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1. Introduction
The purpose of this paper is to deal with the following quasilinear problem involving
variable critical growth with a nonsmooth potential{

−div(|∇u|p(x)−2∇u) ∈ λ|u|q(x)−2 + ∂F (x, u) for a.e. x ∈ Ω,

u
∣∣
∂Ω

= 0,
(Pλ)

where Ω ⊂ RN is a bounded domain in RN , λ is a positive parameter and p, q :
Ω̄ → R are Lipschitz continuous functions and satisfy

1 < p− = min
x∈Ω̄

p(x) ≤ p+ = max
x∈Ω̄

p(x) < N and p+ < q(x) ≤ p∗(x), ∀x ∈ Ω̄,

(H0)
where

p∗(x) =
Np(x)

N − p(x)
, ∀x ∈ Ω̄,
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and
D = {x ∈ Ω̄ : q(x) = p∗(x)} is nonempty. (H1)

The study of variational problems and differential equations involving variable
exponent conditions has been a very important and interesting topic. These prob-
lems are very useful in applications and lead many interesting mathematical prob-
lems. For example, p(x)-Laplacian problems can be found in the thermistor prob-
lem [40], the problem of electro-rheological fluid [36], or the problem of image recov-
ery [6]. Of course, p(x)-Laplacian problems possess more complicated nonlinearities
than p-Laplacian (a constant) problems, for instance, it is inhomogeneous and in
general, it does not have the first eigenvalue. In other words, the infimum equals
0 (see [32]). Some related results can be found in [11, 24, 25, 27] and references
therein. Moreover the compact embedding theorem of the Lebesgue-Sobolev space
W 1,p(x)(Ω) has more strict requirements.

If λ = 0, then problem (Pλ) becomes into the following form:{
− div(|∇u|p(x)−2∇u) ∈ ∂F (x, u) x ∈ Ω,

u|∂Ω = 0.
(1.1)

Problem (1.1) has been studied by several authors and obtained a few interesting
results. For example, Dai and Liu [10] obtained the existence of three solutions for
problem (1.1) by a nonsmooth version of three critical points theorem with ∂F (x, u)
replaced by λ∂F (x, u). Qian and Shen [35], using the theory of nonsmooth crit-
ical points theory, derived the existence and multiplicity of solutions for problem
(1.1). Ge et al. [15], employing variational methods combined with suitable trun-
cation techniques based on nonsmooth critical points theory for locally Lipschitz
functional, proved the existence of at least five solutions for problem (1.1) under
suitable conditions. It is well known that when p(x) = p (a constant) p-Laplacian
differential inclusion has been widely studied by lots of authors. Some related re-
sults can be found in [3, 7, 8, 14,16–19,29–31,37,39] and references therein.

However, all the above results did not consider the critical growth of problem
(1.1). Very little is known about critical growth nonlinearities for variable expo-
nent problems with nonsmooth potentials. Motivated by this fact, we will consider
problem (Pλ) involving critical Sobolev exponent and study the existence and mul-
tiplicity of solutions for (Pλ). Compared with the previous works, The critical
case brings some new difficulties. In particular, there is no compact embedding
W 1,p(x)(Ω) ↪→ Lp∗(x)(Ω). Then, it is not clear that the energy functional associ-
ated with (Pλ) satisfies the nonsmooth C-condition. To deal with this difficulty,
we will employ a version of the concentration compactness lemma due to Lions
for variable exponents found in Bonder and Silva [4] to overcome it. Furthermore,
because of the non-differentiability of F , it is very important to find an efficient
method to deal with problem (Pλ). In this paper our method relies on the theory of
hemivariational inequalities [32–34] and differential inclusions (which involves the
generalized gradient of a given locally Lipschitz functional).

In order to introduce our main results, we give our hypotheses on the nonsmooth
potential function F (x, u).

(HF ) F : Ω× R 7→ R is a function such that F (x, u) = 0 and
(i) for all u ∈ R, Ω 3 x 7→ F (x, u) is measurable;
(ii) for a.e. x ∈ Ω, u → F (x, u) is locally Lipschitz;
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(iii) for a.e. x ∈ Ω, all ω(x) ∈ ∂F (x, u), we have

lim
|u|→0

ω

|u|p+−1
= 0 and lim

|u|→+∞

ω

|u|q(x)−1
= 0;

(iv) there exists q− > α > p+ such that

αF (x, u) + F 0(x, u;−u) ≤ 0

for a.e. x ∈ Ω and all u ∈ R.

Here F 0(x, u; v) denotes the partial generalized directional derivative of F (x, ·) at
the point u ∈ R in the direction v ∈ R(see Section 2).

The main results are the following:

Theorem 1.1. If hypotheses (H0), (H1) and (HF ) hold, then problem (Pλ) has at
least one nontrivial solution.

Theorem 1.2. If hypotheses (H0), (H1), (HF ) hold and F (x,−u) = F (x, u) for
a.e. x ∈ Ω, u ∈ R, then problem (Pλ) has at least k-pairs of nontrivial solutions.

Remark 1.1. Theorems 1.1-1.2 are new as far as we know and it generalizes the
results in [1,38] for p(x)-Laplacian type problem with critical growth into nonsmooth
cases. This means that our conditions are more wider than those in [1,38] and suit
more practical applications.

Remark 1.2. In this paper, we apply the concentration compactness principle
in [4], which is slightly more general than those in [13] as we do not demand q(x)
to be critical everywhere.

Remark 1.3. There exist many functions F (x, u) satisfying hypothesis (HF ). For
example, define

F (x, u) =

{
1
m |u|m, |u| ≤ 2,
1
n |u|

n − 2n

n + 2m

m , |u| > 2,

where m,n ∈ (p+, q−) and p+ < α < min{m,n}. Then this function is locally
Lipschitz and non-differentiable, and it satisfies hypothesis (HF ).

This paper is organized as follows: in Section 2, some necessary preliminary
knowledge is presented. In Section 3, we prove our main results.

2. Preliminaries
We firstly give some basic notations and some definitions.

• ⇀ means weak convergence while → means strong convergence.
• c, C, ci and Ci (i = 1, 2, · · · ) denote estimated constants (the exact value

may be different from line to line). on denotes a sequence whose limit is 0 as
n → ∞.

• (X, ‖ · ‖) denotes a (real) Banach space and (X∗, ‖ · ‖∗) denotes its topological
dual, | · |r denotes the norm of Lr(RN ).
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Definition 2.1 ( [21]). A function I: X → R is locally Lipschitz if for every u ∈ X
there exist a neighborhood U of u and L > 0 such that for every ν, η ∈ U ,

|I(ν)− I(η)| ≤ L‖ν − η‖.

Definition 2.2 ( [21]). Let I : X → R be a locally Lipschitz functional. The
generalized derivative of I in u along the direction ν is defined by

I0(u; ν) = lim sup
η→u,τ→0+

I(η + τν)− I(η)

τ
,

where u, ν ∈ X.

It is easy to see that the function ν 7→ I0(u; ν) is sublinear, continuous and so
is the support function of a nonempty, convex and w∗-compact set ∂I(u) ⊂ X∗,
defined by

∂I(u) = {u∗ ∈ X∗ : 〈u∗, ν〉X ≤ I0(u; ν) for all v ∈ X}.

If I ∈ C1(X), then
∂I(u) = {I ′(u)}.

Clearly, these definitions extend those of the Gâteaux directional derivative and
gradient.

Definition 2.3 ( [21]). We say that I satisfies the nonsmooth C-condition if every
sequence {un} ⊂ X satisfying

I(un) → c and (1 + ‖un‖)m(un) → 0 as n → ∞,

has a strongly convergent subsequence, where m(un) = infu∗
n∈∂I(un) ‖u∗

n‖X∗ .

Definition 2.4. We say that u ∈ W 1,p
0 (Ω) is a weak solution of problem (Pλ), if

for all v ∈ W 1,p
0 (Ω) the following hemivariational inequality is satisfied

0 ≤
∫
Ω

|∇u|p(x)−2∇u∇vdx− λ

∫
Ω

|u|q(x)−2uvdx+

∫
Ω

F 0(x, u;−v)dx.

Lemma 2.1 ( [5]). If h is a locally Lipschitz functional, then

(i) (−h)0(u; z) = h0(u;−z) for all u, z ∈ X;
(ii) h0(u; z) = max{〈u∗, z〉X : u∗ ∈ ∂h(u)} for all u, z ∈ X;
(iii) Let j : X → R be a continuously differentiable function. Then ∂j(u) =

{j′(u)}, j0(u; z) coincides with 〈j′(u), z〉X and (h + j)0(u; z) = h0(u; z) +
〈j′(u), z〉X for all u, z ∈ X;

(iv) (Lebourg’s mean value theorem) Let u and v be two points in X. Then there
exists a point ξ in the open segment between u and v, and u∗

ξ ∈ ∂h(ξ) such
that

h(u)− h(v) = 〈u∗
ξ , u− v〉X ;

(v) (Second chain rule) Let Y be a Banach space and j : Y → X a continuously
differentiable function. Then h ◦ j is locally Lipschitz and

∂(h ◦ j)(y) ⊆ ∂h(j(y)) ◦ j′(y) for all y ∈ Y ;
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(vi) m(u) = infu∗∈∂h(u) ‖u∗‖X∗ is lower semicontinuous.

Set
C+(Ω̄) = {h ∈ C(Ω̄) : min

x∈Ω̄
h(x) > 1}.

Denote by S(Ω) the set of all measurable real functions defined on Ω. For any
p ∈ C+(Ω̄) we define the variable exponent Lebesgue space by

Lp(x)(Ω) =

{
u ∈ S(Ω) :

∫
Ω

|u(x)|p(x)dx < ∞
}

with the norm

|u|Lp(x)(Ω) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)λ

∣∣∣∣p(x)dx ≤ 1

}
,

then Lp(x)(Ω) is a Banach space. The variable exponent Sobolev space W 1,p(x)(Ω)
is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}

with the norm
‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω),

or equivalently

‖u‖W 1,p(x)(Ω) = inf

{
λ > 0 :

∫
Ω

(∣∣∣∣u(x)λ

∣∣∣∣p(x) + ∣∣∣∣∇u(x)

λ

∣∣∣∣p(x))dx ≤ 1

}
for all u ∈ W 1,p(x)(Ω). Define W

1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) in W 1,p(x)(Ω).
We point out that when Ω is bounded, |∇u|p(x) is an equivalent norm on W

1,p(x)
0 (Ω).

The following Hölder type inequality is very useful in the next section.

Proposition 2.1 ( [12, 28]). The space Lp(x)(Ω), W 1,p(x)(Ω), and W
1,p(x)
0 (Ω) are

all separable, and reflexive Banach space. The conjugate space of Lp(x)(Ω) is
Lp′(x)(Ω), where 1/p(x) + 1/p′(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω) we
have ∣∣∣∣ ∫

Ω

uvdx

∣∣∣∣ ≤ (
1

p−
+

1

(p′)−

)
|u|Lp(x)(Ω)|v|Lp′(x)(Ω) ≤ 2|u|Lp(x)(Ω)|v|Lp′(x)(Ω).

Proposition 2.2 ( [12,28]). Set ρ(u) =
∫
Ω
|u(x)|p(x)dx. For any u, uk ∈ Lp(x)(Ω),

we have

(i) For u 6= 0, |u|Lp(x)(Ω) = λ ⇔ ρ(uλ ) = 1;
(ii) |u|Lp(x)(Ω) < 1(= 1, > 1) ⇔ ρ(u) < 1(= 1, > 1);

(iii) If |u|Lp(x)(Ω) > 1, then |u|p
−

Lp(x)(Ω)
≤ ρ(u) ≤ |u|p

+

Lp(x)(Ω)
;

(iv) If |u|Lp(x)(Ω) < 1, then |u|p
+

Lp(x)(Ω)
≤ ρ(u) ≤ |u|p

−

Lp(x)(Ω)
;

(v) limk→∞ |uk|Lp(x)(Ω) = 0 ⇔ limk→∞ ρ(uk) = 0;
(vi) |uk|Lp(x)(Ω) → ∞ ⇔ ρ(uk) → ∞.
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From Hölder inequality, we can easily obtain the following proposition:

Proposition 2.3. Let h, r ∈ L∞
+ (Ω) with h(x) ≤ r(x) a.e. in Ω and u ∈ Lr(x)(Ω).

Then, |u|h(x) ∈ L
r(x)
h(x) (Ω) and

||u|h(x)|
L

r(x)
h(x) (Ω)

≤ |u|h
+

Lr(x)(Ω) + |u|h
−

Lr(x)(Ω).

The following lemma is a variable exponent case of Brézis-Lieb Lemma.

Proposition 2.4. Suppose that {un} is bounded in Lh(x)(Ω) and un(x) → u(x)
a.e. in Ω. Then, u ∈ Lh(x)(Ω) and

lim
n→∞

(∫
Ω

|un|h(x)dx−
∫
Ω

|u− un|h(x)dx
)

=

∫
Ω

|u|h(x)dx,

or equivalently∫
Ω

|un|h(x)dx−
∫
Ω

|u− un|h(x)dx =

∫
Ω

|u|h(x)dx+ on(1).

Now, we give our main tools used in this paper.

Theorem 2.1 ( [22]). Assume that X is a reflexive Banach space and ϕ : X → R
is locally Lipschitz and satisfies the nonsmooth C-condition. Assume further that
there exist u1 ∈ X and r > 0 such that ‖u1‖ > r and

max{ϕ(0), ϕ(u1)} < inf{ϕ(v) : ‖v‖ = r}.

Then ϕ has a nontrivial critical point u ∈ X such that ϕ(u) ≥ inf{ϕ(v) : ‖v‖ = r}.

Theorem 2.2 ( [20]). Assume that X is a reflexive Banach space and ϕ : X → R
is even locally Lipschitz and satisfies the nonsmooth C-condition and also

(i) ϕ(0) = 0;

(ii) There exists a subspace Y ⊆ X of finite codimension and numbers β, γ > 0,
such that inf{ϕ(u) : u ∈ Y ∩ ∂Bγ(0)} ≥ β, where Bγ = {u ∈ X : ‖u‖ < γ}
and ∂Bγ = {u ∈ X : ‖u‖ = γ};

(iii) There is a finite dimensional subspace V of X with dim V >codim Y , such
that ϕ(v) → −∞ as ‖v‖ → +∞ for any v ∈ V .

Then ϕ has at least dim V -codim Y pairs of nontrivial critical points.

3. Main results
Set X = W

1,p(x)
0 (Ω). Since X is a reflexive and separable Banach space, there exist

ej ⊂ X and e∗j ⊂ X∗ such that

X = span{ej |j = 1, 2, · · · }, X∗ = span{e∗j |j = 1, 2, · · · },

and

〈e∗i , ej〉 =

{
1, i = j,

0, i 6= j.
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For convenience, we write Xj = span{ej}, Yk =
⊕k

j=1 Xj , Zk =
⊕∞

j=k Xj . We
define the function I on X by

Iλ =

∫
Ω

1

p(x)
|∇u|p(x)dx− λ

∫
Ω

1

q(x)
|u|q(x)dx−

∫
Ω

F (x, u)dx.

Let F (u) =
∫
Ω
F (x, u)dx. In order to prove our results, we need the following

lemmas.

Lemma 3.1. Assume that F satisfies conditions (HF )(i) − (iii), then F (u) is
locally Lipschitz, and

F 0(x, u;u) ≤
∫
Ω

F 0(x, u;u)dx.

Proof. By virtue of hypothesis (HF )(iii), for given ε > 0, we can find M1 =
M1(ε) > 0, such that

|ω| ≤ c|u|p
+−1 + ε|u|q(x)−1 (3.1)

for a.e. x ∈ Ω, all |u| ≥ M1 and ω(x) ∈ ∂F (x, u). By Lebegue’s mean value
theorem, we obtain that

|F (u)− F (v)| = |ω∗(u− v)|

for some ω∗ ∈ ∂F (x, u+ θ(u− v)) and θ ∈ [0, 1]. Then

|F (u)− F (v)| ≤ (c|z|p
+−1 + 2ε|z|q(x)−1)|u− v|,

where |z| = max{|u|, |v|}. For a neighborhood δu ⊂ X of u, v ∈ δu,

|F (u)− F (v)| ≤ c

∫
Ω

|z|p
+−1|u− v|dx+ 2ε

∫
Ω

|z|q(x)−1|u− v|dx.

From Hölder’s inequality and the embedding theorem, we derive

|F (u)− F (v)| ≤ c|z|p
+−1

p+ |u− v|p+ + 2εmax{|z|q
−−1

q(x) , |z|q
−+1

q(x) }|u− v|q(x)

≤ (c‖z‖p
+−1 + 2cεmax{‖z‖q

−−1, ‖z‖z
+−1})‖u− v‖.

Hence F (u) is locally Lipschitz. Then I(u) is locally Lipschitz. Similar as that
in [26, Lemma 2.1], we can obtain that F 0(x, u;u) ≤

∫
Ω
F 0(x, u;u)dx. Thus the

proof is completed. □

Lemma 3.2. Assume that F satisfies hypotheses (HF )(i)−(iii), then every critical
point of u0 ∈ X of Iλ is a weak solution of problem (Pλ).

Proof. Since u ∈ X is a critical point of Iλ, for every v ∈ X, Lemma 3.1 gives

0 ≤ I0λ(u; v) =

∫
Ω

|∇u|p(x)−2∇u∇vdx− λ

∫
Ω

|u|q(x)−2uvdx+ (−F )0(x, u; v)

≤
∫
Ω

|∇u|p(x)−2∇u∇vdx− λ

∫
Ω

|u|q(x)−2uvdx+

∫
Ω

F 0(x, u;−v)dx,

i.e., u is a weak solution of problem (Pλ). □
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Lemma 3.3. If hypothesis (HF ) hold, then any nonsmooth C-condition sequence
of Iλ is bounded in X.

Proof. Let {un}n≥1 ⊂ X be a sequence such that Iλ(un) → c, and (1+‖un‖)m(un)
→ 0 as n → +∞. Let A : X → X∗ be the nonlinear operator defined by

〈A(u), v〉 =
∫
Ω

|∇u|p(x)−2∇u · ∇vdx for all u, v ∈ X.

From [23] we know that A is maximal monotone and

u∗
n = A(un)− λ|un|q(x)−2un − ωn, (3.2)

where ωn ∈ ∂F (x, un) and u∗
n ∈ ∂Iλ(un) for n ≥ 1.

(1 + ‖un‖)m(un) → 0 deduces

|〈u∗
n, un〉| → 0 (3.3)

as n → +∞. We claim that the sequence {un} is bounded. Indeed, by virtue of
(3.2) and (3.3), we derive that

I0λ(un;un) ≥ 〈u∗
n, un〉X ≥ −‖u∗

n‖X∗‖un‖ ≥ −α‖un‖ (3.4)

for n sufficiently large. Using Lemma 3.1, the above estimation and (HF )(iv), we
obtain that

c+ 1 + ‖un‖ ≥ Iλ(un)−
1

α
I0λ(un;un)

=

∫
Ω

1

p(x)
|∇un|p(x)dx− λ

∫
Ω

1

q(x)
|un|q(x)dx−

∫
Ω

F (x, un)dx

− 1

α

[ ∫
Ω

|∇un|p(x)dx− λ

∫
Ω

|un|q(x)dx+ (−F )0(x, un;un)

]
≥

(
1

p+
− 1

α

)∫
Ω

|∇un|p(x)dx+ λ

(
1

α
− 1

q−

)∫
Ω

|un|q(x)dx

−
∫
Ω

[
F (x, un) +

1

α
F 0(x, un;−un)

]
dx

≥
(

1

p+
− 1

α

)∫
Ω

|∇un|p(x)dx.

Once that ‖un‖ > 1, it follows from Proposition 2.1 that

c‖un‖p
−
≤ c+ 1 + ‖un‖.

Since p− > 1, the above inequality means that {un} is bounded in X. □

As a consequence of the last result, if {un} is a nonsmooth C-condition of Iλ,
we can extract a subsequence of {un}, still denoted by {un}, and u ∈ X such that

un ⇀ u in X, un ⇀ u in Lq(x)(Ω),

un → u in Lr(x)(Ω), 1 < r− ≤ r(x) � p∗(x).
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By virtue of the concentration compactness lemma of Lions for variable exponents
in [4], there exist two nonnegative measures µ, ν ∈ Λ(Ω), a countable set idex set
E, points {xj}i∈E in D and sequences {µj}j∈E , {νj}j∈E ⊂ [0,+∞), such that

|∇un|p(x) → µ ≥ |∇u|p(x) +
∑
j∈E

µjδxj
in Λ(Ω),

|un|p(x) → ν = | u|p(x) +
∑
j∈E

νjδxj
in Λ(Ω),

and
Sν

1
p∗(xj)

j ≤ µ
1

p(xj)

j ∀j ∈ E,

where S = infϕ∈C∞
0 (Ω)

∥∇ϕ∥
Lp(x)(Ω)

∥ϕ∥
Lq(x)(Ω)

.

In the following, we will prove an important estimate for {νj}. With this aim
in mind, we have to prove a technical lemma. Let φ ∈ C∞

0 (Ω) such that

φ(x) = 1 in B 1
2
(0), supp φ ⊂ B1(0) and 0 ≤ φ(x) ≤ 1 ∀x ∈ Ω.

For each ε > 0, define

φϵ(x) = φ

(
x

ε

)
∀x ∈ Ω.

Lemma 3.4. For each y ∈ Ω̄ and u ∈ Lp(x)(Ω),∫
Ω

|u(x)∇φϵ(x− y)|p(x)dx ≤ Cmax
{
‖u‖p

−

Lp∗(x)(Bϵ(y))
, ‖u‖p

+

Lp∗(x)(Bϵ(y))

}
, (3.5)

where C is a constant independent of ε and y.

Proof. Observe that∫
Ω

|u(x)∇φϵ(x− y)|p(x)dx =

∫
Ω

|u(x)|p(x)
∣∣∣∣1ε∇φ

(
x− y

ε

)∣∣∣∣p(x)dx
=

∫
Bϵ(xj)

|u(x)|p(x)
∣∣∣∣1ε∇φ

(
x− y

ε

)∣∣∣∣p(x)dx
≤ c

∥∥∥∥|u|p(x)∥∥∥∥
L

p∗(x)
p(x) (Bϵ(y))

∥∥∥∥∣∣∣∣1ε∇φ

(
· − y

ε

)∣∣∣∣p(x)∥∥∥∥
L

p∗(x)
p∗(x)−p(x) (Bϵ(y))

.

Making a change of variable, we derive

∫
Bϵ(xj)

∣∣∣∣1ε∇φ

(
x− y

ε

)∣∣∣∣
p(x)p∗(x)
p∗−p(x)

dx =

∫
B1(0)

∣∣∣∣1ε∇φ(z)

∣∣∣∣
p(y−ϵz)p∗(y−ϵz)

p∗(y−ϵz)−p(y−ϵz)

· εNdz

=

∫
B1(0)

∣∣∣∣1ε∇φ(z)

∣∣∣∣N εNdz =

∫
B1(0)

|∇φ(z)|Ndz.

Then (3.5) is satisfied. □
Lemma 3.5. Under conditions of Lemma 3.3, if {un} is a nonsmooth C-condition
for Iλ and {νj} as above, then for each j ∈ E, νj > SN

λ
N

p(xj)

or νj = 0.
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Proof. For ∀ε > 0, we set φϵ ∈ C∞
0 (Ω) as in Lemma 3.4. Then {φϵ(·−xj)un} ⊂ X

for any j ∈ E. After a direct computation, we derive that {φϵ(·−xj)un} is bounded
in X. Hence

〈u∗
n, φϵ(· − xj)un〉 = on,

where u∗
n ∈ ∂Iλ(un). Or equivalently,∫
Ω

|∇un|p(x)φϵ(x− xj)dx+

∫
Ω

|∇un|p(x)−2∇unun∇φϵ(x− xj)dx+ on(1)

= λ

∫
Ω

|un|q(x)φϵ(x− xj)dx+

∫
Ω

ω(x, un)unφϵ(x− xj)dx,

(3.6)
where ω(x, un) ∈ ∂F (x, un). For ∀σ > 0, it follows from Young’s inequality that∫
Ω

|∇un|p(x)−2∇unun∇φϵ(x−xj)dx≤σ

∫
Ω

|∇un|p(x)dx+Cσ

∫
Ω

|un∇φϵ(x−xj)|p(x)dx.

(3.7)
Passing to the limit of n → +∞ in (3.7), we have

lim sup
n→∞

∫
Ω

||∇un|p(x)−2∇unun∇φϵ(x− xj)|dx ≤ σC + Cσ

∫
Ω

|u∇φϵ(x− xj)|p(x)dx.

(3.8)
From Lemma 3.4, we obtain

lim sup
n→∞

∫
Ω

||∇un|p(x)−2∇unun∇φϵ(x− xj)|dx

≤σC + CCσ max{‖u‖p
+

Lp∗(x)(Bϵ(xj))
, ‖u‖p

−

Lp∗(x)(Bϵ(xj))
}.

(3.9)

Furthermore, it follows from hypothesis (HF )(iii), for ∀ε > 0,

|ω(x, un)| ≤ ε|un|q(x)−1 + Cϵ|un|p
+−1,

where Cϵ > 0 and ω(x, un) ∈ ∂F (x, un). Then∫
Ω

ω(x, un)unφϵ(x−xj)dx≤ε

∫
Ω

|un|q(x)φϵ(x− xj)dx+Cϵ

∫
Ω

|un|p
+

φϵ(x−xj)dx.

(3.10)
On the other hand, from the compactness lemma of Strauss [9]

lim
n→∞

∫
Ω

|un|p
+

φϵ(x− xj)dx ≥
∫
Ω

|u|p
+

φϵ(x− xj)dx. (3.11)

Noting that {un} is bounded in X, from the Sobolev embedding theorem, setting
ε → 0, we have

ε

∫
Ω

|un|q(x)φϵ(x− xj)dx → 0. (3.12)

By (3.6) and (3.8)-(3.12), one has

lim
n→∞

∫
Ω

|∇un|p(x)φϵ(x− xj)dx ≤ λ lim
n→∞

∫
Ω

|un|q(x)φϵ(x− xj)dx

+Cϵ

∫
Ω

|un|p
+

φϵ(x−xj)dx+σC+CCσ max
{
‖u‖p

+

Lp∗(x)(Bϵ(xj))
, ‖u‖p

−

Lp∗(x)(Bϵ(xj))

}
,

(3.13)
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where C is a constant independent of ε and j. Recall that

|∇un|p(x) → µ and |un|q(x) → ν in Λ(Ω),

lim
n→∞

∫
Ω

|∇un|p(x)φϵ(x− xj)dx =

∫
Ω

φϵ(x− xj)dµ ≥
∫
B ϵ

2
(xj)

φϵ(x− xj)dµ

=

∫
B ϵ

2
(xj)

dµ = µj ,

and
lim
n→∞

∫
Ω

|un|q(x)φϵ(x− xj)dx =

∫
Bϵ(xj)

φϵ(x− xj)dν ≤
∫
Bϵ(xj)

dν

= ν(Bϵ(xj)).

Consequently,

µj≤ lim
n→+∞

∫
Ω

|∇un|p(x)φϵ(x− xj)dx ≤ λν(Bϵ(xj))

+Cϵ

∫
Ω

|u|p
+

φϵ(x−xj)dx+σC+CCσ max{‖u‖p
+

Lp∗(x)(Bϵ(xj))
, ‖u‖p

−

Lp∗(x)(Bϵ(xj))
}.

Setting ε → 0 after σ → 0, we infer that

µj ≤ λνj .

So
Sν

1
p∗(xj) ≤ µ

1
p(xj)

j ≤ (λνj)
1

p(xj) .

Hence

νj ≥
SN

λ
N

p(xj)

or νj = 0. □

Lemma 3.6. If hypothesis (HF ) holds and λ < 1, then Iλ satisfies the nonsmooth

C-condition for c < λ
1− N

p+

(
1
α − 1

q−

)
SN .

Proof. Since

Iλ(un) = c+ on(u) and (1 + ‖un‖)m(un) → 0,

it follows from (3.2) that

c = lim
n→∞

Iλ(un) = lim
n→∞

(
Iλ(un)−

1

α
〈u∗

n, un〉
)

≥ lim
n→∞

(
Iλ(un)−

1

α
I0λ(un;un)

)
= lim

n→∞

[ ∫
Ω

(
1

p(x)
− 1

α

)
|∇un|p(x)dx+ λ

∫
Ω

(
1

α
− 1

q(x)

)
|un|q(x)dx

− F (x, un)−
1

α
F 0(x, un;−un)

]
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≥ lim
n→∞

[ ∫
Ω

(
1

p(x)
− 1

α

)
|∇un|p(x)dx+ λ

∫
Ω

(
1

α
− 1

q(x)

)
|un|q(x)dx

−
∫
Ω

(
F (x, un) +

1

α
F 0(x, un;−un)

)
dx

]
.

By virtue of hypothesis (HF )(iv), we have

c ≥ λ

(
1

α
− 1

q−

)
lim
n→∞

∫
Ω

|un|q(x)dx.

Noting that

lim
n→∞

∫
Ω

|un|q(x)dx =

[ ∫
Ω

|u|q(x)dx+
∑
j∈E

νj

]
≥ νj ∀j ∈ E,

if νs > 0 for some s ∈ E, we infer that

c ≥ λ

(
1

α
− 1

q−

)
SN

λ
N

p(xs)

.

So, for λ < 1

c ≥ λ

(
1

α
− 1

q−

)(
S

λ
1

p+

)N

= λ
1− N

p+

(
1

α
− 1

q−

)
SN ,

which is a contradiction. Then, we must have νj = 0 for any j ∈ E, leading to∫
Ω

|un|q(x)dx →
∫
Ω

|u|q(x)dx.

From the above equation we derive∫
Ω

|un − u|q(x)dx → 0 as n → ∞.

Then
un → u in Lq(x)(Ω). (3.14)

Since 〈u∗
n, un〉 = on(1), we obtain∫

Ω

|∇un|p(x)dx = λ

∫
Ω

|un|q(x)dx+

∫
Ω

ω(x, un)undx+ on(1).

In the following, let us denote by {Pn} the following sequence

Pn(x) = 〈|∇un(x)|p(x)−2∇un(x)− |∇u(x)|p(x)−2∇u(x),∇un(x)−∇u(x)〉.

The definition of {Pn} means that∫
Ω

Pndx=

∫
Ω

|∇un|p(x)dx−
∫
Ω

|∇un|p(x)−2∇un∇udx−
∫
Ω

|∇u|p(x)−2∇u∇(un−u)dx.

Since un ⇀ u in W
1,p(x)
0 (Ω), we obtain∫

Ω

|∇un|p(x)−2∇un∇(un − u)dx → 0



1428 Z. Yuan & M. Huang

as n → ∞, which means that

Pn(x) =

∫
Ω

|∇un|p(x)dx−
∫
Ω

|∇un|p(x)−2∇un∇udx+ on(1).

Furthermore, from 〈u∗
n, un〉 = on(1), we have∫

Ω

Pndx =λ

∫
Ω

|un|q(x)dx+

∫
Ω

ω(x, un)undx− λ

∫
Ω

|un|q(x)−2unudx

−
∫
Ω

ω(x, un)udx+ on(1),

where u∗
n ∈ ∂Iλ(un) and ω(x, un) ∈ ∂F (x, un). Combining (3.14) with the com-

pactness lemma of Strauss [9], we infer that∫
Ω

Pndx → 0 as n → ∞.

Next, let us discuss the sets

Ω+ = {x ∈ Ω : p(x) ≥ 2} and Ω− = {x ∈ Ω : 1 < p(x) < 2}.

Recalling that

Pn(x) ≥


23−p+

p+
|∇un −∇u|p(x) if p(x) ≥ 2,

(p− − 1)
|∇un −∇u|2

(|∇un|+ |∇u|)2−p(x)
if 1 < p(x) < 2,

we derive ∫
Ω+

|∇un −∇u|p(x)dx → 0 as n → ∞. (3.15)

Applying Hölder’s inequality, one has∫
Ω−

|∇un −∇u|p(x)dx ≤ c‖fn‖
L

2
p(x) (Ω−)

‖hn‖
L

2
2−p(x) (Ω−)

,

where
fn(x) =

|∇un(x)−∇u(x)|p(x)

(|∇un(x)|+ |∇u(x)|)
p(x)(2−p(x))

2

,

hn(x) = (|∇un(x)|+ |∇u(x)|)
p(x)(2−p(x))

2 .

A direct computation shows that {‖hn‖
L

2
2−p(x) (Ω−)

} is a bounded sequence and

∫
Ω−

|fn|
2

p(x) dx ≤ C

∫
Ω−

Pn(x)dx. (3.16)

Hence ∫
Ω−

|∇un −∇u|p(x)dx → 0

as n → ∞. (3.15) and (3.16) imply that un → u in X as n → ∞. □
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Proof of Theorem 1.1. We firstly prove the following claim.
Claim 1. There exists ρ0 > 0 such that for all 0 < ρ < ρ0, we have inf{Iλ :

‖u‖ = ρ} > 0.
From hypothesis (HF )(iii), for any ε > 0, we obtain

F (x, u) ≤ ε|u|p
+

+ Cϵ|u|q(x)

for a.e. x ∈ Ω, where Cϵ > 0. Hence, for all u ∈ X with ‖u‖ < 1

Iλ(u) =

∫
Ω

1

p(x)
|∇u|p(x)dx− λ

∫
Ω

|u|q(x)dx−
∫
Ω

F (x, u)dx

≥
∫
Ω

1

p(x)
|∇u|p(x)dx− λ

∫
Ω

|u|q(x)dx− ε

∫
Ω

|u|p
+

dx− Cϵ

∫
Ω

|u|q(x)dx

≥
(

1

p+
− εC

)
‖u‖p

+

− (λ+ Cϵ)C‖u‖q
−
.

Choosing ε = 1
2p+C , we obtain that

Iλ(u) ≥
1

2p+
‖u‖p

+

− (λ+ Cϵ)C‖u‖q
−
.

Noting that p+ < q−, there exists ρ0 > 0 such that for all 0 < ρ < ρ0, we derive
inf{Iλ(u) : ‖u‖ = ρ} > 0.

Claim 2. There exists u1 ∈ X such that Iλ(u1) < 0. By virtue of hypothesis
(HF )(iii), for any ε > 0, we have

|F (x, u)| ≤ Cϵ|u|p(x) + ε|u|q(x) (3.17)

for a.e. x ∈ Ω. Through (3.17), for v ∈ X \ {0} and t > 1, we obtain that

Iλ(tv) =

∫
Ω

1

p(x)
|t∇v|p(x)dx− λ

∫
Ω

|tv|q(x)dx−
∫
Ω

F (x, tv)dx

≤ tp
+

∫
Ω

1

p(x)
|∇v|p(x)dx−λ

∫
Ω

|tv|q(x)dx+Cϵt
p+

∫
Ω

|v|p(x)dx+ε

∫
Ω

|tv|q(x)dx

≤ tp
+

(∫
Ω

1

p(x)
|∇v|p(x)dx+ Cϵ

∫
Ω

|v|q(x)dx
)
− tq

−
(λ− ε)

∫
Ω

|v|q(x)dx.

Choosing 0 < ε < λ, and noting that p+ < q−, we can find t sufficiently large such
that Iλ(t0v) < 0 and set u1 = t0v, then u1 is the desired element. Since Iλ(0) = 0
and 0 < ρ < ρ0, by virtue of Claim 1, we obtain

inf{Iλ(u) : ‖u‖ = ρ} > max{Iλ(0), Iλ(u1)}.

By Lemma 3.6, the nonsmooth C-condition is fulfilled. It follows from Theorem 2.1
we obtain that Iλ has at least one nontrivial critical point û ∈ X, i.e., a nontrivial
solution of problem (Pλ). □

Proof of Theorem 1.2. We claim that Iλ(u) → −∞ as ‖u‖ → +∞, for any
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u ∈ Yk. Assume that ‖u‖ > 1. By virtue of (3.17), setting 0 < ε < λ, we derive

Iλ(u) =

∫
Ω

1

p(x)
|∇u|p(x)dx− λ

∫
Ω

|u|q(x)dx−
∫
Ω

F (x, u)dx

≤ 1

p−
‖u‖p

+

− λ

∫
Ω

|u|q(x)dx+ Cϵ

∫
Ω

|u|p(x)dx+ ε

∫
Ω

|u|q(x)dx

≤ 1

p−
‖u‖p

+

− (λ− ε)|u|q
−

q(x) + Cϵ|u|p
+

p(x).

Noting that Yk is a finite dimensional space, then all norms in Yk are equivalent.
Since p+ < q−, we obtain that Iλ(u) → −∞ as ‖u‖ → +∞. Recalling that Iλ(0) = 0
and Iλ is even with V = Yk (dim Yk = k) and Y = X (codim Y = 0), from Lemma
3.6 and Claim 1 in Theorem 1.1, we infer that Iλ has k-pairs of nontrivial solutions
for problem (Pλ). □
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