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Abstract We focus on investigating a generic two-dimensional sine-Gordon
equation in nonlinear optics. Based on a viable transformation, the bifurcation
analysis of the equation is carried out in this paper. The phase portraits
are given and different kinds of traveling wave solutions are obtained. The
analytical results are also numerically simulated.
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1. Introduction
The sine-Gordon equation, double sine-Gordon equation, (n+1)-dimensional sine-
Gordon equation, some generalized sine-Gordon and fractional sine-Gordon equa-
tions are widely applied in physics and engineering. For examples, in a resonant five-
fold degenerate medium, the propagation and creation of ultra-short optical pulses,
the sine-Gordon and double sine-Gordon equations are usually used [1, 10, 19], the
(n+1)-dimensional sine-Gordon equation is a model of fluxon dynamics in Joseph-
son junctions, dislocation dynamics in crystal lattices, vortex states in spin systems
with an anisotropy created by an external magnetic field [34, 35], some general-
ized sine-Gordon equations can also be used to model the propagation of mag-
netic flues in Josephson junctions, motion of dislocations in crystals, Bloch wall
transmission of ferromagnetic waves [8, 20, 21, 24, 29, 32], and so on. Many ana-
lytic methods which include the dressing method [8], the bilinear method [24], the
meshless finite point method [21], the approach of dynamical system [15,16,25,28],
the Painlevé analysis [30], the double elliptic equation method [27], the binary F-
expansion method [31], the symbolic computation method [14] and the numerical
simulation methods [3–7, 17, 18, 33] have been employed to investigate those equa-
tions. Meanwhile, different localized coherent structures of those equations, such
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as the solitary waves, breathers, kink and anti-kink waves, double kink and anti-
kink waves, periodic waves, double periodic waves, peakons, ring solitons and kink
solitons have been presented [3, 5–8,14,17,18,20,21,24,27–33].

In 2010, Leblond and Mihalache [23] proposed a generic two-dimensional sine-
Gordon equation in nonlinear optics

Vzt = UV + Vyy,

Ut = −VW,

Wt = UV,

(1.1)

where U = ρ0/ρr, V = E0/Er, and W is an inductive quantity which has no phys-
ical sense. The ρ0 is the population and the E0 is external electric field. The
independent variable z is the propagation distance, y is the width of laser, and t is
the time. Equation (1.1) can be used to describe the propagation of femtosecond
spatiotemporal solitary waves in a system of two-level atoms, with the assumption
that the characteristic optical frequency is much larger than the transition frequency
of the two-level atoms [23]. Numerical simulation of (1.1) indicates that the few
cycle pulses oscillating in both space and time may form from a transversely per-
turbed input plane wave, and reach stable state after a transitory stage in which
the pulse radiates energy [23]. Besides, the Painlevé integrability of (1.1) has been
investigated. Subsequently, kink-periodic, kink-soliton and kink-kink interactions
have been found during the propagation of laser pulse by employing consistent
Tanh expansion method [9]. Moreover, based on the bilinear method and truncated
Painlevé expansion, multisoliton and quasi-periodic peakon solutions for (1.1) are
derived in [26].

There are some interesting problems: How do the bifurcations of equation (1.1)?
How do the traveling wave solutions of equation (1.1) depend on the parameters
of the system? To our knowledge, these problems have not been considered in
published literatures. In addition, are there other types of traveling wave solutions
besides the solutions obtained in [9, 23, 26]? In this paper, we will consider the
bifurcations of equation (1.1) in different regions of the parametric space. We will
also give all possible exact parametric representations for traveling waves of equation
(1.1). The results of this paper more completely answer the above problems and
enrich the results of [9, 23,26].

2. Preliminaries
Using a viable transformation [26]

U = αeϕ + βe−ϕ,

V = iϕt,

W = i
(
αeϕ − βe−ϕ

)
,

(2.1)

where i2 = −1, ϕ is a analytical function of variables y, z and t, α, β are two real
parameters and (α, β) ̸= (0, 0), equation (1.1) can be transformed into the following
equation:

ϕztt = ϕt

(
αeϕ + βe−ϕ

)
+ ϕyyt. (2.2)
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Integrating (2.2) once with respect to t, we have

αeϕ − βe−ϕ + ϕyy − ϕzt + g = 0, (2.3)

where g is the integral constant.
Letting

eϕ = u(ξ) ≡ u, ξ = ay + bz + ct, a2 ̸= bc, (2.4)
one gets

e−ϕ =
1

u
, ϕ = ln (u) , ϕyy =

a2
(
uu′′ − (u′)2

)
u2

, ϕzt =
bc

(
uu′′ − (u′)2

)
u2

, (2.5)

where u′ = du
dξ , u′′ = d2u

dξ2 , a, b and c are three undetermined constants.
Substituting (2.5) into (2.3), it yields equation

u′′ =
(αu2 + gu− β)u+ (bc− a2)(u′)2

(bc− a2)u
, (2.6)

or equivalent to the following two-dimensional dynamic system:

du

dξ
= y,

dy

dξ
=

(αu2 + gu− β)u+ (bc− a2)y2

(bc− a2)u
(2.7)

with the first integral

H(u, y) =
y2

u2
+

2
(
αu2 + guln(u) + β

)
(a2 − bc)u

. (2.8)

Remark 2.1. By using the He’s semi-inverse method [11,12], we obtain the
variational principle of system (2.7) as following:

J(u) =

∫ (
1

2
(bc− a2)u(u′)2 +

1

4
αu4 +

1

3
gu3 − 1

2
βu2

)
dξ.

Its Hamiltonian, therefore, can be written in the form

H = K + E + P =
1

2
(a2 − bc)u(u′)2 +

1

4
αu4 +

1

3
gu3 − 1

2
βu2,

where K = 0 is the kinetic energy, E = 1
2 (a

2 − bc)u(u′)2 is the external energy and
P = 1

4αu
4 + 1

3gu
3 − 1

2βu
2 is the potential energy. If E = 0, then according to He’s

energy balance method for nonlinear oscillations [13], we know that (2.7) should
be stable and regular system. However the E = 1

2 (a
2 − bc)u(u′)2 ̸= 0, so that the

(2.7) is a unstable and singular system.

From [15, 16, 22, 25, 28, 36], we known that a solitary wave solution of equation
(2.6) corresponds to a homoclinic orbit of system (2.7), a blow-up wave solution
of equation (2.6) corresponds to a open curve of system (2.7), a periodic orbit of
system (2.7) corresponds to a smooth periodic wave solution of equation (2.6) and
a periodic blow-up wave solution of equation (2.6) corresponds to a open curve of
system (2.7). Thus, to investigate all possible solitary wave, blow-up wave and
periodic wave solutions of equation (2.6), we need to find all homoclinic orbit, open
curve and periodic orbit of system (2.7) which depend on the system parameters
a, b, c, α, β, g.
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3. Bifurcations and phase portraits of system (2.7)
In this section, we only investigate the bifurcations and phase portraits of system
(2.7) when a2 − bc < 0 for convenience. Another case can be considered similarly,
we omit it here.

Using transformation dξ = (bc− a2)udτ, system (2.7) be carried into

du

dτ
= (bc− a2)uy,

dy

dτ
= (αu2 + gu− β)u+ (bc− a2)y2. (3.1)

Clearly, system (3.1) is a Hamiltonian system with the Hamiltonian function as
(2.8).

Obviously, system (3.1) has three equilibrium points at (0, 0), (u1, 0), (u2, 0) in
u-axis when α ̸= 0,∆ > 0, has two equilibrium points at (0, 0), (u∗, 0) in u-axis
when α ̸= 0,∆ = 0, has two equilibrium points at (0, 0), (u⋆, 0) in u-axis when
α = 0, g ̸= 0, has only one equilibrium point at (0, 0) when α ̸= 0,∆ < 0 or
α = 0, g = 0, where u1,2 = −g±

√
∆

2α , u∗ = −g
2α , u⋆ = β

g ,∆ = g2 + 4αβ.

Let us set the Hamiltonian value h as H(u, y) = h, and define that H(u1, 0) =
h1,H(u∗, 0) = h∗,H(u2, 0) = h2,H(u⋆, 0) = h⋆, then we have

h1 =

(
g −

√
∆
)2

− 2g
(
g −

√
∆
)

ln
(

−g+
√
∆

2α

)
+ 4αβ

(bc− a2)
(
g −

√
∆
) , h∗ =

2gln
(−g
2α

)
a2 − bc

,

h2 =

(
g +

√
∆
)2

− 2g
(
g +

√
∆
)

ln
(

−g−
√
∆

2α

)
+ 4αβ

(bc− a2)
(
g +

√
∆
) , h⋆ =

2g
(
1 + ln

(
β
g

))
a2 − bc

.

The determinant of the Jacobian matrix of the linearized system of the system
(3.1) is

J(u, y) =

∣∣∣∣∣∣ (bc− a2)y (bc− a2)u

3αu2 + 2gu− β 2(bc− a2)y

∣∣∣∣∣∣
= (bc− a2)

(
2(bc− a2)y2 − (3αu2 + 2gu− β)u

)
.

At the equilibrium points (0, 0), (u∗, 0), (u⋆, 0), (u1, 0) and (u2, 0), the values of the
determinant are, respectively,

J(0, 0) = J(u∗, 0) = 0, J(u⋆, 0) =
(a2 − bc)β2

g
,

J(u1, 0) =

(
bc− a2

) (
−g +

√
∆
)(

g
(
−g +

√
∆
)
− 4αβ

)
4α2

,

J(u2, 0) =

(
bc− a2

) (
g +

√
∆
)(

g
(
g +

√
∆
)
+ 4αβ

)
4α2

.

Based on the above analysis and using the approach of dynamical systems [15,
16,22,25,28,36], the bifurcations and phase portraits of system (2.7) are presented
in Figures (1)-(3) for the case of a2 − bc < 0.



Bifurcations and exact solutions. . . 1447

0

y

2

u

0

y

0.5

u

y

–2

u

y

u

y

u

(a) (b) (c) (d) (e)

0

y

2 4

u

0

y

0.5

u

0

y

0.5

u

0

y

0.1

u

(f) (g) (h) (i)

Figure 1. Bifurcations and phase portraits of system (2.7) when a2 − bc < 0, α < 0. Parameters: (a)
g < 0, β < 0. (b) g < 0, β ≥ 0. (c) g = 0, β > 0. (d) g = 0, β = 0. (e) g = 0, β < 0. (f) g > 0, β ≤ 0. (g)
g > 0, 0 < β < − 1

4α g2. (h) g > 0, β = − 1
4α g2. (i) g > 0, β > − 1

4α g2.

0

y

5

u

0

y

2

u

y

u

y

u
0

y

2 4

u

0

y

2

u

(a) (b) (c) (d) (e) (f)

Figure 2. Bifurcations and phase portraits of system (2.7) when a2 − bc < 0, α = 0. Parameters: (a)
g < 0, β < 0. (b) g < 0, β > 0. (c) g = 0, β > 0. (d) g = 0, β < 0. (e) g > 0, β < 0. (f) g > 0, β > 0.
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Figure 3. Bifurcations and phase portraits of system (2.7) when a2 − bc < 0, α > 0. Parameters: (a)
g < 0, β < − 1

4α g2. (b) g < 0, β = − 1
4α g2. (c) g < 0,− 1

4α g2 < β < 0. (d) g < 0, β ≥ 0. (e) g = 0, β > 0.
(f) g = 0, β = 0. (g) g = 0, β < 0. (h) g > 0, β ≤ 0. (i) g > 0, β > 0.
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4. Main results and their proofs

Remark 4.1. Clearly, (2.8) can be rewritten as

du√
hu2 − 2(αu2+guln(u)+β)u

a2−bc

= ±dξ. (4.1)

From Figures 1-3, we get some results as follows. Equation (2.6) has a family of
smooth periodic wave solutions when a2−bc < 0, α < 0, g < 0, has two solitary wave
and three family of smooth periodic wave solutions when a2 − bc < 0, α < 0, g >
0, 0 < β < − 1

4αg
2, has one solitary wave and two family of smooth periodic wave

solutions when a2 − bc < 0, α < 0, g > 0, β = − 1
4αg

2, has one solitary wave, one
blow-up wave, a family of smooth periodic wave and a family of periodic blow-up
wave solutions when a2 − bc < 0, α = 0, g > 0, β > 0 ( or a2 − bc < 0, α > 0, g <
0, β > − 1

4αg
2, and or a2− bc < 0, α > 0, g > 0, β > 0 ), etc. But we can not present

the exact parametric representations of above nonlinear waves because we can not
solve the equation (4.1) when g ̸= 0.

In this section, we give all possible exact traveling wave solutions of equation
(2.6) when g = 0. Main results and their proofs as follows.

4.1. Main results
Theorem 4.1. If a2 − bc < 0, α ̸= 0, g = 0, β = 0, then when h > 0, equation (2.6)
has infinite many solitary wave solutions

u = uM sech2(ω1ξ), (4.2)

and infinite many blow-up wave solutions

u = −uMcsch2(ω1ξ), (4.3)

when h = 0, equation (2.6) has a blow-up wave solution

u = −2(a2 − bc)

αξ2
, (4.4)

when h < 0, equation (2.6) has infinite many periodic blow-up wave solutions

u = uMcsc2(ω2ξ), (4.5)

where uM = h(a2−bc)
2α , ω1 =

√
αuM

2(a2−bc) , ω2 =
√

− αuM

2(a2−bc) .

Theorem 4.2. If a2 − bc < 0, αβ > 0, g = 0, then when h = 4
√
αβ

a2−bc , equation (2.6)
has a solitary wave solution

u =

√
αβ

α
tanh2(ω3ξ), (4.6)

and a blow-up wave solution

u =

√
αβ

α
coth2(ω3ξ), (4.7)
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when h < 4
√
αβ

a2−bc , equation (2.6) has infinite many smooth periodic wave solutions

u = γ1sn2(ω4ξ, k1), (4.8)

and infinite many periodic blow-up wave solutions

u = γ2ns2(ω4ξ, k1), (4.9)

when h = − 4
√
αβ

a2−bc , equation (2.6) has a periodic blow-up wave solution

u =

√
αβ

α
cot2(ω3ξ), (4.10)

when h > − 4
√
αβ

a2−bc , equation (2.6) has infinite many smooth periodic wave solutions

u = γ1 − (γ1 − γ2)sn2(ω5ξ, k2), (4.11)

and infinite many periodic blow-up wave solutions

u = γ1
(
1− ns2(ω5ξ, k2)

)
, (4.12)

where ω3 =
√
−

√
αβ

2(a2−bc) , ω4 =
√
− αγ2

2(a2−bc) , ω5 =
√

αγ1

2(a2−bc) , k1 =
√

γ1

γ2
, k2 =√

γ1−γ2

γ1
, γ1,2 =

h(a2−bc)∓
√

h2(a2−bc)2−16αβ

4α , sn(·, ·) and ns(·, ·) are the Jacobian el-
liptic functions [2].

If a2 − bc < 0, α < 0, g = 0, β < 0, then when 4
√
αβ

a2−bc < h < − 4
√
αβ

a2−bc , equation
(2.6) has infinite many periodic blow-up wave solutions

u = −A (1 + cn(ω6ξ, k3))

1− cn(ω6ξ, k3)
, (4.13)

if a2 − bc < 0, α > 0, g = 0, β > 0, then when 4
√
αβ

a2−bc < h < − 4
√
αβ

a2−bc , equation (2.6)
has infinite many periodic blow-up wave solutions

u =
A
(
1 + cn(ω̄6ξ, k̄3)

)
1− cn(ω̄6ξ, k̄3)

, (4.14)

where ω6 =
√

2αA
a2−bc , ω̄6 =

√
− 2αA

a2−bc , k3 =
√

A−b1
2A , k̄3 =

√
A+b1
2A , A =

√
a21+b21, a1 =√

β
α−

h2(a2−bc)2

16α2 , b1 = h(a2−bc)
4α and cn(·, ·) is the Jacobian elliptic functions [2].

Theorem 4.3. If a2 − bc < 0, αβ < 0, g = 0, then for h ∈ R, equation (2.6) has
infinite many smooth periodic wave solutions

u = γ2cn2(ω7ξ, k4), (4.15)

and infinite many periodic blow-up wave solutions

u = γ2 − (γ2 − γ1)ns2(ω7ξ, k4), (4.16)

where ω7 =
√

α(γ2−γ1)
2(a2−bc) , k4 =

√
γ2

γ2−γ1
, γ1,2 =

h(a2−bc)±
√

h2(a2−bc)2−16αβ

4α , cn(·, ·) and
ns(·, ·) are the Jacobian elliptic functions [2].
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Figure 4. The level curves given by H(u, y) = h when h > 0. Parameters: (a) a2 − bc < 0, α < 0, g =

0, β = 0. (b) a2 − bc < 0, α > 0, g = 0, β = 0.

Theorem 4.4. If a2 − bc < 0, α = 0, g = 0, β ̸= 0, then when h < 0, equation (2.6)
has infinite many smooth periodic wave solutions

u = um cos2(ω8ξ), (4.17)

when h = 0, equation (2.6) has a blow-up wave solution

u = − βξ2

2(a2 − bc)
, (4.18)

when h > 0, equation (2.6) has infinite many blow-up wave solutions

u = −um sinh2(ω9ξ), (4.19)

u = um cosh2(ω9ξ), (4.20)
where um = 2β

h(a2−bc) , ω8 = 1
2

√
−h, ω9 = 1

2

√
h.

4.2. Proofs of the main results
Proof of theorem 4.1. For given h > 0 in Figure 1(d) and Figure 3(f), the level
curves are shown in Figure 4(a) and (b), respectively. From Figure 4(a) and (b),
we see that there are a family of homoclinic orbits and a family of open curves of
system (2.7) defined by H(u, y) = h passing through the higher-order equilibrium
point (0, 0) when a2 − bc < 0, α ̸= 0, g = 0, β = 0, h > 0. When a2 − bc < 0, α <
0, g = 0, β = 0, h > 0, the homoclinic orbits and the open curves are defined by the
following algebraic equations, respectively,

y = ±u

√
2α

a2 − bc
(uM − u), 0 < u ≤ uM , (4.21)

y = ±u

√
2α

a2 − bc
(uM − u), −∞ < u < 0, (4.22)

when a2 − bc < 0, α > 0, g = 0, β = 0, h > 0, the homoclinic orbits and the open
curves are defined by the following algebraic equations, respectively,

y = ±u

√
− 2α

a2 − bc
(u− uM ), uM ≤ u < 0, (4.23)

y = ±u

√
− 2α

a2 − bc
(u− uM ), 0 < u < +∞, (4.24)
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Figure 5. Solitary waves of (2.6). Parameters: (a) a2 − bc = −1.1, α = −1.5, h = 1.2. (b) a2 − bc =

−1.1, α = −1.5, h = 4.5. (c) a2 − bc = −1.1, α = 1.5, h = 1.2. (d) a2 − bc = −1.1, α = 1.5, h = 4.5. (e)
a2 − bc = −2.5, α = −1.2, β = −0.5. (f) a2 − bc = −2.5, α = 1.2, β = 0.5.
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Figure 6. Blow-up waves of (2.6). Parameters: (a) a2 − bc = −1.1, α = −1.5, h = 1.2. (b) a2 − bc =

−1.1, α = −1.5, h = 4.5. (c) a2 − bc = −1.1, α = 1.5, h = 1.2. (d) a2 − bc = −1.1, α = 1.5, h = 4.5. (e)
a2 − bc = −1.1, α = −1.5. (f) a2 − bc = −1.1, α = 1.5. (g) a2 − bc = −2.5, α = −1.2, β = −0.5. (h)
a2 − bc = −2.5, α = 1.2, β = 0.5. (i) a2 − bc = −0.15, β = 1.25. (j) a2 − bc = −0.15, β = −1.25. (k)
a2 − bc = −3.0, β = 1.75, h = 1.25. (l) a2 − bc = −3.0, β = −1.75, h = 1.25. (m) a2 − bc = −3.0, β =
1.75, h = 1.25. (n) a2 − bc = −3.0, β = −1.75, h = 1.25.

where uM = h(a2−bc)
2α . Corresponding to (4.21) and (4.23), (4.22) and (4.24), re-

spectively, we have infinite many solitary wave and blow-up wave solutions of (2.6)
as (4.2) and (4.3), respectively, when a2 − bc < 0, α ̸= 0, g = 0, β = 0, h > 0.
The profiles of (4.2) and (4.3) are shown in Figure 5(a)-(d) and Figure 6(a)-(d),
respectively.

For given h = 0 in Figure 1(d) and Figure 3(f), the level curves are shown in
Figure 7(a) and (b), respectively. From Figure 7(a) and (b), we see that there is
a open curve of system (2.7) defined by H(u, y) = 0 connecting with the higher-
order equilibrium point (0, 0) when a2 − bc < 0, α ̸= 0, g = 0, β = 0, h = 0. When
a2 − bc < 0, α < 0, g = 0, β = 0, h = 0, the open curve is defined by the following
algebraic equation

y = ±u

√
− 2α

a2 − bc
u, −∞ < u < 0, (4.25)

when a2 − bc < 0, α > 0, g = 0, β = 0, h = 0, the open curve is defined by the
following algebraic equation

y = ±u

√
− 2α

a2 − bc
u, 0 < u < +∞. (4.26)
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Figure 7. The level curves given by H(u, y) = 0. Parameters: (a) a2 − bc < 0, α < 0, g = 0, β = 0. (b)
a2 − bc < 0, α > 0, g = 0, β = 0.
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Figure 8. The level curves given by H(u, y) = h when h < 0. Parameters: (a) a2 − bc < 0, α < 0, g =

0, β = 0. (b) a2 − bc < 0, α > 0, g = 0, β = 0.

Corresponding to (4.25) and (4.26), we have a blow-up wave solution of (2.6) as
(4.4) when a2 − bc < 0, α ̸= 0, g = 0, β = 0, h = 0. The profiles of (4.4) are shown
in Figure 6(e) and (f).

For given h < 0 in Figure 1(d) and Figure 3(f), the level curves are shown in
Figure 8(a) and (b), respectively. From Figure 8(a) and (b), we see that there are a
family of open curves of system (2.7) defined by H(u, y) = h when a2 − bc < 0, α ̸=
0, g = 0, β = 0, h < 0. When a2− bc < 0, α < 0, g = 0, β = 0, h < 0, the open curves
are defined by the following algebraic equation

y = ±u

√
2α

a2 − bc
(uM − u), −∞ < u ≤ uM , (4.27)

when a2 − bc < 0, α > 0, g = 0, β = 0, h < 0, the open curves are defined by the
following algebraic equation

y = ±u

√
− 2α

a2 − bc
(u− uM ), uM ≤ u < +∞, (4.28)

where uM = h(a2−bc)
2α . Corresponding to (4.27) and (4.28), we have infinite many

periodic blow-up wave solutions of (2.6) as (4.5) when a2−bc < 0, α ̸= 0, g = 0, β =
0, h < 0. The profiles of (4.5) are shown in Figure 9(a)-(d).

The proof of theorem 4.1 is completed.
Proof of theorem 4.2. For given h = 4

√
αβ

a2−bc in Figure 1(e) and Figure 3(e), the
level curves are shown in Figure 10(a) and (b), respectively. From Figure 10(a) and
(b), we see that there are a homoclinic orbit and a open curve of system (2.7) defined
by H(u, y) = 4

√
αβ

a2−bc passing through the saddle point
(√

αβ
α , 0

)
, and the homoclinic

orbit also connecting with the higher-order equilibrium point (0, 0) when a2 − bc <
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Figure 9. Periodic blow-up waves of (2.6). Parameters: (a) a2 − bc = −1.1, α = −1.5, h = −1.2. (b)
a2 − bc = −1.1, α = −1.5, h = −4.5. (c) a2 − bc = −1.1, α = 1.5, h = −1.2. (d) a2 − bc = −1.1, α =
1.5, h = −4.5. (e) a2 − bc = −2.5, α = −1.2, β = −0.5, h = −1.5. (f) a2 − bc = −2.5, α = −1.2, β =
−0.5, h = −3.5. (g) a2 − bc = −2.5, α = 1.2, β = 0.5, h = −1.5. (h) a2 − bc = −2.5, α = 1.2, β =
0.5, h = −1.5. (i) a2 − bc = −1.2, α = −1.0, β = −2.0. (j) a2 − bc = −1.2, α = −1.0, β = 2.0. (k)
a2 − bc = −1.5, α = −2.0, β = −1.2, h = 4.5. (l) a2 − bc = −1.5, α = −2.0, β = −1.2, h = 8.0.
(m) a2 − bc = −1.5, α = 2.0, β = 1.2, h = 4.5. (n) a2 − bc = −1.5, α = 2.0, β = 1.2, h = 8.0. (o)
a2 − bc = −2.5, α = −1.2, β = −0.5, h = −0.6. (p) a2 − bc = −2.5, α = −1.2, β = −0.5, h = 0.6.
(q) a2 − bc = −2.5, α = 1.2, β = 0.5, h = −0.6. (r) a2 − bc = −2.5, α = 1.2, β = 0.5, h = 0.6. (s)
a2 − bc = −0.1, α = −1.0, β = 2.2, h = −2.0. (t) a2 − bc = −0.1, α = −1.0, β = 2.2, h = 2.0. (u)
a2 − bc = −0.1, α = 1.0, β = −2.2, h = −2.0. (v) a2 − bc = −0.1, α = 1.0, β = −2.2, h = 2.0.
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Figure 10. The level curves given by H(u, y) = 4
√

αβ

a2−bc
. Parameters: (a) a2−bc < 0, α < 0, g = 0, β < 0.

(b) a2 − bc < 0, α > 0, g = 0, β > 0.
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Figure 11. The level curves given by H(u, y) = h when h < 4
√

αβ

a2−bc
. Parameters: (a) a2 − bc < 0, α <

0, g = 0, β < 0. (b) a2 − bc < 0, α > 0, g = 0, β > 0.

0, αβ > 0, g = 0, h = 4
√
αβ

a2−bc . When a2 − bc < 0, α < 0, g = 0, β < 0, h = 4
√
αβ

a2−bc , their
expressions are, respectively,

y = ±
(
u−

√
αβ

α

)√
− 2α

a2 − bc
u,

√
αβ

α
< u ≤ 0, (4.29)

y = ±
(√

αβ

α
− u

)√
− 2α

a2 − bc
u, −∞ < u <

√
αβ

α
, (4.30)

when a2 − bc < 0, α > 0, g = 0, β > 0, h = 4
√
αβ

a2−bc , their expressions are, respectively,

y = ±
(√

αβ

α
− u

)√
− 2α

a2 − bc
u, 0 ≤ u <

√
αβ

α
, (4.31)

y = ±
(
u−

√
αβ

α

)√
− 2α

a2 − bc
u,

√
αβ

α
< u < +∞. (4.32)

Corresponding to (4.29) and (4.31), (4.30) and (4.32), respectively, we have a soli-
tary wave and a blow-up wave solutions of (2.6) as (4.6) and (4.7), respectively,
when a2 − bc < 0, αβ > 0, g = 0, h = 4

√
αβ

a2−bc . The profiles of (4.6) and (4.7) are
shown in Figure 5(e) and (f), Figure 6(g) and (h), respectively.

For given h < 4
√
αβ

a2−bc in Figure 1(e) and Figure 3(e), the level curves are shown
in Figure 11(a) and (b), respectively. From Figure 11(a) and (b), we see that there
are a family of periodic orbits and a family of open curves of system (2.7) defined
by H(u, y) = h when a2 − bc < 0, αβ > 0, g = 0, h < 4

√
αβ

a2−bc . When a2 − bc < 0, α <

0, g = 0, β < 0, h < 4
√
αβ

a2−bc , their expressions are, respectively,

y = ±
√
− 2α

a2 − bc
u(u− γ1)(u− γ2), γ1 ≤ u ≤ 0, (4.33)

y = ±
√

− 2α

a2 − bc
u(γ1 − u)(γ2 − u), −∞ < u ≤ γ2, (4.34)

when a2 − bc < 0, α > 0, g = 0, β > 0, h < 4
√
αβ

a2−bc , their expressions are, respectively,

y = ±
√
− 2α

a2 − bc
u(γ2 − u)(γ1 − u), 0 ≤ u ≤ γ1, (4.35)

y = ±
√
− 2α

a2 − bc
u(u− γ2)(u− γ1), γ2 ≤ u < +∞, (4.36)
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Figure 12. Smooth periodic waves of (2.6). Parameters: (a) a2 − bc = −2.5, α = −1.2, β = −0.5, h =

−1.5. (b) a2 − bc = −2.5, α = −1.2, β = −0.5, h = −3.5. (c) a2 − bc = −2.5, α = 1.2, β = 0.5, h = −1.5.
(d) a2 − bc = −2.5, α = 1.2, β = 0.5, h = −1.5. (e) a2 − bc = −1.5, α = −2.0, β = −1.2, h = 4.5.
(f) a2 − bc = −1.5, α = −2.0, β = −1.2, h = 8.0. (g) a2 − bc = −1.5, α = 2.0, β = 1.2, h = 4.5.
(h) a2 − bc = −1.5, α = 2.0, β = 1.2, h = 8.0. (i) a2 − bc = −0.1, α = −1.0, β = 2.2, h = −2.0. (j)
a2 − bc = −0.1, α = −1.0, β = 2.2, h = 2.0. (k) a2 − bc = −0.1, α = 1.0, β = −2.2, h = −2.0. (l)
a2 − bc = −0.1, α = 1.0, β = −2.2, h = 2.0. (m) a2 − bc = −0.2, β = 3.0, h = −0.5. (n) a2 − bc =
−0.2, β = 3.0, h = −2.0. (o) a2−bc = −0.2, β = −3.0, h = −0.5. (p) a2−bc = −0.2, β = −3.0, h = −2.0.

where γ1,2 =
h(a2−bc)∓

√
h2(a2−bc)2−16αβ

4α . Corresponding to (4.33) and (4.35), (4.34)
and (4.36), respectively, we have infinite many smooth periodic wave and periodic
blow-up wave solutions of (2.6) as (4.8) and (4.9), respectively, when a2 − bc <

0, αβ > 0, g = 0, h < 4
√
αβ

a2−bc . The profiles of (4.8) and (4.9) are shown in Figure
12(a)-(d) and Figure 9(e)-(h), respectively.

For given h = − 4
√
αβ

a2−bc in Figure 1(e) and Figure 3(e), the level curves are shown
in Figure 13(a) and (b), respectively. From Figure 13(a) and (b), we see that there
is a open curve of system (2.7) defined by H(u, y) = − 4

√
αβ

a2−bc connecting with the
higher-order equilibrium point (0, 0) when a2 − bc < 0, αβ > 0, g = 0, h = − 4

√
αβ

a2−bc .

When a2 − bc < 0, α < 0, g = 0, β < 0, h = − 4
√
αβ

a2−bc , the open curve is defined by
the following algebraic equation

y = ±
(√

αβ

α
+ u

)√
− 2α

a2 − bc
u, −∞ < u ≤ 0, (4.37)

when a2 − bc < 0, α > 0, g = 0, β > 0, h = − 4
√
αβ

a2−bc , the open curve is defined by the
following algebraic equation

y = ±
(
u+

√
αβ

α

)√
− 2α

a2 − bc
u, 0 ≤ u < +∞. (4.38)



1456 Q. Meng & B. He

0

y

–0.2

u

0

y

0.2

u

(a) (b)

Figure 13. The level curves given by H(u, y) = − 4
√

αβ

a2−bc
. Parameters: (a) a2−bc < 0, α < 0, g = 0, β <

0. (b) a2 − bc < 0, α > 0, g = 0, β > 0.
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Figure 14. The level curves given by H(u, y) = h when h > − 4
√

αβ

a2−bc
. Parameters: (a) a2 − bc < 0, α <

0, g = 0, β < 0. (b) a2 − bc < 0, α > 0, g = 0, β > 0.

Corresponding to (4.37) and (4.38), we have a periodic blow-up wave solution of
(2.6) as (4.10) when a2 − bc < 0, αβ > 0, g = 0, h = − 4

√
αβ

a2−bc . The profiles of (4.10)
are shown in Figure 9(i) and (j).

For given h > − 4
√
αβ

a2−bc in Figure 1(e) and Figure 3(e), the level curves are shown
in Figure 14(a) and (b), respectively. From Figure 14(a) and (b), we see that
there are a family of periodic orbits and a family of open curves of system (2.7)
defined by H(u, y) = h when a2 − bc < 0, αβ > 0, g = 0, h > − 4

√
αβ

a2−bc . When
a2 − bc < 0, α < 0, g = 0, β < 0, h > − 4

√
αβ

a2−bc , their expressions are, respectively,

y = ±
√

2α

a2 − bc
(γ1 − u)(u− γ2)u, γ2 ≤ u ≤ γ1, (4.39)

y = ±
√

− 2α

a2 − bc
(γ1 − u)(γ2 − u)u, −∞ < u ≤ 0, (4.40)

when a2 − bc < 0, α > 0, g = 0, β > 0, h > − 4
√
αβ

a2−bc , their expressions are, respec-
tively,

y = ±
√

2α

a2 − bc
(γ2 − u)(u− γ1)u, γ1 ≤ u ≤ γ2, (4.41)

y = ±
√

− 2α

a2 − bc
u(u− γ2)(u− γ1), 0 ≤ u < +∞, (4.42)

where γ1,2 =
h(a2−bc)∓

√
h2(a2−bc)2−16αβ

4α . Corresponding to (4.39) and (4.41), (4.40)
and (4.42), respectively, we have infinite many smooth periodic wave and periodic
blow-up wave solutions of (2.6) as (4.11) and (4.12), respectively, when a2 − bc <

0, αβ > 0, g = 0, h > − 4
√
αβ

a2−bc . The profiles of (4.11) and (4.12) are shown in Figure
12(e)-(h) and Figure 9(k)-(n), respectively.
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Figure 15. The level curves given by H(u, y) = h when 4
√

αβ

a2−bc
< h < − 4

√
αβ

a2−bc
. Parameters: (a)

a2 − bc < 0, α < 0, g = 0, β < 0. (b) a2 − bc < 0, α > 0, g = 0, β > 0.
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Figure 16. The level curves given by H(u, y) = h when h ∈ R. Parameters: (a) a2 − bc < 0, α < 0, g =

0, β > 0. (b) a2 − bc < 0, α > 0, g = 0, β < 0.

For given 4
√
αβ

a2−bc < h < − 4
√
αβ

a2−bc in Figure 1(e) and Figure 3(e), the level curves
are shown in Figure 15(a) and (b), respectively. From Figure 15(a) and (b), we
see that there are a family of open curves of system (2.7) defined by H(u, y) = h
connecting with the higher-order equilibrium point (0, 0) when a2 − bc < 0, αβ >

0, g = 0, 4
√
αβ

a2−bc < h < − 4
√
αβ

a2−bc . When a2 − bc < 0, α < 0, g = 0, β < 0, 4
√
αβ

a2−bc < h <

− 4
√
αβ

a2−bc , the open curves are defined by the following algebraic equation

y = ±
√

− 2α

a2 − bc
u ((u− b1)2 + a21), −∞ < u ≤ 0, (4.43)

when a2 − bc < 0, α > 0, g = 0, β > 0, 4
√
αβ

a2−bc < h < − 4
√
αβ

a2−bc , the open curves are
defined by the following algebraic equation

y = ±
√
− 2α

a2 − bc
u ((u− b1)2 + a21), 0 ≤ u < +∞, (4.44)

where a1 =
√

β
α − h2(a2−bc)2

16α2 , b1 = h(a2−bc)
4α . Corresponding to (4.43), we have infi-

nite many periodic blow-up wave solutions of (2.6) as (4.13) when a2 − bc < 0, α <

0, g = 0, β < 0, 4
√
αβ

a2−bc < h < − 4
√
αβ

a2−bc . Corresponding to (4.44), we have infinite
many periodic blow-up wave solutions of (2.6) as (4.14) when a2 − bc < 0, α >

0, g = 0, β > 0, 4
√
αβ

a2−bc < h < − 4
√
αβ

a2−bc . The profiles of (4.13) and (4.14) are shown in
Figure 9(o) and (p), (q) and (r), respectively.

The proof of theorem 4.2 is completed.

Proof of theorem 4.3. For given h (h ∈ R) in Figure 1(c) and Figure 3(g), the
level curves are shown in Figure 16(a) and (b), respectively. From Figure 16(a) and
(b), we see that there are a family of periodic orbits and a family of open curves of
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Figure 17. The level curves given by H(u, y) = h when h < 0. Parameters: (a) a2 − bc < 0, α = 0, g =

0, β > 0. (b) a2 − bc < 0, α = 0, g = 0, β < 0.

system (2.7) defined by H(u, y) = h when a2 − bc < 0, αβ < 0, g = 0, h ∈ R. When
a2 − bc < 0, α < 0, g = 0, β > 0, h ∈ R, their expressions are, respectively,

y = ±
√

2α

a2 − bc
(γ2 − u)(u− γ1)u, 0 ≤ u ≤ γ2, (4.45)

y = ±
√

− 2α

a2 − bc
(γ2 − u)(γ1 − u)u, −∞ < u ≤ γ1, (4.46)

when a2 − bc < 0, α > 0, g = 0, β < 0, h ∈ R, their expressions are, respectively,

y = ±
√

2α

a2 − bc
(γ1 − u)(u− γ2)u, γ2 ≤ u ≤ 0, (4.47)

y = ±
√

− 2α

a2 − bc
(u− γ1)(u− γ2)u, γ1 ≤ u < +∞, (4.48)

where γ1,2 =
h(a2−bc)±

√
h2(a2−bc)2−16αβ

4α . Corresponding to (4.45) and (4.47), (4.46)
and (4.48), respectively, we have infinite many smooth periodic wave and periodic
blow-up wave solutions of (2.6) as (4.15) and (4.16), respectively, when a2 − bc <
0, αβ < 0, g = 0, h ∈ R. The profiles of (4.15) and (4.16) are shown in Figure
12(i)-(l) and Figure 9(s)-(v), respectively.

The proof of theorem 4.3 is completed.

Proof of theorem 4.4. For given h (h < 0) in Figure 2(c) and (d), the level curves
are shown in Figure 17(a) and (b), respectively. From Figure 17(a) and (b), we see
that there are a family of periodic orbits of system (2.7) defined by H(u, y) = h when
a2− bc < 0, α = 0, g = 0, β ̸= 0, h < 0. When a2− bc < 0, α = 0, g = 0, β > 0, h < 0,
the periodic orbits are defined by the following algebraic equation

y = ±
√

−h(um − u)u, 0 ≤ u ≤ um, (4.49)

when a2 − bc < 0, α = 0, g = 0, β < 0, h < 0, the periodic orbits are defined by the
following algebraic equation

y = ±
√
h(u− um)u, um ≤ u ≤ 0, (4.50)

where um = 2β
h(a2−bc) . Corresponding to (4.49) and (4.50), we have infinite many

smooth periodic wave solutions of (2.6) as (4.17) when a2−bc < 0, α = 0, g = 0, β ̸=
0, h < 0. The profiles of (4.17) are shown in Figure 12(m)-(p).
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Figure 18. The level curves given by H(u, y) = 0 Parameters: (a) a2 − bc < 0, α = 0, g = 0, β > 0. (b)
a2 − bc < 0, α = 0, g = 0, β < 0.

y

u

y

u

(a) (b)

Figure 19. The level curves given by H(u, y) = h when h > 0. Parameters: (a) a2 − bc < 0, α = 0, g =

0, β > 0. (b) a2 − bc < 0, α = 0, g = 0, β < 0.

For given h = 0 in Figure 2(c) and (d), the level curves are shown in Figure
18(a) and (b), respectively. From Figure 18(a) and (b), we see that there is a open
curve of system (2.7) defined by H(u, y) = 0 when a2 − bc < 0, α = 0, g = 0, β ̸= 0.
When a2 − bc < 0, α = 0, g = 0, β > 0, h = 0, their expressions are

y = ±
√

− 2β

a2 − bc
u, 0 ≤ u < +∞, (4.51)

when a2 − bc < 0, α = 0, g = 0, β < 0, h = 0, their expressions are

y = ±
√

− 2β

a2 − bc
u, −∞ < u ≤ 0. (4.52)

Corresponding to (4.51) and (4.52), we have a blow-up wave solution of (2.6) as
(4.18) when a2 − bc < 0, α = 0, g = 0, β ̸= 0, h = 0. The profiles of (4.18) are shown
in Figure 6(i) and (j).

For given h (h > 0) in Figure 2(c) and (d), the level curves are shown in Figure
19(a) and (b), respectively. From Figure 19(a) and (b), we see that there are two
family of open curves of system (2.7) defined by H(u, y) = h when a2 − bc < 0, α =
0, g = 0, β ̸= 0, h > 0. When a2−bc < 0, α = 0, g = 0, β > 0, h > 0, their expressions
are, respectively,

y = ±
√
hu(u− um), 0 ≤ u < +∞, (4.53)

y = ±
√
−hu(um − u), −∞ < u ≤ um, (4.54)

when a2 − bc < 0, α = 0, g = 0, β < 0, h > 0, their expressions are, respectively,

y = ±
√
−hu(um − u), −∞ < u ≤ 0, (4.55)

y = ±
√
hu(u− um), um ≤ u < +∞, (4.56)
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where um = 2β
h(a2−bc) . Corresponding to (4.53) and (4.55), (4.54) and (4.56), respec-

tively, we have infinite many blow-up wave solutions of (2.6) as (4.19) and (4.20),
respectively, when a2 − bc < 0, α = 0, g = 0, β ̸= 0, h > 0. The profiles of (4.19) and
(4.20) are shown in Figure 6(k) and (m), (l) and (n), respectively.

The proof of theorem 4.4 is completed.

Remark 4.2. Using ϕ = ln (u(ξ)) , ξ = ay + bz + ct, a2 ̸= bc, (2.1) and Theorem
4.1-Theorem 4.4, we can present the exact traveling wave solutions of equation (1.1).
For examples, when a2 − bc < 0, α ̸= 0, h > 0, equation (1.1) has exact traveling
wave solutions 

U = αuM sech2 (ω1(ay + bz + ct)) ,

V = i (−2cω1 tanh (ω1(ay + bz + ct))) ,

W = i
(
αuM sech2 (ω1(ay + bz + ct))

)
,

(4.57)

where uM = h(a2−bc)
2α , ω1 =

√
αuM

2(a2−bc) . When a2 − bc < 0, αβ > 0, equation (1.1)
has exact traveling wave solution

U =
√
αβ

(
tanh2 (ω3(ay + bz + ct)) + coth2 (ω3(ay + bz + ct))

)
,

V = i (4cω3csch (2ω3(ay + bz + ct))) ,

W = i
(√

αβ
(
tanh2 (ω3(ay + bz + ct))− coth2 (ω3(ay + bz + ct))

))
,

(4.58)

where ω3 =
√
−

√
αβ

2(a2−bc) . When a2− bc < 0, αβ < 0, h ∈ R, equation (1.1) has exact
traveling wave solutions

U = αγ2cn2 (ω7(ay + bz + ct), k4) +
β
γ2

nc2 (ω7(ay + bz + ct), k4) ,

V = i (−2cω7dn (ω7(ay + bz + ct), k4) sc (ω7(ay + bz + ct), k4)) ,

W = i
(
αγ2cn2 (ω7(ay + bz + ct), k4)− β

γ2
nc2 (ω7(ay + bz + ct), k4)

)
,

(4.59)

where ω7 =
√

α(γ2−γ1)
2(a2−bc) , k4 =

√
γ2

γ2−γ1
, γ1,2 =

h(a2−bc)±
√

h2(a2−bc)2−16αβ

4α , cn(·, ·),
nc(·, ·),dn(·, ·) and sc(·, ·) are the Jacobian elliptic functions [2]. When a2 − bc <
0, β ̸= 0, h < 0, equation (1.1) has exact traveling wave solutions

U = β
um

sec2 (ω8(ay + bz + ct)) ,

V = i (−2cω8 tan(ω8(ay + bz + ct))) ,

W = i
(
− β

um
sec2(ω8(ay + bz + ct))

)
,

(4.60)

where um = 2β
h(a2−bc) , ω8 = 1

2

√
−h.

We omit other exact traveling wave solutions of equation (1.1) here for conve-
nience.
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5. Conclusion
In this paper, we investigate the bifurcations and present some exact traveling wave
solutions of equation (1.1). Compared with the published references, we obtained
some new results. Actually, there are some interesting and important problems
for equation (1.1) to be further studied. For examples, How do the dynamical
behaviors of multiple solitary wave and double periodic wave solutions for equation
(1.1)? How do the Lie symmetry analysis and are there other similarity solutions
of equation (1.1)? We will study equation (1.1) further in the coming papers.

Acknowledgements. The authors would like to thank the editors and reviewers
for their very valuable comments and suggestions.
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