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Abstract In this paper, we investigate the Wong-Zakai approximations in-
duced by a stationary process and the long term behavior of the fractional
stochastic reaction-diffusion equation driven by a white noise. Precisely, one
of the main ingredients in this paper is to establish the existence and unique-
ness of tempered pullback attractors for the Wong-Zakai approximations of
fractional stochastic reaction-diffusion equations. Thereafter the upper semi-
continuity of attractors for the Wong-Zakai approximation of the equation as
δ → 0 is proved.
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1. Introduction

This paper considers the Wong-Zakai approximations and the long term behavior of
the non-local, fractional stochastic reaction-diffusion equations on Rn as following:

∂u

∂t
+ (−∆)su+ λu = f(t, x, u) + g(t, x) + h(t, x, u) ◦ dW

dt
, t > τ, x ∈ Rn, (1.1)

with initial condition
u(τ, x) = uτ (x), x ∈ Rn. (1.2)

Here, s ∈ (0, 1), λ > 0 is a fixed constant, f : R × Rn × R → R is a smooth
functon, g ∈ L2

loc(R, L2(Rn)), W is a one-dimensional two-sided Brownian motion,
the symbol ◦ means that the equation is understood in the sense of Stratonovich’s
integration.

Let (Ω,F ,P) be the classical Wiener probability space, where

Ω = C0(R,R) := {ω ∈ C(R,R) : ω(0) = 0}
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with the open compact topology, F is its Borel σ-algebra, and P is the Wiener
measure. The shift operator θt is defined on (Ω,F ,P) by

θtω(·) = ω(t+ ·)− ω(t).

As we all know, the probability measure P is an ergodic invariant measure for
θt. (Ω,F ,P, {θt}t∈R) forms a metric dynamical system, see Arnold [1].

For given δ ∈ R, set Gδ : Ω→ R as the random variable:

Gδ(ω) =
1

δ
ω(δ),

then we have

Gδ(θtω) =
1

δ
(ω(t+ δ)− ω(t)). (1.3)

By checking, we know that Gδ(θtω) is a stationary stochastic process. Gδ(θtω) is an
approximation of white noise in the sense

lim
δ→0

sup
t∈[0,T ]

∣∣∣∣∫ t

0

Gδ(θsω)ds−W (t, ω)

∣∣∣∣ = 0, a.s. (1.4)

for each T > 0, which was first introduced by K. Lu and Q. Wang in [13]. From then
on, the same approximation is used in [14] for bounded domains and also in [15]
and [17] for unbounded domains. More recently, this approximation was used by
Shen, Zhao, Lu and Wang to investigate the invariant manifolds and stable foliations
of the Wong-Zakai approximaitons, which turn out to converge to the invariant
manifolds and stable foliations of the stochastic evolution equation, respectively
in [18]. In the present paper, we also use the same approximation as in (1.4). (1.4)
implies that equation (1.1) could be approximated by the following Wong-Zakai
equation driven by a multiplicative noise of Gδ(θtω) as δ → 0:

∂u

∂t
+ (−∆)su+ λu = f(t, x, u) + g(t, x) + h(t, x, u)Gδ(θtω), t > τ, x ∈ Rn. (1.5)

To place our result in context, we review a few highlights from the random at-
tractors of fractional stochastic equations. The authors of [9] and [10] obtained the
existence of random attractors. Recently, the authors of [22] established the exis-
tence of the random attractors on bounded domains, and the authors of [12] solved
the case of unbounded domains by applying diagonal processes for two times and
tail-estimate. Moreover, by using the idea of spectral decomposition on bounded
domains O in Rn along with the uniform tail-estimates of solutions, Wang etc ob-
tained the regularity of random attractors [6]. Note that the noise in the above five
papers is either additive or linear multiplicative. On the other hand, for the non-
linear case, there are few results: the existence of random attractors for stochastic
PDEs driven by a fractional Brownian motion was proved by the authors of [4], [5].
Also, very recently, Wang etc in [24] established the existence and uniqueness of
pullback random attractors for the fractional nonclassical diffusion equations driven
by colored noise via using the similar method in [6].

In this paper, strongly motivated by the work of Wang etc [15], we study the
long term behavior of equations (1.1) and (1.2). In general, the stochastic equation
(1.1) could generate a continuous cocycle only when h(t, x, u) either only depends
on t and x or is linear in u. For general nonlinear function h(t, x, u), (1.1) may not
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generate continuous cocycle, hence the existence of attractor is unclear. Fortunately,
we are able to show that (1.5) could generate a continuous cocycle and additionally
it has a tempered attractor for a class of nonlinear functions h. Thus we could
indirectly investigate the long term behavior of (1.1) via considering (1.5). This
result is presented in Theorem 2.1.

To illustrate the advantage of random equation (1.5) over stochastic equation
(1.1), in section 3, for linear multiplicative noise, we will prove the solutions of
equation (1.5) converge to that of equation (1.1) as δ → 0 and furthermore we will
obtain the upper semi-continuity of the attractors for equation (1.5) in L2(Rn).
This property is contained in Theorem 3.1.

To obtain the uniform estimates of solutions of equation (1.5) in Hs(Rn), a
strong condition (2.9) for the noise term h(t, x, u) is necessary. Indeed, one needs
(2.9) to ensure the regularity of h(t, x, u), which is a key step in the estimate of u.
The uniform estimates and the uniform tail-estimates of solutions in L2(Rn) will
yield the pullback asymptotic compactness of solutions in Hs(Rn).

The pioneer work of approximating stochastic equations by pathwise determin-
istic equations could date back to Wong and Zakai [25, 26]. So far, there has been
a series of nice results about Wong-Zakai approxiamtions, for instance, the readers
can consult [2, 3, 7, 8, 19].

The remaining part of this paper is organized as follows: In section 2, the exis-
tence and uniqueness of pullback random attractors for Wong-Zakai approximations
are proved. In the last section, we obtain the upper semi-continuity of attractors of
Wong-Zakai approximations (3.11) for multiplicative noise as δ → 0.

Notations. Before ending this introduction, let us recall some related notion-
s about the integral fractional operator (−∆)s. Given s ∈ (0, 1), the fractional
Laplace operator (−∆)s is defined by

(−∆)su(x) = C(n, s)

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy,

where C(n, s) is a positive number depending on n and s with

C(n, s) =

(∫
Rn

1− cos(ξ1)

|ξ|n+2s
dξ

)−1
, ξ = (ξ1, ξ2, · · · , ξn) ∈ Rn. (1.6)

For s ∈ (0, 1), the fractional Sobolev space Hs(Rn) is defined by

Hs(Rn) =

{
u ∈ L2(Rn) :

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2s
dx dy <∞

}
,

with norm

‖u‖Hs(Rn) =

(∫
Rn
|u(x)|2dx+

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2s
dx dy

) 1
2

.

In this paper, the norm and the inner product of L2(Rn) are denoted by ‖ · ‖
and (·, ·), respectively. The Gagliardo semi-norm of Hs(Rn) is denoted by

‖u‖2
Ḣs(Rn) =

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2s
dx dy, u ∈ Hs(Rn).
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Note that Hs(Rn) is a Hilbert space, with inner product

(u, v)Hs(Rn) =

∫
Rn
u(x)v(x)dx+

∫
Rn

∫
Rn

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|n+2s

dx dy,

for u, v ∈ Hs(Rn).

Moreover, by [16] we have

‖u‖2Hs(Rn) = ‖u‖2 +
2

C(n, s)
‖(−∆)

s
2u‖2, u ∈ Hs(Rn), (1.7)

thus,
(
‖u‖2 + ‖(−∆)

s
2u‖2)

) 1
2 is an equivalent norm of Hs(Rn).

Hereafter, the letters c, ci and Ci may be different in different lines.

2. Wong-Zakai approximations

Let τ, δ ∈ R, δ 6= 0, s ∈ (0, 1). Consider the following random fractional reaction-
diffusion equation:

∂u

∂t
+ (−∆)su+ λu = f(t, x, u) + g(t, x) + h(t, x, u)Gδ(θtω), t > τ, x ∈ Rn, (2.1)

with initial condition
u(τ, x) = uτ (x), x ∈ Rn, (2.2)

where λ is a positive constant, g ∈ L2
loc(R, L2(Rn)).

The nonlinearity function f : R × Rn × R → R is continuous and for all t, u ∈
R, x ∈ Rn,

f(t, x, u)u ≤ −β|u|p + ψ1(t, x), (2.3)

|f(t, x, u)| ≤ ψ2(t, x)|u|p−1 + ψ3(t, x), (2.4)∣∣∣∣∂f∂u (t, x, u)

∣∣∣∣ ≤ ψ4(t, x), (2.5)

|f(t, x, u)− f(t, y, u)| ≤ |ψ5(x)− ψ5(y)|, (2.6)

where β > 0, p ≥ 2 are constants, ψ1 ∈ L1
loc

(
R, L1(Rn)), ψ2, ψ4 ∈ L∞loc

(
R, L∞(Rn)

)
,

ψ3 ∈ Lqloc
(
R, Lq(Rn)

)
, 1p + 1

q = 1, ψ5 ∈ Hs(Rn).
The noise term h : R× Rn × R→ R is continuous and for all t, u ∈ R, x ∈ Rn,

|h(t, x, u)| ≤ ϕ1(t, x)|u|p1−1 + ϕ2(t, x), (2.7)∣∣∣∣∂h∂u (t, x, u)

∣∣∣∣ ≤ ϕ3(t, x), (2.8)

|h(t, x, u)− h(t, y, u)| ≤ |ϕ4(x)− ϕ4(y)|, (2.9)

where 2 ≤ p1 < p, ϕ1 ∈ L
p

p−p1
loc

(
R, L

p
p−p1 (Rn)

)
, ϕ2 ∈ Lqloc

(
R, Lq(Rn)

)
,

ϕ3 ∈ L∞
(
R, L∞(Rn)

)
, ϕ4 ∈ Hs(Rn). We make the following necessary assump-

tions:∫ 0

−∞
eλs
(
‖g(s+ τ)‖2 + ‖ψ1(s+ τ)‖L1

)
ds <∞, ∀τ ∈ R, (2.10)
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lim
r→−∞

ecr
∫ 0

−∞
eλs
(
‖g(s+ τ)‖2 + ‖ψ1(s+ τ)‖L1

)
ds = 0, ∀c > 0. (2.11)

For the simplicity of notations, we define

α(t) = ‖g(t)‖2 + ‖ψ1(t)‖L1 . (2.12)

We are ready to state the first main theorem of this paper.

Theorem 2.1. Suppose (2.3)-(2.9) hold, and (2.10)-(2.11) are assumed. Then
the cocycle Φ of equations (2.1)-(2.2) addimits a unique D-pullback attractor A =
{A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D in L2(Rn).

Now we comment on the proof of Theorem 2.1. We firstly prove the existence
of a continuous cocycle for random fractional reaction-diffusion equations.

2.1. Continuous cocycles

As in the introduction, (Ω,F ,P, {θt}t∈R) is a metric dynamical system, then there
exists a {θt}t∈R-invariant subset of full measure Ω0 ⊆ Ω such that for all ω ∈ Ω0,

ω(t)

t
→ 0 as t→ ±∞. (2.13)

For the concision of notation, in this paper, we don’t distinguish Ω and Ω0. By
(1.3), we have ∫ t

0

Gδ(θsω)ds =

∫ 0

δ

ω(s)

δ
ds+

∫ t+δ

t

ω(s)

δ
ds. (2.14)

Here is a list of properties of Gδ(θtω), see [14].

Lemma 2.1. Let τ ∈ R, ω ∈ Ω, T > 0. Then for ∀ε > 0, there exists δ0 =
δ0(ε, τ, ω, T ) > 0 such that for all 0 < |δ| < δ0 and t ∈ [τ, τ + T ], we have∣∣∣∣∫ t

0

Gδ(θsω)ds− ω(t)

∣∣∣∣ < ε. (2.15)

Since ω(t) is continuous on [τ, τ + T ], there exists c1 = c1(τ, ω, T ) > 0 such that

|ω(t)| ≤ c1, for all t ∈ [τ, τ + T ], (2.16)

which together with (2.15) gives that there exists δ1 = δ1(τ, ω, T ) > 0, c2 =
c2(τ, ω, T ) > 0 such that for all 0 < |δ| < δ1 and t ∈ [τ, τ + T ],∣∣∣∣ ∫ t

0

Gδ(θsω)ds

∣∣∣∣
≤
∣∣∣∣ ∫ t

0

Gδ(θsω)ds− ω(t)

∣∣∣∣+ |ω(t)|

≤c2.

(2.17)

Our present purpose is proving the existence of the continuous cocycle for e-
quations (2.1)-(2.2), so we need to prove the well-posedness. To this end, we
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set Ok = {x ∈ Rn : |x| < k} for all k ∈ N. It is plausible that one utilizes
µ = µ(s) ∈ C∞(R+) as a cut-off function such that

µ(s) =

{
1, 0 ≤ s ≤ 1

2 ,

0, s ≥ 1.
(2.18)

Correspondingly, we shall study the following problem:

∂uk
∂t

+(−∆)suk+λuk=f(t, x, uk)+g(t, x)+h(t, x, uk)Gδ(θtω), t > τ, x ∈ Ok, (2.19)

with boundary condition

uk(t, x) = 0, ∀t > τ, |x| = k, (2.20)

and initial condition

uk(τ, x) = µ

(
|x|
k

)
uτ (x), x ∈ Ok, (2.21)

where uτ ∈ L2(Rn). To prove the well-posedness of (2.19)-(2.21), for every k ∈ N,
we set Θk = {u ∈ L2(Rn) : u = 0 a.e. on Rn\Ok}, Λk = {u ∈ Hs(Rn) : u =
0 a.e. on Rn\Ok}. Let a : Hs(Rn)×Hs(Rn)→ R,

a(u1, u2)

=λ(u1, u2) + ((−∆)
s
2u1, (−∆)

s
2u2)

=λ(u1, u2) +
1

2
C(n, s)

∫
Rn

∫
Rn

(u1(x)− u1(y))(u2(x)− u2(y))

|x− y|n+2s
dx dy.

(2.22)

Moreover, we define A : Hs(Rn)→ H−s(Rn) as following

(A(u1), u2)(H−s,Hs) = a(u1, u2) for all u1, u2 ∈ Hs(Rn). (2.23)

By checking that (A(u1), u2) is linear and continuous both in u1 and u2, hence
A : Hs → H−s is well-defined. Under conditions (2.3)-(2.5), and (2.7)-(2.8), by [22],
we see that for all τ ∈ R, ω ∈ Ω, and uτ ∈ L2(Rn), (2.19)-(2.21) is well-posed in
L2(Ok). Moreover, the solution is (F ,B(L2(Ok)))-measurable in ω ∈ Ω. Next,
we derive the uniform estimates of solutions uk with respective to k ∈ N, then
letting k → ∞, the existence and uniqueness of solutions of equations (2.1)-(2.2)
are obtained.

Lemma 2.2. Assume (2.3)-(2.5) and (2.7)-(2.8), then for all τ ∈ R, ω ∈ Ω,
and uτ ∈ L2(Rn), equations (2.1)-(2.2) admits a unique solution u(·, τ, ω, uτ ) ∈
C([τ,∞);L2(Rn))

⋂
L2
loc([τ,∞);Hs(Rn)).

Proof. Although some essential steps in the proof are similar to those in [12],
we still give the details for reader’s convenience. We will prove the result in the
following three steps:
(1) Uniform estimates
By (2.19), we get that for t > τ ,

1

2

d

dt

∫
Ok
|uk(x)|2 dx+

∫
Ok
uk(x)(−∆)suk(x) dx+ λ

∫
Ok
|uk(x)|2 dx

=

∫
Ok
f(t, x, uk)uk(x) dx+

∫
Ok
g(t, x)uk(x) dx+Gδ(θtω)

∫
Ok
h(t, x, uk)uk(x) dx.

(2.24)



2344 Y. Sun & H. Gao

For the simplicity of presentation, we define that

I(t, x, u) = f(t, x, u) + g(t, x) + h(t, x, u)Gδ(θtω). (2.25)

Because of the boundary condition (2.20), the above (2.24) can be rewritten as

1

2

d

dt
‖uk‖2 +

1

2
C(n, s)‖uk‖2Ḣs(Rn) + λ‖uk‖2 =

∫
Rn
I(t, x, uk)uk(x) dx. (2.26)

By (2.3), (2.7) and Young’s inequality, we obtain that∫
Rn
f(t, x, uk)uk(x) dx ≤− β

∫
Rn
|uk(x)|p dx+

∫
Rn
ψ1(t, x) dx

≤− β‖uk‖pLp + ‖ψ1(t)‖L1 ,

(2.27)

Gδ(θtω)

∫
Rn
h(t, x, uk)uk(x) dx ≤β

2

∫
Rn
|uk(x)|p dx

+ c1|Gδ(θtω)|
p

p−p1

∫
Rn
|ϕ1(t, x)|

p
p−p1 dx

+ c2|Gδ(θtω)|q
∫
Rn
|ϕ2(t, x)|q dx,

(2.28)

∫
Rn
g(t, x)uk(x) dx ≤ λ

4
‖uk‖2 +

1

λ
‖g(t)‖2. (2.29)

(2.26)-(2.29) implies that

d

dt
‖uk‖2 + C(n, s, λ)‖uk‖2Hs(Rn) + λ‖uk‖2 + β‖uk‖pLp

≤Cλα(t) + c1|Gδ(θtω)|
p

p−p1 ‖ϕ1(t)‖
p

p−p1

L
p

p−p1
+ c2|Gδ(θtω)|q‖ϕ2(t)‖qLq .

(2.30)

Multiplying (2.30) by eλt, then integrating over (τ, t) for t ≥ τ , we get

‖uk(t, τ, ω, uτ )‖2 + β

∫ t

τ

eλ(s−t)‖uk(s, τ, ω, uτ )‖pLp ds

+ C(n, s, λ)

∫ t

τ

eλ(s−t)‖uk(s, τ, ω, uτ )‖2Hs(Rn) ds

≤eλ(τ−t)‖uτ‖2 + Cλ

∫ t

τ

eλ(s−t)α(s) ds

+ c1

∫ t

τ

eλ(s−t)|Gδ(θsω)|
p

p−p1 ‖ϕ1(s)‖
p

p−p1

L
p

p−p1
ds

+ c2

∫ t

τ

eλ(s−t)|Gδ(θsω)|q‖ϕ2(s)‖qLq ds.

(2.31)

Since Gδ(θtω) is continuous in t for fixed ω ∈ Ω, and ψ1 ∈ L1
loc

(
R, L1(Rn)

)
, g ∈

L2
loc

(
R, L2(Rn)

)
, ϕ1 ∈ L

p
p−p1
loc

(
R, L

p
p−p1 (Rn)

)
, and ϕ2 ∈ Lqloc

(
R, Lq(Rn)

)
, hence for

T > τ , we have

{uk}∞k=1 is bounded in L∞(τ, T ;L2(Rn))
⋂
L2(τ, T ;Hs(Rn))

⋂
Lp(τ, T ;Lp(Rn)).

(2.32)
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By (2.23),
{A(uk)}∞k=1 is bounded in L2(τ, T ;H−s(Rn)). (2.33)

(2.4) and (2.7) imply that∫ T

τ

∫
Rn
|f(t, x, uk)|q dx dt ≤ c1

∫ T

τ

∫
Rn
|uk|p dx dt+ c2

∫ T

τ

∫
Rn
|ψ3(t, x)|q dx dt,

(2.34)∫ T

τ

∫
Rn
|Gδ(θtω)h(t, x, uk)|q dx dt ≤c1

∫ T

τ

∫
Rn
|uk|p dx dt

+ c2

∫ T

τ

∫
Rn
|ϕ1(t, x)|

p
p−p1 dx dt.

(2.35)

Hence, (2.32), (2.34) and (2.35) imply

{f(t, x, uk)}∞k=1 and {Gδ(θtω)h(t, x, uk)}∞k=1 are bounded in Lq(τ, T ;Lq(Rn)).
(2.36)

By (2.19), (2.32), (2.33) and (2.36), for fixed K ∈ N, we get that{
duk
dt

}∞
k=1

is bounded in L2(τ, T ; Λ∗K) + Lq
(
τ, T ;Lq(Rn)

)
. (2.37)

Note that 1 < q ≤ 2 and 1
p + 1

q = 1, thus{
duk
dt

}∞
k=1

is bounded in Lq
(
τ, T ;

(
ΛK

⋂
Lp(Rn)

)∗)
. (2.38)

(2) Limiting process
Similar to the method in [12], by (2.32)-(2.38), we can get that there exists ū ∈
L2(Rn), u ∈ L∞(τ, T ;L2(Rn))

⋂
L2(τ, T ;Hs(Rn))

⋂
Lp(τ, T ;Lp(Rn)) and w ∈

Lq(τ, T ;Lq(Rn)) such that up to a subsequence,

uk → u weak∗ in L∞(τ, T ;L2(Rn)), (2.39)

uk ⇀ u in L2(τ, T ;Hs(Rn))
⋂
Lp(τ, T ;Lp(Rn)), (2.40)

f(t, ·, uk) + Gδ(θtω)h(t, ·, uk) ⇀ w in Lq(τ, T ;Lq(Rn)), (2.41)

duk
dt

⇀
du

dt
in Lq(τ, T ; (ΛK

⋂
Lp(Rn))∗),∀K ∈ N, (2.42)

and
uk(T, τ, ω) ⇀ ū in L2(Rn). (2.43)

Note that the embedding Hs(Ok) ↪→ L2(Ok) is compact and L2
(
Ok) ↪→

(ΛK
⋂
Lp(Rn)

)∗
is continuous, and by (2.32), (2.38), after an diagonal process about

k, we infer from [11]

uk → u strongly in L2(τ, T ;L2(OK)), ∀K ∈ N. (2.44)

Again, by (2.44) and a diagonal process about K, there exists a subsequence of
{uk}∞k=1, which we still denote by{uk}∞k=1 such that

uk → u a.e. (t, x) ∈ (τ, T )× Rn. (2.45)
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Since f and h are continuous, by (2.45), we have

f(t, x, uk)+Gδ(θtω)h(t, x, uk)→f(t, x, u)+Gδ(θtω)h(t, x, u) a.e. (t, x)∈(τ, T )×Rn.
(2.46)

From (2.36) and (2.46), we have

f(t, ·, uk) + Gδ(θtω)h(t, ·, uk)⇀f(t, ·, u) + Gδ(θtω)h(t, ·, u) in Lq(τ, T ;Lq(Rn)).
(2.47)

By (2.41) and (2.47), we have

w = f(t, ·, u) + Gδ(θtω)h(t, ·, u). (2.48)

Given ξ ∈ Hs(Rn)
⋂
Lp(Rn), let

ξK(x) = µ

(
|x|
K

)
ξ(x), for x ∈ Rn. (2.49)

It is obvious that for all K ∈ N, ξK ∈ Hs(Rn)
⋂
Lp(Rn),

ξK → ξ as K →∞ in Hs(Rn)
⋂
Lp(Rn). (2.50)

For every k > K, letting ϕ ∈ C∞0 (τ, T ), by (2.19)-(2.21), we get

−
∫ T

τ

(uk, ξK)ϕ′ dt+

∫ T

τ

a(uk, ξK)ϕ dt =

∫ T

τ

(I(t, ·, uk), ξK)ϕ dt. (2.51)

In (2.51), letting k →∞, by (2.39)-(2.41) and (2.48), we get

−
∫ T

τ

(u, ξK)ϕ′ dt+

∫ T

τ

a(u, ξK)ϕ dt =

∫ T

τ

(I(t, ·, u), ξK)ϕ dt. (2.52)

In (2.52), also letting K →∞, by (2.50), we have

−
∫ T

τ

(u, ξ)ϕ′ dt+

∫ T

τ

a(u, ξ)ϕ dt =

∫ T

τ

(I(t, ·, u), ξ)ϕ dt. (2.53)

Thus, for all ξ ∈ Hs(Rn)
⋂
Lp(Rn),

d

dt
(u, ξ) + a(u, ξ) = (I(t, ·, u), ξ). (2.54)

To prove the continuity of u : [τ,∞)→L2(Rn), we notice that u∈L2
(
τ, T ;Hs(Rn)

)⋂
Lp
(
τ, T ;Lp(Rn)

)
and du

dt ∈ L
2
(
τ, T ;H−s(Rn)

)
+ Lq

(
τ, T ;Lq(Rn)

)
, thus by [11]

we get that u ∈ C([τ, T ], L2(Rn)).

Next, we prove u(τ) = uτ and u(T ) = ū. For this aim, we let ϕ ∈ C1([τ, T ]) and
ξ ∈ Hs(Rn)

⋂
Lp(Rn). Similar to (2.51), by (2.19)-(2.21), we get for every k > K,

(uk(T ), ξK)ϕ(T )− (uk(τ), ξK)ϕ(τ)

=

∫ T

τ

(uk, ξK)ϕ′ dt−
∫ T

τ

a(uk, ξK)ϕ dt+

∫ T

τ

(I(t, ·, uk), ξK)ϕ dt.
(2.55)
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By (2.21), (2.39)-(2.41), (2.43), (2.48), in (2.55), letting k →∞,

(ū, ξK)ϕ(T )− (uτ , ξK)ϕ(τ)

=

∫ T

τ

(u, ξK)ϕ′ dt−
∫ T

τ

a(u, ξK)ϕ dt+

∫ T

τ

(I(t, ·, u), ξK)ϕ dt.
(2.56)

In (2.56), letting K →∞, by (2.50), we get for all ξ ∈ Hs(Rn)
⋂
Lp(Rn),

(ū, ξ)ϕ(T )−(uτ , ξ)ϕ(τ)=

∫ T

τ

(u, ξ)ϕ′ dt−
∫ T

τ

a(u, ξ)ϕ dt+

∫ T

τ

(I(t, ·, u), ξ)ϕ dt. (2.57)

By (2.54), we get

(u(T ), ξ)ϕ(T )− (u(τ), ξ)ϕ(τ)

=

∫ T

τ

(u, ξ)ϕ′ dt−
∫ T

τ

a(u, ξ)ϕ dt+

∫ T

τ

(I(t, ·, u), ξ)ϕ dt.
(2.58)

Thus, we get

(u(T ), ξ)ϕ(T )− (u(τ), ξ)ϕ(τ) = (ū, ξ)ϕ(T )− (uτ , ξ)ϕ(τ). (2.59)

Since ϕ ∈ C1([τ, T ]), firstly, letting ϕ(τ) = 1 and ϕ(T ) = 0, from (2.59), we get

(u(τ), ξ) = (uτ , ξ). (2.60)

Then, letting ϕ(τ) = 0 and ϕ(T ) = 1, from (2.59), we get

(u(T ), ξ) = (ū, ξ). (2.61)

By (2.60) and (2.61), we get

u(τ) = uτ , u(T ) = ū in L2(Rn), (2.62)

combined with (2.43), we have

uk(T, τ, ω) ⇀ u(T ) in L2(Rn). (2.63)

Similar to (2.63), we can get that for all t ≥ τ , as k →∞,

uk(t, τ, ω) ⇀ u(t) in L2(Rn). (2.64)

(3) Uniqueness and measurability of solutions
Suppose u1 and u2 are solutions of (2.1)-(2.2), then u1 − u2 satisfies

d(u1 − u2)

dt
+A(u1−u2) = f(t, x, u1)−f(t, x, u2)+Gδ(θtω)(h(t, x, u1)−h(t, x, u2)),

which along with (2.5) and (2.8), we get that for every T > τ , there exists c > 0,
such that for all t ∈ [τ, T ],

d

dt
‖u1 − u2‖2 ≤ c‖u1 − u2‖2.
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Therefore, we get

‖u1(t, τ, ω, u1,τ )− u2(t, τ, ω, u2,τ )‖2 ≤ ec(t−τ)‖u1,τ − u2,τ‖2. (2.65)

Thus, the uniqueness and continuity of solutions in initial data in L2(Rn) are proved.
Since uk(t, τ, ω) is measurable in ω ∈ Ω, by (2.64), u(t, τ, ω) is also measurable in
ω.

By the three steps above, the proof of Lemma 2.2 is completed.
Now we can define a mapping Φ : R+ × R × Ω × L2(Rn) → L2(Rn) such that

for all t ∈ R+, τ ∈ R, ω ∈ Ω, uτ ∈ L2(Rn),

Φ(t, τ, ω, uτ ) = u(t+ τ, τ, θ−τω, uτ ), (2.66)

where u is a soluiton of equations (2.1)-(2.2). The uniqueness of the solution shows
that Φ is a continuous cocycle in L2(Rn) for equations (2.1)-(2.2).

2.2. Pullback random attractors

In this subsection, we prove the existence and uniqueness of attractors of Φ in
L2(Rn). By [20], our subsequent tasks are to prove the existence of a tempered
pullback absorbing set for equations (2.1)-(2.2) in L2(Rn) as well as the asymptot-

ic compactness of the solutions. Also, we assume ϕ1 ∈ L∞(R, L
p

p−p1 (Rn)), ϕ2 ∈
L∞(R, Lq(Rn)). In this process, a series of inequalities are derived via delicate
computation and analysis.

We recall that a family of bounded nonempty subsets of L2(Rn),D = {D(τ, ω) :
τ ∈ R, ω ∈ Ω} is tempered if for all c > 0, τ ∈ R and ω ∈ Ω,

lim
t→−∞

ect‖D(τ + t, θtω)‖ = 0, (2.67)

where ‖D‖ = sup
u∈D
‖u‖.

LetD denote the collection of all tempered families of bounded nonempty subsets
of L2(Rn), i.e.

D = {D = D(τ, ω) : τ ∈ R, ω ∈ Ω : D is tempered}. (2.68)

Lemma 2.3. Suppose (2.3)−(2.5), (2.7)−(2.8) hold, in addition, (2.10) is assumed.
Then for all σ ∈ R, τ ∈ R, ω ∈ Ω,D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists
T = T (τ, ω,D, σ) > 0 such that for all t ≥ T , the solution u of equations (2.1)-(2.2)
satisfies

‖u(σ, τ − t, θ−τω, uτ−t)‖2 +

∫ σ−τ

−t
eλ(s+τ−σ)‖u(s+ τ, τ − t, θ−τω, uτ−t)‖2Hs ds

+ β

∫ σ−τ

−t
eλ(s+τ−σ)‖u(s+ τ, τ − t, θ−τω, uτ−t)‖pLp ds

≤ 1 + C1

∫ σ−τ

−∞
eλ(s+τ−σ)(α(s+ τ) + γ(s)) ds,

(2.69)

where
γ(t) = |Gδ(θtω)|

p
p−p1 + |Gδ(θtω)|q, (2.70)

uτ−t ∈ D(τ − t, θ−tω) and C1 is a positive constant independent of τ, ω, σ and D.
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Proof. By (2.3), (2.7) and (2.54), we get

d

dt
‖u(t)‖2 + C(n, s)‖u(t)‖2

Ḣs
+ 2λ‖u(t)‖2 + β‖u(t)‖pLp

≤2‖ψ1(t)‖L1 + c1|Gδ(θtω)|
p

p−p1 ‖ϕ1(t)‖
p

p−p1

L
p

p−p1
+ c2|Gδ(θtω)|q‖ϕ2(t)‖qLq

+ 2

∫
Rn
g(t, x)u dx.

(2.71)

By Young’s inequality,

2

∫
Rn
g(t, x)u(x)dx ≤ λ

2
‖u‖2 +

2

λ
‖g(t)‖2. (2.72)

Since ϕ1 ∈ L∞(R, L
p

p−p1 (Rn)), ϕ2 ∈ L∞(R, Lq(Rn)), along with (2.71) and (2.72),
we get

d

dt
‖u(t)‖2 + λ‖u(t)‖2 + C(n, s, λ)‖u(t)‖2Hs(Rn) + β‖u(t)‖pLp

≤2‖ψ1(t)‖L1 +
2

λ
‖g(t)‖2 + cγ(t).

(2.73)

Multiplying (2.73) by eλt, then integrating over (τ − t, σ), we get

‖u(σ, τ−t, θ−τω, uτ−t)‖2+C(n, s, λ)

∫ σ

τ−t
eλ(s−σ)‖u(s, τ−t, θ−τω, uτ−t)‖2Hs(Rn) ds

+ β

∫ σ

τ−t
eλ(s−σ)‖u(s, τ − t, θ−τω, uτ−t)‖pLp ds

≤eλ(τ−t−σ)‖uτ−t‖2 + Cλ

∫ σ

τ−t
eλ(s−σ)α(s) ds+ c

∫ σ

τ−t
eλ(s−σ)γ(s− τ) ds.

(2.74)

After changing variable, we get

‖u(σ, τ − t, θ−τω, uτ−t)‖2

+ C(n, s, λ)

∫ σ−τ

−t
eλ(s+τ−σ)‖u(s+ τ, τ − t, θ−τω, uτ−t)‖2Hs(Rn) ds

+ β

∫ σ−τ

−t
eλ(s+τ−σ)‖u(s+ τ, τ − t, θ−τω, uτ−t)‖pLp ds

≤eλ(τ−t−σ)‖uτ−t‖2 + Cλ

∫ σ−τ

−∞
eλ(s+τ−σ)α(s+ τ) ds+ c

∫ σ−τ

−∞
eλ(s+τ−σ)γ(s) ds.

(2.75)

Since uτ−t ∈ D(τ − t, θ−tω) and D is tempered, it follows that

lim
t→+∞

eλ(τ−t−σ)‖uτ−t‖2

≤ lim
t→+∞

eλ(τ−t−σ)‖D(τ − t, θ−tω)‖2

=0.
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Thus, there exists T = T(τ, ω,D, σ) > 0 such that for all t ≥ T,

eλ(τ−t−σ)‖uτ−t‖2 ≤ 1. (2.76)

By (2.10), (2.75) and (2.76), we can get the desired result.
Now the existence of D-pullback absorbing sets for equations (2.1)-(2.2) is an

immediate consequence of Lemma 2.3.

Corollary 2.1. Suppose (2.3) − (2.5), (2.7) − (2.8) hold, in addition, (2.11) is as-
sumed. Then the continuous cocycle Φ of equations (2.1)-(2.2) has a closed measur-
able D-pullback absorbing set B = {B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, where

B(τ, ω) = {u ∈ L2(Rn)‖u‖2 ≤ R(τ, ω)}, for all τ ∈ R, ω ∈ Ω, (2.77)

R(τ, ω) = 1 + C1

∫ 0

−∞
eλs
(
α(s+ τ) + γ(s)

)
ds. (2.78)

Proof. In (2.69), letting σ = τ , we can get that B pullback attracts all elements
in D. Next, we prove that B given in (2.77) is tempered. For ∀c > 0, we have

ect‖B(τ + t, θtω)‖2

≤ectR(τ + t, θtω)

=ect + C1e
ct

∫ 0

−∞
eλsα(s+ τ + t) ds+ C1e

ct

∫ 0

−∞
eλsγ(s+ t) ds.

(2.79)

It is obvious that
lim

t→−∞
ect = 0. (2.80)

By (2.11), we have

lim
t→−∞

ect
∫ 0

−∞
eλsα(s+ τ + t)ds = 0. (2.81)

Set r = min{λ, c}, then for t ≤ 0,

ect
∫ 0

−∞
eλsγ(s+ t) ds ≤

∫ 0

−∞
er(s+t)γ(s+ t) ds

=

∫ t

−∞
ersγ(s) ds.

(2.82)

By (2.13)-(2.14), we have ∫ 0

−∞
ersγ(s) ds <∞,

along with (2.82), we get

lim
t→−∞

ect
∫ 0

−∞
eλsγ(s) ds = 0. (2.83)

By (2.79)-(2.81) and (2.83), we get that B is tempered. Furthermore, for each
τ ∈ R,R(τ, ·) : Ω → R is (F ,B(R))-measurable, hence B is also measurable. By
above all, the desired result is obtained.

Next, we will prove the asymptotic compactness of the solutions. To handle
this, we first derive the uniform tail-estimation of solutions in L2(Rn).
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Lemma 2.4. Assume (2.3)-(2.5), (2.7)-(2.8) and (2.10). Then for ∀ε > 0, τ ∈
R, ω ∈ Ω,D ∈ D, there exists T = T (τ, ω,D, ε) > 0 and B = B(τ, ω,D, ε) ≥ 1 such
that for all t ≥ T and k ≥ B,∫

|x|≥k
|u(τ, τ − t, θ−τω, uτ−t)|2 dx ≤ ε, (2.84)

where uτ−t ∈ D(τ − t, θ−tω).

Proof. Let ν(s) = 1 − µ(s) for all s ∈ R+, where µ(s) is the function in (2.18),
that is,

ν(s) = 1− µ(s) =

{
0, 0 ≤ s ≤ 1

2 ,

1, s ≥ 1.

Multiplying (2.1) by ν( |x|k )u and integrating over Rn, we get

1

2

d

dt

∫
Rn
ν

(
|x|
k

)
|u|2 dx+

∫
Rn
ν

(
|x|
k

)
u(−∆)su dx+ λ

∫
Rn
ν

(
|x|
k

)
|u|2 dx

=

∫
Rn
I(t, x, u)ν

(
|x|
k

)
u dx.

(2.85)

Note that

−
∫
Rn
ν

(
|x|
k

)
u(−∆)sudx = −

(
(−∆)

s
2u, (−∆)

s
2

(
ν

(
|x|
k

)
u

))

=− 1

2
C(n, s)

∫
Rn

∫
Rn

ν
( |x|
k

)
|u(x)− u(y)|2

|x− y|n+2s
dx dy

− 1

2
C(n, s)

∫
Rn

∫
Rn

(
ν
( |x|
k

)
− ν
( |y|
k

))(
u(x)− u(y)

)
u(y)

|x− y|n+2s
dx dy

≤− 1

2
C(n, s)

∫
Rn

∫
Rn

(
ν
( |x|
k

)
− ν
( |y|
k

))(
u(x)− u(y)

)
u(y)

|x− y|n+2s
dx dy

≤1

2
C(n, s)

∫
Rn

∫
Rn

∣∣∣(ν( |x|k )− ν( |y|k ))(u(x)− u(y)
)
u(y)

∣∣∣
|x− y|n+2s

dx

 dy

≤1

2
C(n, s)‖u‖

√∫
Rn

(

∫
Rn

∣∣ν( |x|k )− ν( |y|k )∣∣2
|x− y|n+2s

dx)(

∫
Rn

|u(x)− u(y)|2
|x− y|n+2s

dx) dy

≤c1
√
L1

ks
‖u‖ · ‖(−∆)

s
2u‖,

where we have borrowed the result in [12]:∫
Rn

∣∣ν( |x|k )− ν( |y|k )∣∣2
|x− y|n+2s

dx ≤ L1

k2s
, (2.86)

where L1 is a positive constant independent of k and y ∈ Rn. Then we get

−
∫
Rn
ν
( |x|
k

)
u(−∆)su dx ≤ c2

ks
‖u‖2Hs(Rn). (2.87)
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Now we deal with the nonlinear term and the noise term, by (2.3) and (2.7), we
have∫

Rn
f(t, x, u)ν

( |x|
k

)
u dx ≤−β

∫
Rn
ν
( |x|
k

)
|u|p dx+

∫
Rn
ν
( |x|
k

)
|ψ1(t, x)| dx, (2.88)

Gδ(θtω)

∫
Rn
h(t, x, u)ν

( |x|
k

)
u dx ≤β

2

∫
Rn
ν
( |x|
k

)
|u|pdx

+ c1|Gδ(θtω)|
p

p−p1

∫
Rn
ν
( |x|
k

)
|ϕ1(t, x)|

p
p−p1 dx

+ c2|Gδ(θtω)|q
∫
Rn
ν
( |x|
k

)
|ϕ2(t, x)|q dx.

(2.89)

In addition,

2

∫
Rn
ν
( |x|
k

)
u(x)g(t, x) dx ≤ λ

2

∫
Rn
ν
( |x|
k

)
|u|2 dx+

1

2λ

∫
Rn
ν
( |x|
k

)
|g(t, x)|2 dx.

(2.90)
By (2.85), and (2.87)-(2.90), one has

d

dt

∫
Rn
ν
( |x|
k

)
|u|2 dx+ λ

∫
Rn
ν
( |x|
k

)
|u|2 dx+ β

∫
Rn
ν
( |x|
k

)
|u|p dx

≤ c1
ks
‖u‖2Hs(Rn) + 2

∫
Rn
ν
( |x|
k

)
|ψ1(t, x)| dx+

1

λ

∫
Rn
ν
( |x|
k

)
|g(t, x)|2 dx

+ c2|Gδ(θtω)|
p

p−p1

∫
Rn
ν
( |x|
k

)
|ϕ1(t, x)|

p
p−p1 dx

+ c3|Gδ(θtω)|q
∫
Rn
ν
( |x|
k

)
|ϕ2(t, x)|q dx.

(2.91)

Since s ∈ (0, 1),∀ε > 0, there exists K1 = K1(ε) ≥ 1, such that for all k ≥ K1,

c1
ks
‖u‖2Hs(Rn) ≤ ε‖u‖

2
Hs(Rn). (2.92)

Note that ∫
Rn
ν
( |x|
k

)
|ψ1(t, x)| dx

=

∫
|x|≤ 1

2k

ν
( |x|
k

)
|ψ1(t, x)| dx+

∫
|x|≥ 1

2k

ν
( |x|
k

)
|ψ1(t, x)| dx

≤
∫
|x|≥ 1

2k

|ψ1(t, x)| dx.

(2.93)

Similarly, we get∫
Rn
ν
( |x|
k

)
|g(t, x)|2 dx ≤

∫
|x|≥ 1

2k

|g(t, x)|2 dx. (2.94)

|Gδ(θtω)|
p

p−p1

∫
Rn
ν
( |x|
k

)
|ϕ1(t, x)|

p
p−p1 dx+ |Gδ(θtω)|q

∫
Rn
ν
( |x|
k

)
|ϕ2(t, x)|q dx

≤|Gδ(θtω)|
p

p−p1

∫
|x|≥ 1

2k

|ϕ1(t, x)|
p

p−p1 dx+ |Gδ(θtω)|q
∫
|x|≥ 1

2k

|ϕ2(t, x)|q dx.

(2.95)
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By (2.91)-(2.95), we get for all k ≥ K1,

d

dt

∫
Rn
ν
( |x|
k

)
|u|2 dx+ λ

∫
Rn
ν
( |x|
k

)
|u|2 dx

≤ε‖u‖2Hs(Rn) + c1

∫
|x|≥ 1

2k

(|ψ1(t, x)|+ |g(t, x)|2) dx

+ c2|Gδ(θtω)|
p

p−p1

∫
|x|≥ 1

2k

|ϕ1(t, x)|
p

p−p1 dx+ c3|Gδ(θtω)|q
∫
|x|≥ 1

2k

|ϕ2(t, x)|q dx.

(2.96)

Given t ∈ R+, τ ∈ R, ω ∈ Ω, solving
∫
Rn ν( |x|k )|u|2dx by Gronwall’s Lemma and

after changing variable, we get∫
Rn
ν
( |x|
k

)
|u(τ, τ − t, θ−τω, uτ−t)|2 dx

≤e−λt‖uτ−t‖2 + ε

∫ 0

−t
eλs‖u(s+ τ, τ − t, θ−τω, uτ−t)‖2Hs(Rn) ds

+ c1

∫ 0

−t
eλs
∫
|x|≥ 1

2k

(|ψ1(s+ τ, x)|+ |g(s+ τ, x)|2) dx ds

+ c2

∫ 0

−t
eλs|Gδ(θsω)|

p
p−p1

∫
|x|≥ 1

2k

|ϕ1(s+ τ, x)|
p

p−p1 dx ds

+ c3

∫ 0

−t
eλs|Gδ(θsω)|q

∫
|x|≥ 1

2k

|ϕ2(s+ τ, x)|q dx ds

(2.97)

Since uτ−t ∈ D(τ − t, θ−tω) and D is tempered, we have

lim
t→+∞

e−λt‖uτ−t‖2 ≤ lim
t→+∞

e−λt‖Dτ−t‖2 = 0,

thus there exists T1 = T1(τ, ω,D, ε) > 1 such that for all t ≥ T1,

e−λt‖uτ−t‖2 ≤ ε. (2.98)

In Lemma 2.3, setting σ = τ , we have that there exists T2 = T2(τ, ω,D, ε) ≥ T1

such that for all t ≥ T2,

ε

∫ 0

−t
eλs‖u(s+ τ, τ − t, θ−τω, uτ−t)‖2Hs(Rn) ds ≤ εR(τ, ω), (2.99)

where R(τ, ω) is the same as in (2.78). By (2.10), there exists K2 = K2(τ, ω, ε) ≥ K1

such that for all k ≥ K2,∫ 0

−∞
eλs
∫
|x|≥ 1

2k

(|ψ1(s+ τ, x)|+ |g(s+ τ, x)|2) dx ds ≤ ε. (2.100)

By (2.13), (2.14) and ϕ1 ∈ L
p

p−p1
loc (R, L

p
p−p1 (Rn)), ϕ2 ∈ Lqloc(R, Lq(Rn)), we have∫ 0

−∞
eλs
(
|Gδ(θsω)|

p
p−p1

∫
|x|≥ 1

2k

|ϕ1(s+ τ, x)|
p

p−p1 dx

+ |Gδ(θsω)|q
∫
|x|≥ 1

2k

|ϕ2(s+ τ, x)|q dx

)
ds <∞,



2354 Y. Sun & H. Gao

which implies that there exists K3 = K3(τ, ω, λ, ε) ≥ K2 such that for all k ≥ K3,∫ 0

−∞
eλs
(
|Gδ(θsω)|

p
p−p1

∫
|x|≥ 1

2k

|ϕ1(s+ τ, x)|
p

p−p1 dx

+ |Gδ(θsω)|q
∫
|x|≥ 1

2k

|ϕ2(s+ τ, x)|q dx

)
ds ≤ ε.

(2.101)

Therefore, from (2.97)-(2.101) , we get that for all t ≥ T2, k ≥ K3,∫
|x|≥ 1

2k

|u(τ, τ − t, θ−τω, uτ−t)|2 dx ≤ 3ε+ εR(τ, ω),

which completes the proof.
Next, we derive uniform estimates of solutions in Hs(Rn). We further assume

that ψ4, ϕ3 ∈ L∞(R, L∞(Rn)).

Lemma 2.5. Assume (2.5)-(2.6), (2.8)-(2.9) and (2.10). Then for all τ ∈ R, ω ∈
Ω,D ∈ D, there exists T = T (τ, ω,D) > 0 such that for all t ≥ T , the solution u of
equations (2.1)-(2.2) satisfies

‖u(τ, τ − t, θ−τω, uτ−t)‖2Hs(Rn) ≤ C2 + C2

∫ 0

−∞
eλs
(
α(s+ τ) + γ(s)

)
ds, (2.102)

where uτ−t ∈ D(τ − t, θ−tω) and C2 is a positive constant independent of τ, ω and
D.

Proof. Multiplying (2.1) by (−∆)su and then integrating over Rn, we get

d

dt
‖(−∆)

s
2u‖2 + 2‖(−∆)su‖2 + 2λ‖(−∆)

s
2u‖2 = 2

(
I(t, x, u), (−∆)su

)
. (2.103)

First, we deal with the nonlinear term, by (2.5) and (2.6), we have

2(f(t, x, u), (−∆)su)

=2((−∆)
s
2 f, (−∆)

s
2u)

=C(n, s)

∫
Rn

∫
Rn

(f(t, x, u(x))− f(t, y, u(x))(u(x)− u(y))

|x− y|n+2s
dx dy

+ C(n, s)

∫
Rn

∫
Rn

(f(t, y, u(x))− f(t, y, u(y))(u(x)− u(y))

|x− y|n+2s
dx dy

≤C(n, s)

∫
Rn

∫
Rn

|ψ5(x)− ψ5(y)||u(x)− u(y)|
|x− y|n+2s

dx dy

+ C(n, s)

∫
Rn

∫
Rn

ψ4(t, y)(u(x)− u(y))2

|x− y|n+2s
dx dy

≤‖ψ5‖2Hs(Rn) + (1 + 2‖ψ4‖L∞(R,L∞(Rn)))‖(−∆)
s
2u‖2.

(2.104)

Similarly, for the noise term, we have

2Gδ(θtω)
(
h(t, x, u), (−∆)su

)
≤|Gδ(θtω)|‖ϕ4‖2Hs(Rn) + |Gδ(θtω)|(1 + 2‖ϕ3‖L∞(R,L∞(Rn)))‖(−∆)

s
2u‖2.

(2.105)
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In addition, we have

2(g(t, x), (−∆)su) ≤ ‖g(t)‖2 + ‖(−∆)su‖2. (2.106)

By (2.103)-(2.106), we get

d

dt
‖(−∆)

s
2u‖2 + 2‖(−∆)su‖2 + 2λ‖(−∆)

s
2u‖2

≤(1 + 2‖ψ4‖L∞(R,L∞(Rn)) + |Gδ(θtω)|+ 2|Gδ(θtω)|‖ϕ3‖L∞(R,L∞(Rn)))‖(−∆)
s
2u‖2

+ ‖ψ5‖2Hs(Rn) + ‖g(t)‖2 + |Gδ(θtω)|‖ϕ4‖2Hs(Rn).
(2.107)

Since Gδ(θtω) is continuous in t for fixed ω, and to apply Lemma 2.3, we choose c1,
c2, such that

d

dt
‖(−∆)

s
2u‖2 + λ‖(−∆)

s
2u‖2 ≤ c1‖(−∆)

s
2u‖2 + c2 + ‖g(t)‖2. (2.108)

Given t ∈ R+, τ ∈ R, ω ∈ Ω, letting s ∈ (τ − 1, τ), multiplying (2.108) by eλt and
then integrating over (s, τ), we get

‖(−∆)
s
2u(τ, τ − t, θ−τω, uτ−t)‖2

≤eλ(s−τ)‖(−∆)
s
2u(s, τ − t, θ−τω, uτ−t)‖2

+ c1

∫ τ

s

eλ(ξ−τ)‖(−∆)
s
2u(ξ, τ − t, θ−τω, uτ−t)‖2 dξ

+

∫ τ

s

eλ(ξ−τ)(c2 + ‖g(ξ)‖2) dξ

≤eλ(s−τ)‖(−∆)
s
2u(s, τ − t, θ−τω, uτ−t)‖2

+ c1

∫ τ

τ−1
eλ(ξ−τ)‖(−∆)

s
2u(ξ, τ − t, θ−τω, uτ−t)‖2 dξ

+

∫ τ

τ−1
eλ(ξ−τ)(c2 + ‖g(ξ)‖2) dξ.

Then integrating with respect to s over (τ − 1, τ), we obtain

‖(−∆)
s
2u(τ, τ − t, θ−τω, uτ−t)‖2

≤
∫ τ

τ−1
eλ(s−τ)‖(−∆)

s
2u(s, τ − t, θ−τω, uτ−t)‖2 ds

+ c1

∫ τ

τ−1
eλ(ξ−τ)‖(−∆)

s
2u(ξ, τ − t, θ−τω, uτ−t)‖2 dξ

+

∫ τ

τ−1
eλ(ξ−τ)(c2 + ‖g(ξ)‖2) dξ.

After changing the variables, we have

‖(−∆)
s
2u(τ, τ − t, θ−τω, uτ−t)‖2

≤
∫ 0

−1
eλs‖(−∆)

s
2u(s+ τ, τ − t, θ−τω, uτ−t)‖2 ds
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+ c1

∫ 0

−1
eλξ‖(−∆)

s
2u(ξ + τ, τ − t, θ−τω, uτ−t)‖2 dξ

+

∫ 0

−1
eλξ(c2 + ‖g(ξ + τ)‖2) dξ, (2.109)

which is combined with Lemma 2.3, we obtain the desired result.

Finally, we prove the asymptotic compactness of the solutions.

Lemma 2.6. Assume (2.3)-(2.9) and (2.11). Then for all τ ∈ R, ω ∈ Ω,D ∈ D, the
sequence {Φ(tn, τ − tn, θ−tnω, u0,n)}∞n=1 has a convergent subsequence in L2(Rn) as
tn →∞ and u0,n ∈ D(τ − tn).

Proof. ∀ε > 0, we need to show that {Φ(tn, τ − tn, θ−tnω, u0,n)}∞n=1 has a finite
cover of balls with radius ε in L2(Rn). By (2.66) we have

Φ(tn, τ − tn, θ−tnω, u0,n) = u(τ, τ − tn, θτω, u0,n). (2.110)

By the uniform tail-estimation of solutions, there exist T1 = T1(τ, ω,D, ε) > 0 and
K = K(τ, ω,D, ε) ≥ 1, such that for all t ≥ T1,∫

|x|≥k
|u(τ, τ − t, θ−τω, u0)|2(x)dx <

ε

8
. (2.111)

On the other hand, by the uniform estimates of solutions in Hs(Rn), there exists
T2 = T2(τ, ω,D, ε) ≥ T1 and c(τ, ω) > 0 such that for all t ≥ T2,

‖u(τ, τ − t, θ−τω, u0)‖2Hs(Ok) ≤ c(τ, ω).

Since tn →∞, there exists N = N(τ, ω,D, ε) ≥ 1, such that for all n ≥ N, tn ≥ T2,

‖u(τ, τ − tn, θ−τω, u0)‖2Hs(Ok) ≤ c(τ, ω), (2.112)

where u0 ∈ D(τ − tn). Since u0,n ∈ D(τ − tn), we get for all n ≥ N,

‖u(τ, τ − tn, θ−τω, u0,n)‖2Hs(Ok) ≤ c(τ, ω). (2.113)

By the compactness of embedding Hs(Ok) ↪→ L2(Ok), we find that {u(τ, τ −
tn, θ−τω, u0,n)}∞n=1 is precompact in L2(Ok). This shows that {u(τ, τ − tn, θ−τω,
u0,n)}∞n=1 has a finite cover of balls with radius ε

4 in L2(Ok). Combined with
(2.111), we get {u(τ, τ − tn, θ−τω, u0,n)}∞n=1 has a finite cover of balls with radius ε
in L2(Rn). This completes the proof.

3. Upper semi-continuity of attractors for multi-
plicative noise

In present section, for the case of linear multiplicative noise, we focus on the upper
semi-continuity of attractors for the Wong-Zakai approximation as δ → 0.
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3.1. Equation driven by white noise

This subsection concerns about the fractional reaction-diffusion equation (1.1) when
h(t, x, u) = u:

∂u

∂t
+ (−∆)su+ λu = f(t, x, u) + g(t, x) + u ◦ dW

dt
, t > τ, x ∈ Rn, (3.1)

with initial condition
u(τ, x) = uτ (x), x ∈ Rn. (3.2)

By the standard process, we introduce a new variable:

v(t, τ, ω, vτ ) = e−ω(t)u(t, τ, ω, uτ ). (3.3)

Then we get

∂v

∂t
+ (−∆)sv + λv = e−ω(t)f(t, x, eω(t)v) + e−ω(t)g(t, x), (3.4)

v(τ, x) = vτ (x), x ∈ Rn, (3.5)

where vτ (x) = e−ω(τ)uτ (x).
By the transform (3.3), we could do some computation which is similar to [12]

but easier, to get the following result: First, equation (3.4) and (3.5) admit a unique
solution v with v(·, τ, ω, vτ ) ∈ C

(
[τ,∞);Hs(Rn)

)
∩ L2

loc

(
[τ,∞);L2(Rn)

)
which is

continuous in vτ and
(
F ,B

(
L2(Rn)

))
-measurable in ω. Thus, a continuous cocycle

Φ1 could be defined as follows:

Φ1(t, τ, ω, uτ )

=u(t+ τ, τ, θ−τω, uτ )

=eω(t)−ω(−τ)v(t+ τ, τ, θ−τω, vτ ),

(3.6)

for all t ∈ R+, τ ∈ R, ω ∈ Ω. Additionally the cocycle Φ1 admits a unique random
attractor A1.

For our later usage in proving the convergence of solutions, some necessary
results are listed as follows:

Lemma 3.1. Assume (2.3)-(2.5) and (2.10). Then for all σ ∈ R, τ ∈ R, ω ∈ Ω,
D ∈ D, there exists T = T (τ, ω,D, σ) > 0 such that for all t ≥ T , the solution u of
equations (3.1)-(3.2) satisfies

e−2ω(σ−τ)‖u(σ, τ − t, θ−τω, uτ−t)‖2

+

∫ σ−τ

−t
eλ(s+τ−σ)−2ω(s)‖u(s+ τ, τ − t, θ−τω, uτ−t)‖2Hs(Rn) ds

≤ 1 + C1

∫ σ−τ

−∞
eλ(s+τ−σ)−2ω(s)α(s+ τ) ds,

(3.7)

where uτ−t ∈ D(τ − t, θ−tω) and C1 is a positive constant independent of σ, τ , ω,
and D.

From Lemma 3.1, one immediately has the following two results.
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Corollary 3.1. Suppose (2.3)-(2.5) hold. Also, (2.11) is assumed. Then the cocycle
Φ1 of equations (3.1)-(3.2) has a closed measurable D-pullback absorbing set B1 =
{B1(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, where

B1(τ, w) = {u ∈ L2(Rn) : ‖u‖2 ≤ R1(τ, ω)}, for all τ ∈ R, ω ∈ Ω, (3.8)

R1(τ, ω) = 1 + C2

∫ 0

−∞
eλs−2ω(s)α(s+ τ) ds. (3.9)

Corollary 3.2. Suppose (2.3)-(2.5) hold. In addition, (2.10) is assumed. Then
for all τ ∈ R, ω ∈ Ω, and T > 0, there exists c = c(τ, ω, T ) > 0 such that for all
t ∈ [τ, τ + T ], the solution u of (3.1)-(3.2) satisfies

‖u(t, τ, ω, uτ )‖2 +

∫ t

τ

‖u(s, τ, ω, uτ )‖pLp ds ≤ c‖uτ‖2 + c

∫ t

τ

α(s+ τ)ds. (3.10)

Corollary 3.2 is an essential estimate in proving the convergence of solutions.

3.2. Equations driven by colour noise

Now, we consider the following approximated equation of equation (3.1):

∂uδ
∂t

+ (−∆)suδ +λuδ = f(t, x, uδ) + g(t, x) +uδGδ(θtω), t > τ, x ∈ Rn, (3.11)

with initial condition
uδ(τ, x) = uδ,τ (x), x ∈ Rn. (3.12)

By Section 2, we know that for any δ 6= 0, τ ∈ R, ω ∈ Ω and uδ,τ ∈ L2(Rn),
equations (3.11) and (3.12) have a unique solution uδ(t, τ, ω, uδ,τ ) which is(
F ,B

(
L2(Rn)

))
-measurable in ω and continuous in initial data uδ,τ in L2(Rn),

thus, we can define a continuous cocycle Φ1
δ for (3.11) and (3.12). Moreover, the

cocycle Φ1
δ has a unique D-pullback attractor A1

δ = {A1
δ(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D

in L2(Rn).
Next, the main result in this section is placed here:

Theorem 3.1. Suppose (2.3)-(2.6), (2.10) and (2.11) hold. Then for all τ ∈ R,
ω ∈ Ω,

lim
δ→0

dL2(Rn)
(
A1
δ(τ, ω),A1(τ, ω)

)
= 0. (3.13)

To prove this theorem, we firstly prove the convergence of solutions uδ to solu-
tions u. Thus, similar to (3.3), also by (2.15), we introduce another variable:

vδ(t, τ, ω, vδ,τ ) = e−
∫ t
0
Gδ(θsω) dsuδ(t, τ, ω, uδ,τ ). (3.14)

Then (3.11) and (3.12) can be rewritten as

∂vδ
∂t

+(−∆)svδ+λvδ = e−
∫ t
0
Gδ(θsω) dsf(t, x, e

∫ t
0
Gδ(θsω) dsvδ)+e−

∫ t
0
Gδ(θsω) dsg(t, x),

(3.15)
with initial condition

vδ(τ, x) = vδ,τ (x), x ∈ Rn, (3.16)

where vδ,τ (x) = e−
∫ τ
0
Gδ(θsω) dsuδ,τ (x).

The remaining part of the proof is a consequence of the results in Section 2, thus
we list necessary lemmas and omit the details of proof.
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Lemma 3.2. Assume (2.3)-(2.5) and (2.10). Then for all τ ∈ R, ω ∈ Ω, there exist
δ0 = δ0(τ, ω, T ) > 0, c = c(τ, ω, T ) > 0, such that for all 0 < |δ| < δ0, t ∈ [τ, τ +T ],
the solution uδ of (3.11) and (3.12) satisfies

‖uδ(t, τ, ω, uδ,τ )‖2 +

∫ t

τ

‖uδ(s, τ, ω, uδ,τ )‖2Hs(Rn) ds+

∫ t

τ

‖uδ(s, τ, ω, uτ−t)‖pLp ds

≤c‖uδ,τ‖2 + c

∫ t

τ

α(s)ds. (3.17)

Lemma 3.3. Assume (2.3)-(2.5), (2.10) . Then for any δ 6= 0, τ ∈ R, ω ∈ Ω and
D ∈ D, there exists T = T (τ, ω,D, δ) > 0, such that for all t ≥ T , the solution uδ
of (3.11) satisfies

‖uδ(τ, τ − t, θ−τω, uδ,τ−t)‖2

+

∫ 0

−t
eλs+2

∫ 0
s
Gδ(θrω) dr‖uδ(s+ τ, τ − t, θ−τω, uδ,τ−t)‖2Hs(Rn) ds

≤ 1 + C3

∫ −∞
0

eλs+2
∫ 0
s
Gδ(θrω) drα(s+ τ) ds,

(3.18)

where uδ,τ−t ∈ D(τ − t, θ−tω) and C3 is a positive constant independent of τ , ω, D,
δ.

From Lemma 3.3 and Lemma 3.7 in [14], we get the following results immedi-
ately.

Corollary 3.3. Suppose (2.3)-(2.5), (2.10) and (2.11) hold. Then Φ1
δ of equations

(3.11) and (3.12) has a closed measurable D-pullback absorbing set B1
δ = {B1

δ (τ, ω) :
τ ∈ R, ω ∈ Ω} ∈ D, where

B1
δ (τ, ω) = {uδ ∈ L2(Rn) : ‖uδ‖2 ≤ R1

δ(τ, ω)}, for all τ ∈ R, ω ∈ Ω. (3.19)

R1
δ(τ, ω) = 1 + C4

∫ 0

−∞
eλs+2

∫ 0
s
Gδ(θrω) drα(s+ τ) ds. (3.20)

Moreover, we have for all τ ∈ R, ω ∈ Ω,

lim
δ→0

R1
δ(τ, ω) = R1(τ, ω), (3.21)

where R1(τ, ω) is defined as in (3.9).

Lemma 3.4. Suppose (2.3)-(2.5) and (2.10) hold. Then for ∀ε > 0, τ ∈ R, ω ∈ Ω,
there exists δ0 = δ0(ω) > 0, T = T (τ, ω, ε) > 0 and K = K(τ, ω, ε) ≥ 1, such that
for all 0 < |δ| < δ0, t ≥ T , and k ≥ K,∫

|x|≥k
|uδ(τ, τ − t, θ−τω, uδ,τ−t)|2 dx ≤ ε, (3.22)

where uδ,τ−t ∈ B1
δ (τ − t, θ−τω) with B1

δ given by (3.19).

As for the uniform compactness of A1
δ , we have the following result similar to

Lemma 4.8 in [15].

Lemma 3.5. Suppose (2.3)-(2.6), (2.10) and (2.11) hold. Then for all τ ∈ R,
ω ∈ Ω, if δn → 0 and un ∈ Aδn(τ, ω), then {un}∞n=1 is precompact in L2(Rn).
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At the end of this section, we establish the convergence of solutions, which is
crucial in proving the upper semi-continuity of attractors.

Lemma 3.6. Suppose (2.3)-(2.5) hold. Then for ∀ε > 0, τ ∈ R, ω ∈ Ω, T > 0,
there exist δ0 = δ0(τ, ω, T, ε) > 0 and c = c(τ, ω, T ) > 0 such that for all 0 < |δ| < δ0
and t ∈ [τ, τ + T ],

‖uδ(t, τ, ω, uδ,τ )− u(t, τ, ω, uτ )‖2

≤c‖uδ,τ − uτ‖2

+ cε

(
1 + ‖uδ,τ‖2 + ‖uτ‖2 +

∫ t

τ

(
‖ψ3(s)‖qLq + ‖ψ1(s)‖L1 + ‖g(s)‖2

)
ds

)
.

(3.23)

By checking that Corollary 3.3, Lemma 3.5 and Lemma 3.6 satisfy Proposition
2.2 in [15], the proof of the upper semi-continuity of the A1

δ is completed.
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