Γ, that is, Ω1 ∩ Ω2 = 0 and Ω1 ∪ Ω2 = R+
2 . Let C(Ωi) and M(Ωi)

be the space of bounded and continuous real-valued functions equipped with the
L∞-norm and the space of measures on Ωi (i = 1, 2), respectively. Suppose CΓ =
(C(Ω1), C(Ω2)) and MΓ = (M(Ω1),M(Ω2)), then the product of G = (G1, G2) ∈
CΓ and D = (D1, D2) ∈ MΓ, can be defined as an element GD = (G1D1, G2D2) ∈
MΓ, in which GiDi can be defined as the usual product of a continuous function
and a measure. It is obvious that the above-defined product makes sense.

Every measure on Ωi can be considered as a measure on R+
2 with support in

Ωi(i = 1, 2). Based on this, we can obtain the mapping m : MΓ → M(R+
2 ) by

taking m(D) = D1 +D2. Similarly, we have m(GD) = G1D1 +G2D2.
The solution concept used in this paper can be described as follows: perform

all nonlinear operations on functions in the space CΓ, carry out the multiplication

and composition in the space MΓ and then take the mapping m : MΓ → M(R+
2 )

before differentiation in the space of distributions, and require that the equation is
satisfied in the weak sense of distribution.

Now we rewrite the solution (2.6) by employing the above definition of the split
delta function. At this moment, the delta-shock solution of (1.1) and (1.2) can be
expressed asu(x, t) = u− + (u+ − u−)H + b

(
β−(t)D− + β+(t)D+

)
,

v(x, t) = v− + (v+ − v−)H − a
(
β−(t)D− + β+(t)D+

)
,

(2.11)

where H is the Heaviside function, β(t)D = β−(t)D− + β+(t)D+ is a split delta
function, and all of them are supported by the line x = σt. What is more, D− is the
delta measure on the set R2

+∩{(x, t)|x 6 σt}, andD+ on the set R2
+∩{(x, t)|x > σt},

β−(t) and β+(t) are to be determined.
From (2.11), we can compute that

ut(x, t) =
(
− σ(u+ − u−) + bβ′−(t) + bβ′+(t)

)
δ − bσ(β−(t) + β+(t))δ′, (2.12)

(φ(r)u)x = (φ(r+)u+ − φ(r−)u−)δ + b(φ(r−)β−(t) + φ(r+)β+(t))δ′. (2.13)
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Substituting the above two equations into the first equation of (1.1) yields that

− σ(u+ − u−) + bβ′−(t) + bβ′+(t) + φ(r+)u+ − φ(r−)u− = 0, (2.14)

− bσ
(
β−(t) + β+(t)

)
+ bφ(r−)β−(t) + bφ(r+)β+(t) = 0. (2.15)

By calculation, we get

β−(t) =
r−(u+r− − u−r+)(φ(r−)− φ(r+))

b(r+ − r−)2
t, (2.16)

and

β+(t) =
r+(u+r− − u−r+)(φ(r+)− φ(r−))

b(r+ − r−)2
t, (2.17)

in which

1

b
(u+r− − u−r+) =

1

b
(u+(au− + bv−)− u−(au+ + bv+)) = u+v− − u−v+

since r = au+ bv. Then, we have

β−(t) =
r−(u+v− − u−v+)(φ(r−)− φ(r+))

(r+ − r−)2
t, (2.18)

β+(t) =
r+(u+v− − u−v+)(φ(r+)− φ(r−))

(r+ − r−)2
t. (2.19)

It is easy to see that β(t) = β−(t) + β+(t). Similarly, from (2.11) and the second
equation of (1.1), the same results can be obtained.

Using classical waves and delta shock waves, we now construct the solutions of
the Riemann problem (1.1) and (1.2) as follows:

(a) when r+ < r− < 0, the solution is
←−
S + J ;

(b) when r− < r+ 6 0, the solution is
←−
R + J ;

(c) when r− < 0 < r+, the solution is
←−
R +

−→
R ;

(d) when r+ > r− > 0, the solution is J +
−→
R ;

(e) when r− > r+ > 0, the solution is J +
−→
S .

(f) when r− > 0 > r+, the solution is a delta shock wave.

3. Interactions of delta shock waves

In this section, we investigate the Riemann problem (1.1) and (1.3). Considering
that the problem is classical when the delta shock wave does not appear in the
interaction process, so in the presented paper, we mainly focus on the interactions
of waves involving delta shock waves. In order to cover all the cases completely, we
discuss this problem case by case according to the relations among r−, rm and r+.

Case 1. r− > 0 = rm > r+.

In this case, two delta shock waves δ1 and δ2 will emit from (−ε, 0) and (ε, 0)
respectively, as shown in Fig. 1, where (i) means (ui, vi). The propagating speeds of
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them are σ1 = φ(r−) and σ2 = φ(r+), respectively. It is clear that δ1 will overtake
δ2 at a finite time because σ1 > σ2. The intersection (x1, t1) is determined byx1 + ε = σ1t1,

x1 − ε = σ2t1.
(3.1)

By simple calculation, we get

(x1, t1) =

(
φ(r−) + φ(r+)

φ(r−)− φ(r+)
ε,

2ε

φ(r−)− φ(r+)

)
. (3.2)

>
x

∧t

−ε ε

(x1, t1)

(−) (+)

(m)

δ1 δ2

δ3

Figure 1. r− > 0 = rm > r+

At the intersection (x1, t1), a new Riemann problem for (1.1) with initial data

u|t=t1 =

u−, x < x1

u+, x > x1

+ bα(t1)δ(x1, t1) (3.3)

and

v|t=t1 =

 v−, x < x1

v+, x > x1

− aα(t1)δ(x1, t1) (3.4)

will be formed, where bα(t1) and −aα(t1) denote the strengths of the incoming
delta shocks δ1 and δ2 on u and v at the time t1, and α(t1) can be expressed as

α(t1) =

(
φ(rm)− φ(r−)

rm − r−
(umv− − u−vm) +

φ(r+)− φ(rm)

r+ − rm
(u+vm − umv+)

)
t1.

(3.5)

The interaction of δ1 and δ2 results in a new delta shock wave, denoted by δ3,
which is determined byu(x, t) = u− + (u+ − u−)H + b

(
β−(t)D− + β+(t)D+

)
,

v(x, t) = v− + (v+ − v−)H − a
(
β−(t)D− + β+(t)D+

)
,

(3.6)
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where H is the Heaviside function and β(t)D = β−(t)D− + β+(t)D+ is a split
delta function. All of them are the functions of x − x1 − (t − t1)σ3, in which σ3

is the propagating speed of δ3. What is more, D− is the delta measure on the
set R2

+ ∩ {(x, t)|x 6 x1 + (t − t1)σ3}, and D+ is the delta measure on the set

R2
+ ∩ {(x, t)|x > x1 + (t− t1)σ3}, β−(t), β+(t) and σ3 are to be determined.

From (3.6), by a simple calculation, we obtain that

ut(x, t) =
(
− σ3(u+ − u−) + bβ′−(t) + bβ′+(t)

)
δ − bσ3(β−(t) + β−(t))δ′, (3.7)

(φ(r)u)x = (φ(r+)u+ − φ(r−)u−)δ + b(φ(r−)β−(t) + φ(r+)β+(t))δ′, (3.8)

and

vt(x, t) =
(
− σ3(v+ − v−)− aβ′−(t)− aβ′+(t)

)
δ + aσ3(β−(t) + β−(t))δ′, (3.9)

(φ(r)v)x = (φ(r+)v+ − φ(r−)v−)δ − a(φ(r−)β−(t) + φ(r+)β+(t))δ′. (3.10)

Substituting (3.7)-(3.10) into the system (1.1) and comparing the coefficients of
δ and δ′, it yields that

− σ3(u+ − u−) + bβ′−(t) + bβ′+(t) + φ(r+)u+ − φ(r−)u− = 0, (3.11)

− bσ3

(
β−(t) + β+(t)

)
+ bφ(r−)β−(t) + bφ(r+)β+(t) = 0, (3.12)

and

− σ3(v+ − v−)− aβ′−(t)− aβ′+(t) + φ(r+)v+ − φ(r−)v− = 0, (3.13)

aσ3

(
β−(t) + β+(t)

)
− aφ(r−)β−(t)− aφ(r+)β+(t) = 0. (3.14)

Considering the initial conditions (3.3) and (3.4), from (3.11)-(3.14), it leads to

σ3 =
r+φ(r+)− r−φ(r−)

r+ − r−
, (3.15)

β(t) = β−(t) + β+(t) =
φ(r+)− φ(r−)

r+ − r−
(u+v− − u−v+)(t− t1) + α(t1). (3.16)

Obviously, the entropy condition (2.9) is satisfied, this is, the new formed delta
shock wave δ3 is overcompresive. Furthermore, the strengths of δ3 about u and v
are bβ(t) and −aβ(t), respectively.

Therefore, the conclusion is that two delta shock waves conclude with each other
to form a single delta shock wave. Moreover, it is easy to see that (x1, t1)→ (0, 0)
and α(t1)→ 0 as ε→ 0. In other words, the limit of Riemann solution of (1.1) and
(1.3) is just the corresponding one of (1.1) and (1.2) as ε→ 0.

Case 2. r− > 0 > r+ > rm. (When rm > r− > 0 > r+, the interaction situation
is similar.)

For this case, we study the interaction of the delta shock wave δ1 emitting from

(−ε, 0) with the rarefaction wave
←−
R followed by a contact discontinuity J emitting

from (ε, 0) (see Fig. 2). The propagating speed of the delta shock wave δ1 is

σ1 = rmφ(rm)−r−φ(r−)
rm−r− , and that of the wave back in rarefaction wave

←−
R is λ2m.

Here and after, we use λ2i to denote
(
φ + rφr

)
|r=ri . According to the entropy
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condition (2.9), it is obvious to see that σ1 > λ2m. So δ1 and
←−
R will meet at a

finite time. The intersection (x1, t1) is determined byx1 + ε = σ1t1,

x1 − ε = λ2mt1.
(3.17)

>
x

∧t

−ε ε

(x1, t1)

(x2, t2)

(x3, t3)

←−
R

(−) (+)

(m)

(∗)
δ1 J

δ2
δ3

δ4

Figure 2. r− > 0 > r+ > rm

The strengths of δ1 at (x1, t1) about u and v are bα(t1) and −aα(t1), where

α(t1) =
φ(rm)− φ(r−)

rm − r−
(umv− − u−vm)t1. (3.18)

At the time t = t1, a new delta shock wave generates, denoted by δ2. Here we
use Γ : {(x(t), t) : t > t1} to express the curve of δ2 with (u−, v−) on the left-hand
side and (u(ξ), v(ξ)) on the right-hand side, where λ2m 6 x−ε

t = ξ = φ+rφr 6 λ2+,

rm 6 r(ξ) = au(ξ) + bv(ξ) 6 r+ 6 0, u(ξ)
v(ξ) = um

vm
. A delta shock wave supported on

Γ can be constructed as follows:

u(x, t) =

u−, x < x(t)

u(ξ), x > x(t)

+ b
(
β−(t)D− + β+(t)D+

)
, (3.19)

v(x, t) =

 v−, x < x(t)

v(ξ), x > x(t)

− a(β−(t)D− + β+(t)D+
)
, (3.20)

where β(t)D = β−(t)D− + β+(t)D+ is a split delta function supported on Γ and
bβ(t) = b(β−(t) +β+(t)), −aβ(t) = −a(β−(t) +β+(t)) are the strengths of δ2 about
u and v at the time t. From (3.19)-(3.20), we can compute that

ut(x, t) =
(
− x′(t)(u(ξ)− u−) + bβ′−(t) + bβ′+(t)

)
δ − bx′(t)(β−(t) + β−(t))δ′,

(φ(r)u)x = (φ(r(ξ))u(ξ)− φ(r−)u−)δ + b(φ(r−)β−(t) + φ(r(ξ))β+(t))δ′.

Substituting the above two equations into the first equation of (1.1) yields

− x′(t)(u(ξ)− u−) + bβ′−(t) + bβ′+(t) + φ(r(ξ))u(ξ)− φ(r−)u− = 0, (3.21)
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− bx′(t)
(
β−(t) + β+(t)

)
+ bφ(r−)β−(t) + bφ(r(ξ))β+(t) = 0. (3.22)

Similarly, combining (3.19), (3.20) and the second equation of (1.1), we have

− x′(t)(v(ξ)− v−)− aβ′−(t)− aβ′+(t) + φ(r(ξ))v(ξ)− φ(r−)v− = 0, (3.23)

ax′(t)
(
β−(t) + β+(t)

)
− aφ(r−)β−(t)− aφ(r(ξ))β+(t) = 0. (3.24)

From (3.21) and (3.23), the propagating speed of δ2 is

σ2 = x′(t) =
φ(r(ξ))r(ξ)− φ(r−)r−

r(ξ)− r−
, f(r(ξ)). (3.25)

Functions f(r(ξ)) and ∂f
∂x = f ′(r)r′(ξ) 1

t are continuous, so the solution of ordinary
differential equation (3.25) with the initial condition x1 = x(t1) is existent and

unique. On one hand, it’s easy to know that f ′(r) = φ′(r)r(r−r−)+r−(φ(r−)−φ(r))
(r−r−)2 > 0

from (3.25). On the other hand, r(ξ) increases when δ2 propagates forwards. So the
propagating speed of δ2 accelerate gradually and the curve Γ is no long a straight
line.

In addition, from (3.21), we can get

β(t) = β−(t) + β+(t) = α(t1) +
1

b

∫ t

t1

(σ2[u]− [uφ])dt (3.26)

for t > t1. Furthermore, we have β−(t) = φ(r(ξ))−x′(t)
φ(r(ξ))−φ(r−)β(t) and

β+(t) = φ(r−)−x′(t)
φ(r−)−φ(r(ξ))β(t) from (3.22) and (3.26). So the strengths of δ2 about u

and v are bβ(t) and −aβ(t). Entropy condition is obviously satisfied.

The delta shock wave δ2 will penetrate over the whole rarefaction wave
←−
R in a

finite time because r− > 0 > r+. The interaction point of δ2 and the head of the

rarefaction wave
←−
R is denoted by (x2, t2), which is determined byx2 = x(t2),

x2 − ε = λ2+t2.
(3.27)

The strengths of δ2 about u and v at (x2, t2) can be calculated by (3.26). After

the time t2, δ2 will propagate with an invariant speed σ3 = r∗φ(r∗)−r−φ(r−)
r∗−r− , and

be denoted by δ3, where r∗ = r+. The strengths of it about u and v are bγ(t) and
−aγ(t), where

γ(t) =
φ(r∗)− φ(r−)

r∗ − r−
(u∗v− − u−v∗)(t− t2) + β(t2).

Because r∗ = r+ and um

vm
= u∗

v∗
, the above formula can be also written as

γ(t) =
r+(φ(r+)− φ(r−))

rm(r+ − r−)
(umv− − u−vm)(t− t2) + β(t2).

Since the speed of contact discontinuity J is φ(r+), δ3 must meet J at some point
(x3, t3). At this moment, a new initial value problem is formed. The intersection
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point (x3, t3) is determined by the equations
x3 − ε
t3

= φ(r+),

x3 − x2 =
r+φ(r+)− r−φ(r−)

r+ − r−
(t3 − t2).

(3.28)

After the interaction of δ3 and J , a new delta shock wave is formed and denoted by

δ4, whose velocity is σ4 = r+φ(r+)−r−φ(r−)
r+−r− . The strengths of δ4 about u and v can

be obtained from the following formula

η(t) =
φ(r+)− φ(r−)

r+ − r−
(u+v− − u−v+)(t− t3) + γ(t3).

Obviously, the entropy condition is hold.
From (3.17), (3.27) and (3.28), we can get that (x1, t1), (x2, t2) and (x3, t3)

all tend to (0, 0) as ε → 0. Furthermore, we also have lim
ε→0

α(t1) = lim
ε→0

β(t2) =

lim
ε→0

γ(t3) = 0. It is easy to know that the limit of the solution of (1.1) and (1.3)

is just the delta shock wave, which is the corresponding Riemann solution of (1.1)
and (1.2).

Case 3. r− > 0 > rm > r+. (If r− > rm > 0 > r+, the structure of the solution is
similar.)

In this case, a delta shock wave δ1 emits from (−ε, 0) and a shock wave
←−
S

followed by a contact discontinuity J emits from (ε, 0) (see Fig. 3). The propagating

speed of δ1 is σ1 = rmφ(rm)−r−φ(r−)
rm−r− and that of

←−
S is τ = r+φ(r+)−rmφ(rm)

r+−rm . So δ1

and
←−
S will overtake in a finite time. The intersection (x1, t1) is determined byx1 + ε = σ1t1,

x1 − ε = τt1,
(3.29)

which yields that

(x1, t1) =

(
ε(σ1 + τ)

σ1 − τ
,

2ε

σ1 − τ

)
. (3.30)

A new Riemann problem is formed at (x1, t1) with the following initial data

u(x, t) =

u−, x < x(t)

u∗, x > x(t)

+ bα(t1)δ(x1, t1), (3.31)

v(x, t) =

 v−, x < x(t)

v∗, x > x(t)

− aα(t1)δ(x1, t1), (3.32)

where (u∗, v∗) = ( au++bv+
aum+bvm

um,
au++bv+
aum+bvm

vm) is the intermediate state between
←−
S

and J , and α(t1) has the same expression as (3.18).



Interactions of delta shock waves 2393

>
x

∧t

−ε ε

(x1, t1)

(x2, t2)

(∗)

(−) (+)

(m)

δ1
←−
S

J

δ2

Figure 3. r− > 0 > rm > r+

We solve the new initial data problem as we have done before. Then, a new
delta shock wave δ2 appears at (x1, t1) expressed by

u(x, t) =

u−, x− x1 < (t− t1)σ2

u∗, x− x1 > (t− t1)σ2

+ b(β−(t)D− + β+(t)D+), (3.33)

v(x, t) =

 v−, x− x1 < (t− t1)σ2

v∗, x− x1 > (t− t1)σ2

− a(β−(t)D− − β+(t)D+), (3.34)

where the propagating speed of δ2 is σ2 = r∗φ(r∗)−r−φ(r−)
r∗−r− with r+ = r∗, and

β(t) = β−(t) + β+(t) = φ(r∗)−φ(r−)
r∗−r− (u∗v− − u−v∗)(t− t1) + α(t1).

After the time t1, the situation is completely similar to Case 2. That is to
say, the delta shock wave δ2 will pass through J with the same speed. The only
difference lies in that the strengths about u and v varies due to the difference choice
of (u∗, v∗) and (u+, v+). So, the delta shock wave is wholly denoted by δ2 when
t > t1, and the strengths about u and v can be calculated by

γ(t) =
φ(r+)− φ(r−)

r+ − r−
(u+v− − u−v+)(t− t2) + β(t2).

Similarly to the analysis in Case 2, the limits of the solution to (1.1) and (1.3)
as ε→ 0 is just the corresponding ones of (1.1) and (1.2).

Case 4. r− > 0 > rm and r+ > 0 > rm. (If rm > 0 > r− and rm > 0 > r+, the
analysis and computation is similar.)

In this case, there are a delta shock wave δ1 and two rarefaction waves
←−
R

and
−→
R near t = 0 on (x, t)-plane (see Fig. 4). The propagating speed of δ1 is

σ1 = rmφ(rm)−r−φ(r−)
rm−r− and that of the wave back of the rarefaction wave

←−
R is

λ2m =
(
φ+ rφr

)
|r=rm . Moreover, the strengths of δ1 about u and v are bα(t) and

−aα(t) with α(t) = φ(rm)−φ(r−)
rm−r− (umv− − u−vm)t.

Similar to Case 2, a new delta shock wave will be generated after δ1 meets

the rarefaction waves
←−
R at (x1, t1), which is determined by (3.17). The delta
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shock wave will cross the whole rarefaction wave
←−
R and be denoted by δ2, whose

curve is expressed by Γ : {(x(t), t) : t > t1}, with (u−, v−) on the left-hand side
and (u(ξ), v(ξ)) on the right-hand side. Here λ2m 6 x−ε

t = ξ = φ + rφr 6 0,

rm 6 r(ξ) = au(ξ) + bv(ξ) 6 0, u(ξ)
v(ξ) = um

vm
. The speed and strengths about u and v

of δ2 are determined by (3.25) and (3.26).

The interaction of δ2 and the head of the rarefaction wave
−→
R begins at (x2, t2),

which can be calculated by x2 = x(t2),

x2 = ε.
(3.35)

At the time t = t2, we again obtain a new local Riemann problem with the
initial data

u(x, t) =

u−, x < ε

u(ξ), x > ε

+ bβ(t2)δ(x2, t2), (3.36)

v(x, t) =

 v−, x < ε

v(ξ), x > ε

− aβ(t2)δ(x2, t2), (3.37)

where 0 6 x−ε
t = ξ = φ + rφr 6 λ2+, 0 6 r(ξ) = au(ξ) + bv(ξ) 6 r+, u(ξ)

v(ξ) = u+

v+
,

and β(t2) can be calculated by (3.26).
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R
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S

δJ
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(a) r− > r+ > 0 > rm

>
x

∧t

−ε ε

(x1, t1)

(x2, t2)

(−)

(+)
(m)

δ1
←−
R

−→
R

x = λ2−t+ ε↑
δ2

S

δJ

(∗)

(b) r+ > r− > 0 > rm

Figure 4.

In order to deal with the above initial value problem, we assume that the rar-

efaction wave
−→
R is approximated by a set of non-physical shock waves(a method

proposed in [3]). Now the value (u(ξ), v(ξ)) in
−→
R is determined by the right state

(u+, v+) with u(ξ)
v(ξ) = u+

v+
.

In fact, we can construct the solution of the initial value problem (1.1) with
(3.36) and (3.37) in the form:

u(x, t) =


u−, x < x1(t)

u+(au−+bv−)
au++bv+

, x1(t) < x < x2(t)

u(ξ), x > x2(t)

+ bβ(t2)δ(x− x1(t)), (3.38)
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v(x, t) =


v−, x < x1(t)

v+(au−+bv−)
au++bv+

, x1(t) < x < x2(t)

v(ξ), x > x2(t)

− aβ(t2)δ(x− x1(t)), (3.39)

where x1(t) = x2 + φ(r−)(t− t2), and x2(t) is the shock wave curve satisfying

dx2(t)

dt
=

(au+ bv)φ(au+ bv)− r−φ(r−)

au+ bv − r−
,

x2(t)− ε
t

= φ+ rφr,

0 6
x2(t)− ε

t
6 λ2+,

x2(t2) = x2.

(3.40)

Now we prove that (3.38) and (3.39) are indeed the weak solution of the initial value
problem (1.1) with (3.36) and (3.37). For every ϕ ∈ C∞0 (R × R+), the following
equations  〈ut + (φ(u, v)u)x, ϕ〉 = 0,

〈vt + (φ(u, v)v)x, ϕ〉 = 0
(3.41)

are hold if supp ϕ
⋂{(x, t)|x = x2 + φ(r−)(t − t2), t > t2} = ∅. Otherwise, we

prove that (3.38) and (3.39) is still the weak solution of (1.1) with (3.36) and (3.37)
near the support of the delta function. Substituting (3.38) and (3.39) into the first
equation of (1.1), we have

ut + (φ(r)u)x = −φ(r−)
(u+(au− + bv−)

au+ + bv+
− u−

)
δ − bφ(r−)(β−(t2) + β+(t2))δ′

+ φ(r−)
(u+(au− + bv−)

au+ + bv+
− u−

)
δ + bφ(r−)(β−(t2) + β+(t2))δ′

= 0. (3.42)

Similarly, Substituting (3.38) and (3.39) into the second equation of (1.1), we obtain

vt + (φ(r)v)x = −φ(r−)
(v+(au− + bv−)

au+ + bv+
− v−

)
δ − bφ(r−)(β−(t2) + β+(t2))δ′

+ φ(r−)
(v+(au− + bv−)

au+ + bv+
− v−

)
δ + bφ(r−)(β−(t2) + β+(t2))δ′

= 0, (3.43)

which means that (1.1) is also satisfied near the line x = x1(t) in the weak (or
distributional) sense.

For the solution (3.38) and (3.39), the Dirac delta function is now supported
on the contact discontinuity line and overcompressibility is lost. As in [16], we
introduce the delta contact discontinuity as follows.
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Definition 3.1. Consider a region Ω and a curve Γ1 of slope λ1 = φ(r) = φ(au+
bv) in Ω. A pair of distributions (u, v) ∈ C(Ω) × D′(Ω) is called a delta contact
discontinuity, if u and v are a sum of a locally integrable functions on Ω and a delta
functions on Γ1 which solves (1.1) in the sense of distribution.

Solving the Riemann problem at (x2, t2), we obtain the solution involving a
delta contact discontinuity δJ and a shock wave S. In other words, when t > t2,

δ2 decomposes and the state (u∗, v∗) = (u+(au−+bv−)
au++bv+

, v+(au−+bv−)
au++bv+

) lies between

δJ and S. For the delta contact discontinuity, both state variables simultaneously
contain the Dirac delta functions.

Then, the delta contact discontinuity δJ will continue to move forwards with a
constant speed φ(r−), while the strengths about u and v are invariant. However,
the over-compressibility is lost.

At the same time, the shock wave S will continue to penetrate the rarefaction

wave
−→
R . Its curve should satisfy the differential equations (3.40). Based on the

comparison between the values r− and r+, we should divide our discussion into the
following three subcases.

Subcase 4.1. r+ < r−

In this subcase, the curve of S will penetrate over the whole rarefaction wave

fan
−→
R at (x3, t3), the intersection can be calculated byx3 = x2(t3),

x3 − ε = λ2+t3.
(3.44)

After the time t3, the shock wave S propagates with an invariant speed r+φ(r+)−r−φ(r−)

r+−r−
.

As ε→ 0, (x1, t1), (x2, t2) and (x3, t3) coincide with each other at the point (0, 0).
In addition, we have α(t1) → 0 and β(t2) → 0. Thus, the limit of the solution
of (1.1) and (1.3) is the contact discontinuity J : x = φ(r−)t and the shock wave

S : x = r+φ(r+)−r−φ(r−)
r+−r− t, which is exactly the corresponding Riemann solution of

(1.1) and (1.2) in this subcase.

Subcase 4.2. r+ > r−

At this moment, the shock wave curve S can not penetrate the rarefaction wave

fan
−→
R completely and ultimately has x = λ2−t+ ε as its asymptote (see Fig. 4(b)).
Moreover, when ε → 0, the limit of the solution of (1.1) and (1.3) is the con-

tact discontinuity and the rarefaction wave plus the intermediate state (u∗, v∗) =

(u+(au−+bv−)
au++bv+

, v+(au−+bv−)
au++bv+

) between them. Thus, the limit situation is also true for

our assertion in this subcase.

Subcase 4.3. r+ = r−

For this special subcase, the curve of S has x = λ2+t+ε as its asymptote, which

is exactly the wave front of the rarefaction wave
−→
R . When ε → 0, the limit is a

contact discontinuity J = φ(r−)t connecting (u−, v−) and (u+, v+) directly, and the
conclusion is obviously identical with our assertion.

Through the discussions in case 4, we know that delta contact discontinuity is
introduced beyond a point at which a delta shock wave loses overcompressibility.
Its existence can be justified by two facts. First, a contact discontinuity emerges
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in the case when one of the characteristic fields is linearly degenerate. Second, if
the conservation law has a delta function as initial data, it propagates along the
characteristic lines.

Now we have finished the discussion for all kinds of interactions when the delta
shock wave is included. The global solutions for the perturbed initial value problem
(1.1) and (1.3) have been constructed. From the results above, it is easy to see that
the limits of the perturbed Riemann solutions of (1.1) and (1.3) are exactly the
corresponding Riemann solutions of (1.1) and (1.2) as ε → 0, and the asymptotic
behavior of the perturbed Riemann solutions is governed completely by the states
(u±, v±), that is, the Riemann solutions of (1.1) and (1.2) are stable with respect
to such a local small perturbation.

Remark It is noticed that, as pointed in [32], the theory does not work in some
typical systems. For instance, the following equations of geometrical optics

ut +

(
u2

√
u2 + v2

)
x

= 0,

vt +

(
uv√
u2 + v2

)
x

= 0,

(3.45)

which were proposed by Engquist and Runborg [7] in 1996. To our knowledge, the
interactions of delta shock waves for the above geometrical optics (3.45) have not
been discussed so far. Therefore, it is nature to consider the interaction of delta
shock waves for the system (1.1) with the assumption that φ(u, v) is a given smooth
function satisfying φ(u, v) = φ(αu, αv), α > 0 is a constant.

Obviously, under this assumption, one can find that the system (3.45) is the
very prototype of (1.1) by taking φ(u, v) = u√

u2+v2
. We leave them for our future

study.
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