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WEAK GALERKIN FINITE ELEMENT
METHODS COMBINED WITH

CRANK-NICOLSON SCHEME FOR
PARABOLIC INTERFACE PROBLEMS
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Abstract This article is devoted to the a priori error estimates of the fully
discrete Crank-Nicolson approximation for the linear parabolic interface prob-
lem via weak Galerkin finite element methods (WG-FEM). All the finite el-
ement functions are discontinuous for which the usual gradient operator is
implemented as distributions in properly defined spaces. Optimal order error
estimates in both L∞(H1) and L∞(L2) norms are established for lowest order
WG finite element space (Pk(K), Pk−1(∂K),

[
Pk−1(K)

]2
). Finally, we give

numerical examples to verify the theoretical results.
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1. Introduction
Let Ω be a convex polygonal domain in R2 with boundary ∂Ω and Ω1 ⊂ Ω be
an open domain with Lipschitz boundary Γ = ∂Ω1. Let Ω2 = Ω\Ω1 be an another
open domain contained in Ω with boundary Γ∪∂Ω. In Ω = Ω1∪Γ∪Ω2, we consider
following parabolic interface problem

ut −∇ · (β∇u) = f in Ω× (0, T ] (1.1)

with initial and Dirichlet boundary conditions

u(x, 0) = u0(x) in Ω; u = 0 on ∂Ω× (0, T ] (1.2)

and interface conditions

[u] = ψ,

[
β
∂u

∂η

]
= ϕ along Γ× (0, T ]. (1.3)

Here η is the outward pointing unit normal to Ω1 and [v] denotes the jump of
a quantity v across the interface Γ i.e., [v](x) = v1(x) − v2(x), x ∈ Γ, where
vi(x) = v(x)|Ωi

, i = 1, 2. The coefficient function β(x) is assumed to be positive
and piecewise constant across Γ, i.e., β(x) = βk for x ∈ Ωk, k = 1, 2. Across the
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interface Γ, the source function f : Ω × (0, T ] → R can be singular. We assume
that f is sufficiently smooth locally. Jump functions ψ : Γ × (0, T ] → R and
ϕ : Γ× (0, T ] → R are given, and T <∞.

Medium heterogeneities makes the construction of stable and accurate numerical
schemes for differential equations more challenging. The past few decades have wit-
nessed intensive research activity in interface problems via finite element algorithms.
For recent literature, one may refer to [2, 5–8] and the references therein. The ob-
jective of the present work is to propose and analyze weak Galerkin finite element
method (WG-FEM ) for parabolic interface problems. The WG-FEM introduced
in [9] refers to the numerical techniques for partial differential equations where the
differential operators are approximated by weak forms. In [10], a WG-FEM was
developed for the second order elliptic equation in mixed form. The resulting WG
mixed finite element schemes turned out to be applicable for general finite element
partitions consisting of shape regular polytopes, and the stabilization idea opened
a new door for weak Galerkin method. Recently, WG-FEM have been applied to
interface problems [4,5,8]. The WG algorithm in [8] allows the use of finite element
partitions consisting of general polytopal meshes and assume that grid line exactly
follows the actual interface. Optimal order error estimate in H1 norm is established
for WG finite element space (Pk(K), Pk(∂K),

[
Pk−1(K)

]2
). Here, K is any polyg-

onal domain with boundary ∂K and Pk(K) (Pk(∂K)) is a set of polynomials on K
(∂K) with degree no more than k ≥ 1. Then the work of [8] has been extended to
elliptic and parabolic interface problems in [4,5] for lowest order WG finite element
space (Pk(K), Pk−1(∂K),

[
Pk−1(K)

]2
). The time discretization in [5] is based

on the backward Euler approximation. In this paper, we study WG-FEM with
Crank-Nicolson scheme for solving parabolic interface problems. Optimal order er-
ror estimates in L∞(L2) norm is established for the fully discrete scheme. WG-FEM
with second-order accuracy in time for parabolic problems without interface can be
found in [11].

2. Preliminaries and weak Galerkin discretization
Throughout the work, we will follow the usual notation for Sobolev spaces and
norms (cf. [1]). For a Lebesgue measurable set M ⊂ R2 and m > 0, we denote the
Hilbertian Sobolev space Hm(M) with the norm ∥.∥m,M. For m = 0, L2(M) is
a Hilbert space equipped with norm ∥.∥M. For simplicity of notation, we skip the
subscript M while defining norm whenever M = Ω. We also define the standard
Bôchner spaces L2(J ;B), where B is a real Banach space with norm ∥.∥B and
J = [0, T ], consisting of all measurable functions ϕ : J → B for which

∥ϕ∥L∞(J;B) := ess sup
t∈[0,T ]

∥ϕ(t)∥B <∞.

We denote by Hm(J ;B), 0 ≤ m <∞, the space of all measurable functions ϕ : J →
B for which

∥u∥Hm(J;B) =

(
m∑
j=0

∫ T

0

∥∥∥∥∂ju(t)∂tj

∥∥∥∥2
B
dt

) 1
2

<∞.

For m = 0, we write L2(J ;B) = H0(J ;B). When no risk of confusion exists, we
shall write L2(B) for L2(J ;B), L∞(B) for L∞(J ;B) and Hm(B) for Hm(J ;B).
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Let Th be a partition of the domain Ω consisting of polygons in two dimension
satisfying a set of conditions specified in [8, 10]. Denote by Eh the set of all edges
in Th and let E0

h = Eh\∂Ω be the set of all interior edges. Let Γh be the subset of
Eh of all edges on Γ. For every element K ∈ Th, we denote by hK its diameter and
mesh size h = maxK∈Th

for Th. Note that

Th = {K ∈ Th : K ⊈ Ω2 or ∂K ∩ Γ = ∅}
∪{K ∈ Th : K ⊆ Ω2 and ∂K ∩ Γ ̸= ∅}

=: T1 ∪ T2. (2.1)

Note that T1 contains all elements in Ω1 and non-interface elements in Ω2.
Let K be any polygonal domain with interior K0 and boundary ∂K. A weak

function on the region K refers to a pair of scalar-valued functions v = {v0, vb} such
that v0 ∈ L2(K) and vb ∈ H

1
2 (∂K). For a given k ≥ 1, let Vh be WG finite element

space associated with Th defined as follows

Vh = {v = {v0, vb} : v0|K0 ∈ Pk(K), vb|e ∈ Pk−1(e), e ∈ ∂K, K ∈ Th} (2.2)

and V 0
h = {v = {v0, vb} ∈ Vh : vb = 0 on ∂Ω}.

For each v ∈ Vh, the weak gradient of it, denoted by ∇w, is defined as the unique
polynomial (∇wv) ∈ [Pk−1(K)]2 that satisfies the following equation

(∇wv, ϕ)K = −
∫
K

v0(∇ · ϕ)dK +

∫
∂K

vb(ϕ · n)ds ∀ϕ ∈ [Pk−1(K)]2, (2.3)

where n is the outward normal to ∂K.
The usual L2-inner product can be written locally on each element as follows

(∇wv,∇ww) =
∑

K∈Th

(∇wv,∇ww)K . (2.4)

For each element K ∈ Th, denote by Q0 the usual L2 projection operator from
L2(K) onto Pk(K) and by Qb the L2 projection from L2(e) onto Pk−1(e) for any
e ∈ Eh. We shall combine Q0 with Qb by writing Qh = {Q0, Qb}. We recall following
crucial approximation properties for local projections Qh.

Lemma 2.1 (Lemma 3.4, [8]). Let Th be a finite element partition of Ω satisfying
the shape regularity assumption as specified in [10]. Then, for u ∈ Hk+1(Ωi) with
i = 1, 2, we have

∑
K∈Th

(
∥u−Q0u∥2K + h2K∥∇(u−Q0u)∥2K

)
≤ Ch2(k+1)

2∑
i=1

∥u∥2k+1,Ωi
.

Let e ⊂ Γ be shared by two elements K1 ⊂ Ω1 and K2 ⊂ Ω2. We define four
forms

⟨ψ, β∇wv · η⟩Γ =
∑
e∈Γh

⟨ψ, β2∇w(v|K2
) · η⟩e,

h−1⟨ψ, v0 − vb⟩Γ =
∑
e∈Γh

h−1⟨ψ, v0|K2 − vb⟩e,
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h−1⟨ψ,Qbv0 − vb⟩Γ =
∑
e∈Γh

h−1⟨ψ,Qb(v0|K2
)− vb⟩e,

⟨ϕ, vb⟩Γ =
∑
e∈Γh

⟨ϕ, vb⟩e.

Here, ⟨·, ·⟩e denotes the L2 inner product on e ∈ Eh.
The continuous-time weak Galerkin finite element approximation to (1.1)-(1.3)

can be obtained by seeking uh = {u0, ub} : [0, T ] → V 0
h satisfying both uh(0) =

Qhu(0) and following equation for any v = {v0, vb} ∈ V 0
h (cf. [5])

(uht, v0) + a(uh, v) = (f, v0) + ⟨ψ, β∇wv · η⟩Γ + ⟨ϕ, vb⟩Γ − 1

h
⟨ψ,Qbv0 − vb⟩Γ. (2.5)

The bilinear map a(·, ·) on V 0
h is given by

a(uh, v) =
∑

K∈Th

(β∇wuh,∇wv)K + s(uh, v), (2.6)

where the stabilizer s(·, ·) is defined as

s(v, w) =
∑

K∈Th

h−1
K ⟨Qbv0 − vb, Qbw0 − wb⟩∂K . (2.7)

The finite element space V 0
h is a normed linear space with respect to a triple-bar

norm given by (cf. [5])

|||w|||2 =
∑

K∈Th

∥β 1
2∇ww∥2K +

∑
K∈Th

h−1
K ∥Qbw0 − wb∥2∂K = a(w,w). (2.8)

We, now, turn our attention to discrete time weak Galerkin procedures. We first
divide the interval [0, T ] into M equally-spaced subintervals by the following points

0 = t0 < t1 < · · · < tM = T,

with tn = nτ , τ = T/M be the time step. For a smooth function ξ on [0, T ], define
ξn = ξ(tn) and

∂̄ξn =
ξn − ξn−1

τ
, ξ̂n =

ξn + ξn−1

2
. (2.9)

Let Un = Un
h = {Un

0 , U
n
b } ∈ V 0

h be the fully discrete approximation of u at t = tn

which we shall define through the following scheme: Given Un−1 in V 0
h , we now

determine Un ∈ V 0
h satisfying

(∂̄Un, v0) + a(Ûn, v) = (f̂n, v0) + ⟨ψ̂n, β∇wv · η⟩Γ + ⟨ϕ̂n, vb⟩Γ
−h−1⟨ψ̂n, Qbv0 − vb⟩Γ ∀v = {v0, vb} ∈ V 0

h , (2.10)

with U0 = U0
h = Qhu(0).

3. Error analysis for the fully discrete scheme
This section deals with the error analysis for the fully discrete scheme. We derive
optimal order error bounds in H1-norm and L2-norm. The basic idea applied is to
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use elliptic projection. Let X∗ be the collection of all v ∈ L2(Ω) with the property
that v ∈ {H2(Ω1) ∪H2(Ω2)} ∩ {ψ : ψ = 0 on ∂Ω} and [v] = ψv and

[
β ∂v

∂η

]
= ϕv

along Γ. Define

f∗ =

−∇ · (β1∇v) in Ω1,

−∇ · (β2∇v) in Ω2.

Clearly f∗ ∈ L2(Ω). Define Rh : X∗ → V 0
h by

a(Rhv, w) = (f∗, w0) + ⟨ψv, β∇ww · η⟩Γ + ⟨ϕv, wb⟩Γ
−h−1⟨ψv, Qbw0 − wb⟩Γ ∀w = {w0, wb} ∈ V 0

h , v ∈ X∗. (3.1)

Further, in view of (3.1), this definition may be expressed by saying that Rhv is the
weak Galerkin finite element solution of the elliptic interface problem with exact
solution v ∈ H1

0 (Ω) (cf. [4, 8])

−∇ · (β(x)∇v) = f∗ in Ω,

v = 0 on ∂Ω, (3.2)

[v] = ψv,

[
β
∂u

∂η

]
= ϕv along Γ.

The error estimate for Rh, as shows in the following lemma, should be applied.

Lemma 3.1 ( [4,8]). Let Rh be defined by (3.1). Assume that the exact solution of
problem (3.2) is so regular that v ∈ Hk+1(Ωi), i = 1, 2. Then there exists a constant
C > 0 such that

|||Rhv −Qhv||| ≤ Chk(∥v∥k+1,Ω1
+ ∥v∥k+1,Ω2

),

∥Rhv −Qhv∥L2(Ω) ≤ Chk+1(∥v∥k+1,Ω1
+ ∥v∥k+1,Ω2

).

For fully discrete error estimates, we now split the errors at t = tn as follows

un − Un = un −Qhu
n +Qhu

n − Un.

We denote our error as

en = Un −Qhu
n = {en0 , enb }.

Using ρ and θ, error en can be further separated as

en = θn + ρn, (3.3)

where θn = Un −Rhu
n and ρn = Rhu

n −Qhu
n.

From the definition (3.1), for all w = {w0, wb} ∈ V 0
h , it is easy to notice that

a

(
Rhu

n +Rhu
n−1

τ
, w

)
=

2∑
i=1

(−∇ · (β∇ûn), w0)Ωi
+ ⟨ψ̂n, β∇ww · η⟩Γ

+⟨ϕ̂n, wb⟩Γ − h−1⟨ψ̂n, Qbw0 − wb⟩Γ. (3.4)
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Above equation and (1.1) leads to following error equation for θn

(∂̄θn, v0) + a(θ̂n, v) = (f̂n, v0) +

2∑
i=1

(∇ · (β∇ûn), v0)Ωi
− (∂̄Rhu

n, v0)

= (ûnt , v0)− (∂̄Rhu
n, v0)

:= −(wn, v0) ∀v = {v0, vb} ∈ V 0
h , (3.5)

where wn = ∂̄Rhu
n − ûnt . For simplicity of the exposition, we write wn = wn

1 +wn
2 ,

where wn
1 = ∂̄Rhu

n − ∂̄un and wn
2 = ∂̄un − ûnt . Now, setting v = θ̂n in (3.5), we

have
(∂̄θn, θ̂n) + a(θ̂n, θ̂n) = −(wn, θ̂n). (3.6)

Since a(θ̂n, θ̂n) ≥ 0, we have

1

2τ

(
∥θn∥2 − ∥θn−1∥2

)
≤ 1

2
∥wn∥

(
∥θn∥+ ∥θn−1∥

)
.

which implies

∥θn∥ ≤ ∥θn−1∥+ τ∥wn∥

≤ ∥θ0∥+ τ

n∑
j=1

∥wj
1∥+ τ

n∑
j=1

∥wj
2∥. (3.7)

The term wj
1 can be expressed as

wj
1 = Rh∂̄u

j − ∂̄uj = (Rh − I)(∂̄uj)

= (Rh − I)
1

τ

∫ tj

tj−1

utdt =
1

τ

∫ tj

tj−1

(Rhut − ut)dt. (3.8)

An application of Lemma 3.1 leads to

τ∥wj
1∥ ≤ Chk+1

∫ tj

tj−1

(∥ut∥k+1,Ω1 + ∥ut∥k+1,Ω2)dt.

Using above estimate, we have

τ

n∑
j=1

∥wj
1∥ ≤ Chk+1

∫ tn

0

(∥ut∥k+1,Ω1
+ ∥ut∥k+1,Ω2

)dt. (3.9)

Now, it remains to determine estimates for wj
2. To find an estimate for wj

2, we
consider the following two parts separately

σj
1 :=

u(tj)− u(tj−1)

τ
− u′

(
tj−1 +

τ

2

)
,

σj
2 := u′

(
tj−1 +

τ

2

)
− u′(tj) + u′(tj−1)

2
.

Using the Taylor’s expansion, we obtain

∥σj
1∥Ωi

+ ∥σj
2∥Ωi

≤ Cτ

∫ tj

tj−1

∥uttt(s)∥Ωi
ds, i = 1, 2. (3.10)
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Summing over j from j = 1 to j = n in (3.10), we obtain

τ

n∑
j=1

∥wj
2∥ ≤ Cτ2

∫ tn

0

{
∥uttt∥Ω1

+ ∥uttt∥Ω2

}
dt. (3.11)

Combining (3.9), (3.11) and (3.7), and further using the fact that ∥θ0∥ = ∥Qhu(0)−
Rhu(0)∥ ≤ Chk+1∥u(0)∥k+1, we obtain

∥θn∥ ≤ C(hk+1 + τ2)
(
∥u(0)∥k+1 +

2∑
i=1

∫ tn

0

(
∥ut∥k+1,Ωi + ∥uttt∥Ωi

)
dt
)
. (3.12)

An application of Lemma 3.1 for ρn yields

∥ρn∥ ≤ Chk+1
2∑

i=1

∥un∥k+1,Ωi .

Again, it is easy to verify that

∥un∥k+1,Ωi
≤ ∥u(0)∥k+1,Ωi

+

∫ tn

0

∥ut∥k+1,Ωi
dt.

Thus, we have

∥ρn∥ ≤ Chk+1
(
∥u(0)∥k+1 +

2∑
i=1

∫ tn

0

∥ut∥k+1,Ωidt
)
. (3.13)

Combining estimates (3.12) and (3.13) along with Lemma 2.1, we obtain follow-
ing optimal L∞(L2) norm error estimate

Theorem 3.1. Let u and U be the solutions of the problem (1.1)-(1.3) and (2.10),
respectively. Assume the exact solution u ∈ H1(Hk+1(Ωi)) ∩H3(L2(Ωi)), i = 1, 2.
Then there exists a constant C > 0 such that

∥Un − un∥

≤C(hk+1 + τ2)

{
∥u(0)∥k+1 +

2∑
i=1

(∥u∥H1(Hk+1(Ωi)) + ∥uttt∥L2(L2(Ωi)))

}
.

Standard inverse inequality (Lemma A.4, [10]), together with estimates (3.12)
and (3.13), and Lemma 2.1 leads to following L∞(H1) norm error estimate

Theorem 3.2. Let u and U be the solutions of the problem (1.1)-(1.3) and (2.10),
respectively. Assume the exact solution u ∈ H1(Hk+1(Ωi)) ∩H3(L2(Ωi)), i = 1, 2.
Then there exists a constant C > 0 such that

∥Un − un∥1

≤C(hk + τ2)

{
∥u(0)∥k+1 +

2∑
i=1

(∥u∥H1(Hk+1(Ωi)) + ∥uttt∥L2(L2(Ωi)))

}
.
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Remark 3.1. The proposed fully discrete finite element scheme can be easily ex-
tended for the numerical approximation of the solutions to the following IBVP

σut −∇.(β∇u) = f in Ω× (0, T ],

u(x, 0) = u0, ut(x, 0) = v0 in Ω,

u(x, t) = 0 on ∂Ω× (0, T ],

(3.14)

coupled with the jump conditions (1.3). For numerical validation, we refer to nu-
merical Example 4.2.

4. Numerical Example
We present in this section numerical results to validate the theoretical estimates
presented in Section 3. For our numerical experiment, we use lowest order weak
Galerkin space (P1(K), P0(∂K),

[
P0(K)

]2
) based on uniform triangulations of Ωi,

i = 1, 2. The nodes of the triangulations of Ω1 and Ω2 coincide on the interface
Γ. Note that for each iteration, the spatial mesh size becomes half of the previous
mesh size. We choose the uniform time step τ = 1

10h.
Example 4.1. We consider the two dimensional domain Ω = (−1, 1) × (−1, 1)
and the interface is taken to be the circle x2 + y2 = 1

4 . We select the appearing in
(1.1)-(1.3) setting exact solution as

u1(x, y, t) = t(0.25− x2 − y2) in Ω1 × (0, 1],

u2(x, y, t) = t(0.25− x2 − y2)sin(πx)sin(πy) in Ω2 × (0, 1],

with β1 = 10−4 and β2 = 1.
For the L∞(0, T ;L2(Ω)) error with τ = O(h), we observe its experimental order

of convergence (EOC). For each run i, EOC of a given sequence of L∞(0, T ;L2(Ω))
errors e(i) defined on a sequence of meshes of size h(i) by

EOC(e(i)) =
log
(
e(i+ 1)/e(i)

)
log
(
h(i+ 1)/h(i)

) .
The convergence behavior of the fully discrete weak Galerkin solutions at final time
T = 1 with respect to the L2-norm and H1-norm are also depicted in Tables 1-2.
It is clear from these tables that we have achieved optimal order of convergence in
both the norms, which confirm the theoretical prediction as proved in Theorems
3.1-3.2.

Table 1. Numerical results for L∞(L2)-norm error

l (runs) h Error EOC
1 1

8 8.38744× 10−2 -
2 1

16 3.05176× 10−2 1.45
3 1

32 7.04421× 10−3 2.11
4 1

64 1.84338× 10−3 1.93
5 1

128 4.40906× 10−4 2.01
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Table 2. Numerical results for L∞(H1)-norm error

l (runs) h Error EOC
1 1

8 1.17124 -
2 1

16 6.84037× 10−1 0.77
3 1

32 3.17659× 10−1 1.10
4 1

64 1.59264× 10−1 0.99
5 1

128 7.93007× 10−2 1.00

Example 4.2. In our second numerical example, we consider the square domain
Ω = (−1, 1)×(−1, 1) and the interface is taken to be the ellipse {(x, y) : 4x2+16y2 =
r2 = 1}. We select the data in (3.14) such that the exact solution u is given by

u(x, y, t) =

10−1(1− r2)t2 exp(−t) if r2 ≤ 1,

10−2(1− r2) sin(0.25πt) sin(πx) sin(πy) if r2 > 1.

The second set of physical coefficients borrowed from Dai etc [3] that corresponds
to the classical Pennes bio heat transfer model is given by

(σ, β) =

 (4.08, 0.0052) in 4x2 + 16y2 ≤ 1,

(3.06, 0.0021) in 4x2 + 16y2 > 1.

Table 3. Numerical results for L∞(L2)-norm error

l (runs) h Error EOC
1 1

4 2.3268× 10−2 -
2 1

8 5.68903× 10−3 2.03
3 1

16 1.48856× 10−3 1.93
4 1

32 3.60021× 10−4 2.04
5 1

64 9.6392× 10−5 2.01

Table 4. Numerical results for L∞(H1)-norm error

l (runs) h Error EOC
1 1

4 2.037× 10−1 -
2 1

8 1.32786× 10−1 0.61
3 1

16 6.59948× 10−2 1.00
4 1

32 3.17777× 10−2 1.05
5 1

64 1.57923× 10−2 1.01

Tables 3-4 represent the numerical solution errors and convergence rates in L2 and
H1 norms, respectively. In both cases, errors are calculated at time t = 1 and
clearly demonstrates the second order of convergence in L2 norm and first order of
convergence in H1 norm.
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