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DYNAMICS OF AN IMPULSIVE STOCHASTIC
SIR EPIDEMIC MODEL WITH SATURATED

INCIDENCE RATE
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Abstract In this paper, the dynamics of an impulsive stochastic SIR epi-
demic model with saturated incidence rate are analyzed. The existence and
uniqueness of the global positive solution is proved by constructing the equiv-
alent system without pulses. The threshold which determines the extinction
and persistence of the disease is obtained. The global attraction of disease-free
periodic solution is addressed. Sufficient condition for the existence of a posi-
tive periodic solution is established. These results are supported by computer
simulations.
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1. Introduction
From UK, South America to India, pulse vaccination strategy (PVS) has been
widely used as a powerful way to eliminate infectious diseases [1, 18]. PVS is a
series of periodic vaccinations applied to susceptible group in a very short period of
time [18]. Comparing with routine constant vaccination strategy, theoretical studies
suggest that PVS can largely reduce the incidence of disease at lower vaccination
rates because it keeps the average number of the susceptible during vaccination
interval below the epidemic threshold [33]. Mathematical analysis of PVS begins
with Agur et al [1], further investigations can be refered in [6,7,11,14,20,28,30,33].

Epidemic models in aforementioned papers are all described by the ordinary
differential equations. However, environmental noises are ubiquitous in real world
and can induce different dynamics in real system [2, 3, 5, 8–10, 34, 35]. Therefore
researchers have shown great interest in stochastic epidemic models incorporated
with white noises, colore noises or Lévy noises [4,12,21–23,39,40]. The investigations
demonstrate that environmental noises can help to suppress the disease and change
the basic reproduction number of the disease [12,39]. Although we can find intensive
studies in impulsive stochastic population models [24, 25, 31, 32, 41], there are few
papers about impulsive stochastic epidemic models [13, 36, 37]. And none of them
gives the threshold which determines the extinction and persistence of the disease
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because the hybrid of stochastic perturbation and impulsive effects adds an extra
level of complexity to deal with. To explore the effect of white noises and inspired
by above works, we will study a stochastic SIR epidemic model with saturated
incidence rate and pulse vaccinations.

Our model is derived from the deterministic impulsive system in Jin’s research
[17]. The deterministic SIR epidemic model with pulses is as follows:

S′(t) = µK − βS(t)I(t)
1+mI(t) − µS(t), t ̸= k, k ∈ N,

I ′(t) = βS(t)I(t)
1+mI(t) − (µ+ α+ λ)I(t),

R′(t) = λI(t)− µR(t),
S(k+) = (1− p)S(k), t = k, k ∈ N,

I(k+) = I(k),

R(k+) = R(k) + pS(k),

(1.1)

where S(t), I(t) and R(t) stand for the population number of the susceptible, in-
fectious and recovery at time t respectively. The parameter µ represents the birth
rate (and the natural death rate is assumed to be identical), K is total population
size, β denotes the transmission rate, α reflects the disease-related death rate and
λ is the recovery rate of the infective individuals. In model (1.1) the period of pulse
vaccination is 1, k is the time at which we applied the pulse, and k− is the time
just before applying the pulse. p is the fraction of all the susceptible to whom the
vaccine is inoculated at discrete time t = k, k ∈ N . All the parameters are posi-
tive constants. For deterministic system (1.1), there exists a periodic infection-free
solution (S∗(t), 0, R∗(t)), where

S∗(t) = K

[
1− pe−µ(t−k−1)

eµ − 1 + p

]
, R∗(t) = K − S∗(t), k < t ≤ k + 1.

Let ⟨S∗⟩1 ≜
∫ 1

0
S∗(s)ds = K[1 − p(eµ−1)

µ(eµ−1+p) ]. Then there is the basic reproduction
number R0 = β⟨S∗⟩1

µ+α+λ . If R0 < 1, the periodic infection-free solution (S∗(t), 0, R∗(t))

is globally stable; if R0 > 1, the disease will uniformly persist and system (1.1) has
a positive periodic solution [17].

One of the approaches to introduce white noises into biological models is pro-
posed by Imhof and Walcher [16]. They give a detailed and rigorous derivation
of a stochastic model by considering a discrete time Markov chain in which the
random amount is supposed to be linear to the microbe population. In this paper,
our approach to include random perturbation is analogous to that of Imhof and
Walcher [16, 21]. Here we assume that the white noises are proportional to S(t),
I(t), R(t), directly influencing on the S′(t), I ′(t), R′(t) in the model (1.1). By this
way, our stochastic model takes the form of

dS(t) =
[
µK − βS(t)I(t)

1+mI(t) − µS(t)
]
dt+ σ1S(t)dB1(t),

dI(t) =
[
βS(t)I(t)
1+mI(t) − (µ+ α+ λ)I(t)

]
dt+ σ2I(t)dB2(t),

S(k+) = (1− p)S(k), t = k, k ∈ N,

(1.2)



1398 W. Cao & T. Pan

where B1(t) and B2(t) are independent standard Brownian motions with B1(0) = 0,
B2(0) = 0 and σi > 0 represents the intensity of Bi(t), i = 1, 2. For the dynamic of
group R has no effects on the transmission dynamics, so we omit it in system (1.2).
Corresponding to the results of deterministic model, the novelties and contributions
of our paper are:

• we give the threshold which determines the extinction and persistence of the
disease.

• we verify the global attraction of disease-free periodic solution.
• we demonstrate the existence of positive periodic solution.

The rest of this paper is organized as follows. In Section 2, we demonstrate the
existence and uniqueness of global positive solution. In Section 3, we establish the
threshold which determines disease to die out or prevail. In Section 4, we show that
there is a globally attractive boundary periodic solution for system (1.2). In Section
5, we prove the existence of nontrivial positive periodic solution of the system (1.2).
Finally, we summarize the main results in this paper and provide a brief discussion.

Throughout this paper, unless otherwise specified, let (Ω,F , {Ft}t≥0,P) be a
complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions
(i.e. it is right continuous and F0 contains all P-null sets). Let B1(t) and B2(t)be
the Brownian motions defined on this probability space.

For convenience, we always use the following notations. [·] denotes the integer-
valued function. If f(t) is an integrable function on [0,+∞), define ⟨f⟩t = 1

t

∫ t

0
f(s)ds,

t > 0. Therefore
∫ 1

0
S∗(t)dt = ⟨S∗⟩1.

If f(t) is a bounded function on [0,+∞),

f̌ = sup
t∈[0,∞)

f(t), f̂ = inf
t∈[0,∞)

f(t).

And denote
Rl

+ := {x ∈ Rl : xi > 0, for all 1 ≤ i ≤ l}.

2. Existence and uniqueness of global positive solu-
tion

In this section, we will prove the existence and uniqueness of global positive solution.
Before the proof, we first need the definition of the solution of stochastic differential
equation with impulses (ISDE), (see [26] for details).

Definition 2.1 ( [26]). Consider the following ISDE:{
dX(t) = F (t,X(t))dt+G(t,X(t))dB(t), t ̸= tk, k ∈ N,

X(t+k ) = X(tk) +BkX(tk), k ∈ N,
(2.1)

with initial condition X(0). A stochastic process X(t) = (X1(t), . . . , Xn(t))
T , t ∈ R,

is said to be a solution of ISDE (2.1) if
(i) X(t) is {Ft}-adapted and is continuous on [0, t1) and each interval [tk, tk+1) ⊂
R+, k ∈ N ; F (t,X(t)) ∈ L2(R+, Rn), G(t,X(t)) ∈ L2(R+, Rn), where Lk(R+, Rn)
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is all Rn valued measurable {Ft}-adapted processes f(t) satisfying
∫ T

0
|f(t)|kdt < ∞

a.s. for every T > 0;
(ii) for each tk, k ∈ N , X(t+k ) = limt→t+k

X(t) and X(t−k ) = limt→t−k
X(t) exist

X(tk) = X(t−k ) with probability one;
(iii) for almost all t ∈ [0, t1), X(t) obeys the integral equation

X(t) = X(0) +

∫ t

0

F (s,X(s))ds+

∫ t

0

G(s,X(s))dB(s).

And for almost all [tk, tk+1), k ∈ N , X(t) obeys the integral equation

X(t) = X(t+k ) +

∫ t

t+k

F (s,X(s))ds+

∫ t

t+k

G(s,X(s))dB(s).

Moreover, X(t) satisfies the impulsive conditions at each t = tk, k ∈ N with
probability one.

Theorem 2.1. For any given initial value (S(0), I(0)) ∈ R2
+, there is a unique

global positive solution (S(t), I(t)) ∈ R2
+ of system (1.2) on time t ≥ 0 almost

surely, which means the solution will remain in R2
+ with probability 1.

Proof. First, let’s consider the following SDE without impulse:dx(t) =
{
µKW−1(t)− [µ− ln(1− p)]x(t)− βx(t)y(t)

1+my(t)

}
dt+ σ1x(t)dB1(t),

dy(t) =
[
βW (t)x(t)y(t)

1+my(t) − (µ+ α+ λ)y(t)
]
dt+ σ2y(t)dB2(t),

(2.2)
with initial value (x(0), y(0)) = (S(0), I(0)), where

W (t) =

 (1− p)[t]−t, t ̸= k, k ∈ N,

(1− p)−1, t = k.

Obviously, W (t) is 1-periodic and left-continuous. By the theory of SDE (see e.g.
[29]), system (2.2) has a unique continuous maximal local solution (x(t), y(t)) on
[0, τe), where τe is the explosion time. Then we only need to prove τe = +∞. The
proof is similar to that in [39,42] and therefore we omit it here.

We will show that system (2.2) is equivalent to system (1.2). Let (S(t), I(t)) =
(W (t)x(t), y(t)). In fact, it is easy to check that (x(t), y(t)) are continuous on
(k, k + 1) ⊂ [0,+∞), k ∈ N . And for every interval, t ̸= k,

dS(t) =W ′(t)x(t)dt+W (t)dx(t)

=W (t)

(
µKW−1(t)− βx(t)y(t)

1 +my(t)
− µx(t)

)
dt+ σ1W (t)x(t)dB1(t)

=

(
µK − βS(t)I(t)

1 +mI(t)
− µS(t)

)
dt+ σ1S(t)dB1(t).

For t = k, k ∈ N ,

S(k−) = lim
t→k−

W (t)x(t) = (1− p)(k−1)−kx(k) = (1− p)−1x(k) = S(k),
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S(k+) = lim
t→k+

W (t)x(t) = (1− p)k−kx(k) = x(k).

Thus we have S(k+) = (1− p)S(k) for t = k.
Similarly, we can obtain that

dI(t) =

[
βS(t)I(t)

1 +mI(t)
− (µ+ α+ λ)I(t)

]
dt+ σ2I(t)dB2(t).

Therefore system (2.2) is equivalent to system (1.2).
With the existence and uniqueness of solution (x(t), y(t)) to system (2.2) and

(S(t), I(t)) = (W (t)x(t), y(t)), hence we can hold the existence and uniqueness of so-
lution (S(t), I(t)) to system (1.2) for t ≥ 0 with any given initial value (S(0), I(0)) ∈
R2

+. The proof is completed.

3. Extinction and persistence of the disease
In this section, based on the global existence of the solution, we shall explore the
threshold which determines the disease to die out or persist.

Let
Rs

0 =
β⟨S∗⟩1

µ+ α+ λ+ 1
2σ

2
2

.

Theorem 3.1. If µ ≥ 1
2 (σ

2
1 ∨ σ2

2) and Rs
0 < 1, then for any given initial value

(S(0), I(0)) ∈ R2
+, the solution (S(t), I(t)) of system (1.2) has the following property:

lim sup
t→+∞

1

t
ln I(t) ≤ (µ+ α+ λ+

1

2
σ2
2)(R

s
0 − 1) < 0 a.s.

In other words, the disease will go extinct exponentially with probability one.

Proof. First, we define a 1-periodic auxiliary function h(t) which will be used
later. we shall give its explicit form and calculate limt→+∞

1
t

∫ t

0
W−1(s)h(s)ds. In

the latter part of the proof, we will establish the threshold which determines the
disease to go extinct or prevail.

Define a 1-periodic function h(t) which satisfies h′(t)−h(t)[µ−ln(1−p)] = −W (t)
in each interval (k, k + 1), k ∈ N . By calculation we can get

h(t) =
eµt(1− p)−t

∫ t+1

t
e−µs(1− p)[s]ds

1− e−µ(1− p)
.

When t ∈ [0, 1],

eµt
∫ t+1

t

e−µs(1− p)[s]ds =

∫ t+1

t

e−µ(s−t)(1− p)[s]ds

=

∫ 1

0

e−µs(1− p)[s+t]ds

=

∫ 1−t

0

e−µs(1− p)[s+t]ds+

∫ 1

1−t

e−µs(1− p)[s+t]ds

=

∫ 1−t

0

e−µsds+

∫ 1

1−t

e−µs(1− p)ds

=
1

µ
e−µ(eµ − 1 + p+ peµt).
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Thus we obtain the explicit expression of h(t),

h(t) =
1

µ
(1− p)−t

(
1− peµt

eµ − 1 + p

)
, t ∈ [0, 1]. (3.1)

Because W (t) and h(t) are 1-periodic functions, it’s easy to prove that

lim
t→+∞

1

t

∫ t

0

W−1(s)h(s)ds =

∫ 1

0

W−1(s)h(s)ds

=
1

µ

∫ 1

0

(
1− peµs

eµ − 1 + p

)
ds

=
1

µ

[
1− p(eµ − 1)

µ(eµ − 1 + p)

]
=

1

µK
⟨S∗⟩1.

By using the similar arguments as in Zhao et al. [42], we can get that if µ ≥
1
2 (σ

2
1 ∨ σ2

2), then

lim
t→+∞

1

t

∫ t

0

h(s)x(s)dB1(s) = 0, a.s.

lim
t→+∞

1

t

∫ t

0

h(s)y(s)dB2(s) = 0, lim
t→+∞

1

t

∫ t

0

y(s)dB2(s) = 0, a.s.

lim
t→+∞

x(t)

t
= 0, lim

t→+∞

y(t)

t
= 0, a.s..

(3.2)

Applying Itô formula, we have

d[h(t)x] =h′(t)xdt+ h(t)dx

=

{
µKW−1(t)h(t)+h′(t)x(t)−h(t)[µ− ln(1−p)]x(t)− βh(t)x(t)y(t)

1+my(t)

}
dt

+ σ1h(t)x(t)dB1(t)

=

(
µKW−1h(t)−W (t)x(t)− βh(t)x(t)y(t)

1 +my(t)

)
dt+ σ1h(t)x(t)dB1(t).

This combined with (3.2) implies

0 = lim
t→+∞

h(t)x(t)

t

= lim
t→+∞

1

t

∫ t

0

µKW−1(s)h(s)ds− lim
t→+∞

1

t

∫ t

0

W (s)x(s)ds

− lim
t→+∞

1

t

∫ t

0

βh(s)x(s)y(s)

1 +my(s)
ds

=⟨S∗⟩1 − lim
t→+∞

⟨Wx⟩t − lim
t→+∞

⟨ βhxy

1 +my
⟩t.

(3.3)
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Similarly we can get that

0 = lim
t→+∞

y(t)

t

= lim
t→+∞

1

t

∫ t

0

βW (s)x(s)y(s)

1 +my(s)
ds− lim

t→+∞
(µ+ α+ λ)

1

t

∫ t

0

y(s)ds

= lim
t→+∞

⟨ βWxy

1 +my
⟩t − (µ+ α+ λ) lim

t→+∞
⟨y⟩t.

(3.4)

By Itô’s formula

d ln y(t) =

[
βW (t)x(t)

1 +my(t)
− (µ+ α+ λ)− 1

2
σ2
2

]
dt+ σ2dB2(t).

Integrating this from 0 to t and dividing t on the both sides, and combining with
(3.4) we have

1

t
ln y(t) =⟨ βWx

1 +my
⟩t − (µ+ α+ λ+

1

2
σ2
2) +

1

t
(σ2B2(t) + ln y(0)),

=β⟨Wx⟩t −m⟨ βWxy

1 +my
⟩t − (µ+ α+ λ+

1

2
σ2
2) +

1

t
(σ2B2(t) + ln y(0)),

=β⟨S∗⟩1 − β⟨ βhxy

1 +my
⟩t −m(µ+ α+ λ)⟨y⟩t − (µ+ α+ λ+

1

2
σ2
2) +

1

t
Φ(t),

≤β⟨S∗⟩1 −m(µ+ α+ λ)⟨y⟩t − (µ+ α+ λ+
1

2
σ2
2) +

1

t
Φ(t),

≤β⟨S∗⟩1 − (µ+ α+ λ+
1

2
σ2
2) +

1

t
Φ(t).

(3.5)
where

Φ(t) =m

[
(µ+ α+ λ)⟨y⟩t − ⟨ βWxy

1 +my
⟩t
]
+ β

(
⟨Wx⟩t + ⟨ βhxy

1 +my
⟩t − ⟨S∗⟩1

)
t

+ σ2B2(t) + ln y(0).

In view of (3.3) and (3.4), it follows that limt→+∞
1
tΦ(t) = 0, a.s.

Taking the limit superior of both sides of (3.5), and if Rs
0 < 1, then it follows

that
lim sup
t→+∞

1

t
ln y(t) ≤ (µ+ α+ λ+

1

2
σ2
2)(R

s
0 − 1) < 0 a.s.. (3.6)

For y(t) = I(t), it implies that

lim
t→+∞

I(t) = 0, a.s. (3.7)

Therefore (3.6) and (3.7) means the disease I(t) will go extinct exponentially with
probability one. The proof is completed.

Theorem 3.2. If µ ≥ 1
2 (σ

2
1 ∨ σ2

2) and Rs
0 > 1, then for any given initial value

(S(0), I(0)) ∈ R2
+, the disease I will persist in the sense that:

µ(µ+α+λ+ 1
2σ

2
2)(R

s
0 − 1)

(β+µm)(µ+α+λ)
≤ lim inf

t→+∞
⟨I⟩t≤ lim sup

t→+∞
⟨I⟩t≤

(µ+α+λ+ 1
2σ

2
2)(R

s
0−1)

m(µ+α+λ)
.
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Proof. From the first inequality of (3.5) and Lemma A.2 in [42], it is easy to get

lim sup
t→+∞

⟨y⟩t ≤
(µ+ α+ λ+ 1

2σ
2
2)(R

s
0 − 1)

m(µ+ α+ λ)
.

It is easy to verify that h(t) ≤ 1
µW (t) from Eq. (3.1), then from the third

equality of (3.5) and (3.4) we have

1

t
ln y(t) =β⟨S∗⟩1−β⟨ βhxy

1+my
⟩t−m(µ+α+λ)⟨y⟩t−(µ+α+ λ+

1

2
σ2
2) +

1

t
Φ(t),

≥β⟨S∗⟩1−
β

µ
⟨βWxy

1+my
⟩t −m(µ+α+λ)⟨y⟩t−(µ+ α+ λ+

1

2
σ2
2) +

1

t
Φ(t),

=β⟨S∗⟩1 − (
β

µ
+m)(µ+ α+ λ)⟨y⟩t − (µ+ α+ λ+

1

2
σ2
2) +

1

t
Φ(t).

(3.8)
By Lemma 17 in [38] it can obtain

lim inf
t→+∞

⟨y⟩t ≥
µ(µ+ α+ λ+ 1

2σ
2
2)(R

s
0 − 1)

(β + µm)(µ+ α+ λ)
.

For I(t) = y(t), the claim is proved.

4. Globally attractive boundary periodic solution
In this section and next section, we will prove the existence and global attraction of
the disease-free periodic solution and the existence of the positive periodic solution
respectively. However,the periodic solution of SDE is in the sense of distribution.
For the convenience of readers, we first present the definition of the periodic solution
of SDE and cite a result of the periodic solution of stochastic differential equations
without impulses.

Definition 4.1 ( [19]). A stochastic process X(t) (−∞ < t < +∞) is said to
be periodic with period T if for every finite sequence of numbers t1, t2, · · · ,tn, the
joint distribution of random variables X(t1 + h),· · · ,X(tn + h) is independent of h,
where h = kT (k = ±1;±2; · · · ).

Consider the following periodic stochastic differential equation without impulse:

X(t) = X(t0) +

∫ t

t0

b(s,X(s))ds+

k∑
r=1

∫ t

t0

σr(s,X(s))dBr(s), X ∈ Rl, (4.1)

where the vectors b(s,X), σ1(s,X), …,σk(s,X) (X ∈ Rl) are continuous functions
of (s,X) and satisfy the conditions:

|b(s, x)− b(s, y)|+
k∑

r=1

|σr(s, x)− σr(s, y)| ≤ B|x− y|,

|b(s, x)|+
k∑

r=1

|σr(s, x)| ≤ B(1 + |x|),
(4.2)



1404 W. Cao & T. Pan

where B is a constant. Let I = {t : 0 ≤ t < +∞}, U be a given open set in Rl and
E = I×Rl. Let C2 denote the class of functions on E which are twice continuously
differentiable with respect to x1, …, xl and continuously differentiable with respect
to t.

Lemma 4.1 ( [19]). Suppose that the coefficients of system (4.1) are T -periodic
in t and satisfy the conditions (4.2) in every cylinder I × U , and suppose further
that there exists a function V (t, x) ∈ C2 in E which is T -periodic in t, and satisfies
the following conditions:
1. there exists a constant M such that LV (t, x) ≤ −1, |x| ≥ M ,
2. inf |x|>R V (t, x) → ∞, as R → ∞,
where the operator L is given by

L =
∂

∂t
+

l∑
i=1

bi(t, x)
∂

∂xi
+

1

2

l∑
i,j=1

aij(t, x)
∂2

∂xi∂xj
, aij =

k∑
r=1

σi
r(t, x)σ

j
r(t, x).

Then there exists a solution of Eq. (4.1) which is a T -periodic process.

Lemma 4.2. Consider the following linear stochastic differential equation

dX(t) = {µKW−1(t)− [µ− ln(1− q)]X(t)}dt+ σ1X(t)dB1(t) (4.3)

with initial value X(t) = x(0). Then Eq. (4.3) has a positive periodic solution Xp(t)
which is globally attractive, i.e. attracts all other positive solutions of Eq. (4.3).

Proof. First we construct a Lyapunov function to prove the existence of Xp(t).
The C2-function V : R+ → R takes the following form:

V (t,X) = X(t)− 1− lnX(t).

By Itô’s formula

LV =− [µ− ln(1− p)]X − µKW−1(t)

X
+ µKW−1(t) + [µ− ln(1− p)] +

σ2
1

2

≤− [µ− ln(1− p)]X − µK(1− p)

X
+ µK + µ− ln(1− p) +

σ2
1

2
,

≜Ψ(X).

Obviously, Ψ(X) → −∞, as X → 0+ or X → +∞. Take ϵ > 0 small enough and
let U = [ϵ, 1/ϵ], and we have LV (t,X) < −1, X ∈ R+ \U . Then from Lemma (4.1),
Eq. (4.3) has a positive 1-periodic solution Xp(t).

Next we will prove that Xp(t) is globally attractive. Now Xp(t) satisfies Eq.
(4.3), so

d(X(t)−Xp(t)) = −[µ− ln(1− p)](X(t)−Xp(t)) + σ1(X(t)−Xp(t))dB1(t).

Thus we have

X(t)−Xp(t) = (X(0)−Xp(0)) exp

{
−
∫ t

0

[µ− ln(1− p) +
σ2
1

2
]dt+M(t)

}
. (4.4)

Then it follows that
ln |X(t)−Xp(t)|

t
=

ln |X(0)−Xp(0)|
t

− 1

t

∫ t

0

[µ− ln(1− p) +
σ2
1

2
]dt+

M(t)

t
,
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where M(t) = σ1B1(t). By the property of Brownian motion [29], we can get that
limt→+∞ M(t)/t = 0. Take limits in above equation, one can see that,

lim
t→+∞

ln |X(t)−Xp(t)|
t

= −[µ− ln(1− p) +
σ2
1

2
] < 0.

This implies that X(t) → Xp(t), a.s., so the periodic solution Xp(t) of Eq. (4.3) is
globally attractive.

Theorem 4.1. If µ ≥ 1
2 (σ

2
1 ∨ σ2

2) and Rs
0 < 1, then system (1.2) has a boundary

periodic solution (Sp(t), 0) which is globally attractive.

Proof. Because (S(t), I(t)) = (W (t)x(t), y(t)), we just need to prove that the
equivalent system (2.2) has a boundary periodic solution (xp(t), 0) which is globally
attractive.

To prove the global attraction of boundary periodic solution (xp(t), 0), we should
prove that y(t) tends to 0 and x(t) tends to xp(t) respectively for any solution
(x(t), y(t)) under assumed conditions.

If µ ≥ 1
2 (σ

2
1 ∨ σ2

2) and Rs
0 < 1 are satisfied, then from theorem 3.1 we know

that limt→+∞ y(t) = 0 a.s. Combining with Eq. (3.2) that limt→+∞ x(t)/t = 0
a.s., for any arbitrary small τ > 0, there exists a t0 = t0(ω) and a set Ωτ ∈ Ω
such that P (Ωτ ) > 1 − τ , y(t) < e−ct and x(t)y(t) < τ for t > t0 , ω ∈ Ωτ , where
c = (µ + α + λ + 1

2σ
2
2)(1 − Rs

0). Now from the first equation in System (2.2), we
obtain that for t > t0, ω ∈ Ωτ

dx(t) =

{
µKW−1(t)− βx(t)y(t)

1 +my(t)
− [µ− ln(1− p)]x(t)

}
dt+ σ1x(t)dB1(t)

≥ {µKW−1(t)− βτ − [µ− ln(1− p)]x(t)}dt+ σ1x(t)dB1(t).

Let X(t) be the solution of the equation

dX(t) = {µKW−1(t)− βτ − [µ− ln(1− p)]X(t)}dt+ σ1X(t)dB1(t),

with initial value X(0) = x(0). Then it follows from the stochastic comparison
theorem that for almost all ω ∈ Ωτ ,

X(t) ≤ x(t) ≤ X(t), t ≥ t0,

where X(t) is the solution of Eq.(4.3) with X(0) = x(0). Let τ tend to zero, then
limt→+∞ |X(t)−X(t)| = 0 a.s.. Thus we conclude that

lim
t→+∞

|x(t)−X(t)| = 0, a.s..

This together with the global attraction of Xp(t) of Lemma 4.2, yeilds

lim
t→+∞

|x(t)−Xp(t)| = 0, a.s..

Obviously, xp(t) = Xp(t). Then the boundary periodic solution (xp(t), 0) of System
(2.2) is globally attractive. For (S(t), I(t)) = (W (t)x(t), y(t)), the boundary peri-
odic solution (Sp(t), 0) = (W (t)xp(t), 0) of System (1.2) is also globally attractive.
The proof is completed.



1406 W. Cao & T. Pan

5. Existence of the nontrivial positive periodic so-
lution

Theorem 5.1. If Rs
0 > 1 holds, then there exists a positive 1-periodic solution of

system (1.2).

Proof. We just need to prove the existence of a periodic solution of the equivalent
system (2.2) without impulses.

Since any (x(0), y(0)) ∈ R2
+ system (2.2) has a unique global positive solution,

we take R2
+ as the whole space. It is clear that the coefficients of system (2.2) satisfy

the local Lipschitz condition. Next we will testify the conditions (1), (2) of Lemma
4.1.

Take θ ∈ (0, 1) and M satisfying:

µ− θ

2
(σ2

1 ∨ σ2
2) > 0, Ȟ −M(µ+ α+ λ+

1

2
σ2
2)(R

s
0 − 1) ≤ −2, (5.1)

where the function H(x) is given in Eq. (5.2).
Construct a C2-function V : R2

+ → R in the following form:

V (t, x, y) = M

[
− ln y − βh(t)x− (m+

β

µ
)y + ω(t)

]
− lnx+

1

1 + θ
[x+(1−p)y](1+θ)

where h(t) is given in Theorem 3.1. Here ω(t) is a function defined on [0,+∞)
satisfying ω(0) = 0 and

ω̇(t) = βµKW−1(t)h(t)− β⟨S∗⟩1.

For W (t) and h(t) are 1-periodic functions, ω(t) is obviously a 1-periodic function
on [0,+∞). Hence V (t, x, y) is 1-periodic in t.

In order to confirm the condition (2) of Lemma 4.1, it is obvious that we only
need to prove that

inf
(t,x,y)∈[0,+∞)×(R2

+\Uk)
V (t, x) → ∞, as k → ∞,

where Uk = ( 1k , k)× ( 1k , k), which is clearly established since

− lnx → +∞ as x → 0+,

− ln y → +∞ as y → 0+,

and
[x+ (1− p)y](1+θ) → +∞ as x → +∞ or y → +∞.

Therefore it is easy to see that V (t, x, y) satisfies the condition (2) of Lemma 4.1.
Next we will find a closed set U ⊂ R2

+ such that LV (t, x, y) ≤ −1, (x, y) ∈ R2
+\U .

Denote V1 = − ln y − βh(t)x − (m + β
µ )y + ω(t), V2 = − lnx, V3 = 1

1+θ [x + (1 −
p)y](1+θ). Then LV = MLV1 + LV2 + LV3.
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From h′(t)− h(t)[µ− ln(1− p)] = −W (t) and h(t) ≤ 1
µW (t), we can have

LV1 =− βW (t)xy

1 +my
+ µ+ α+ λ+

1

2
σ2
2 − βh(t)

{
µKW−1(t)− [µ− ln(1− p)]x

− βxy

1 +my

}
− βh′(t)x− (m+

β

µ
)
βW (t)xy

1 +my
+ (m+

β

µ
)(µ+ α+ λ)y + β

µKh(t)

W (t)

− β⟨S∗⟩1

=− βW (t)x+m
βW (t)xy

1 +my
+ µ+ α+ λ+

1

2
σ2
2 − β

µKh(t)

W (t)
+ βh(t)[µ− ln(1− p)]x

+
β2h(t)xy

1 +my
− βh′(t)x−m

βW (t)xy

1 +my
− 1

µ

β2W (t)xy

1 +my
+ (m+

β

µ
)(µ+ α+ λ)y

+ β
µKh(t)

W (t)
− β⟨S∗⟩1

≤− β⟨S∗⟩1 + µ+ α+ λ+
1

2
σ2
2 + (m+

β

µ
)(µ+ α+ λ)y

≤− (µ+ α+ λ+
1

2
σ2
2)(R

s
0 − 1) + (m+

β

µ
)(µ+ α+ λ)y,

Direct calculation implies that

LV2 =− µKW−1(t)

x
+

βW (t)y

1 +my
+ µ− ln(1− p) +

1

2
σ2
1

≤− µ(1− p)K

x
+

β

m(1− p)
+ µ− ln(1− p) +

1

2
σ2
1 ,

And by elementary inequality (a+b)θ ≤ max{1, 2θ−1}(aθ+bθ), θ ≥ 0, and inequality
(a+ b)−θ ≤ a−θ, θ ≥ 0, we can obtain

LV3 =[x+ (1− p)y]θ
{
µKW−1(t)− [1− (1− p)W (t)]

βxy

1 +my
− [µ− ln(1− p)]x

− (µ+ α+ λ)(1− p)y

}
+

θ

2
[x+ (1− p)y]θ−1[σ2

1x
2 + σ2

2(1− p)2y2]

≤µK[x+ (1− p)y]θ − [x+ (1− p)y]θ[µx+ µ(1− p)y]

+
θ

2
[x+ (1− p)y]θ−1σ2

1x
2 +

θ

2
[x+ (1− p)y]θ−1σ2

2(1− p)2y2

≤2θµKxθ+2θµKyθ−µx1+θ−µ(1−p)1+θy1+θ+
θ

2
σ2
1x

1+θ+
θ

2
σ2
2(1− p)1+θy1+θ

=2θµKxθ + 2θµKyθ − (µ− θ

2
σ2
1)x

1+θ − (µ− θ

2
σ2
2)(1− p)1+θy1+θ.

Hence, LV ≤ f(x) + g(y), where

H(x) =− µ(1− p)K

x
+ 2θµKxθ − (µ− θ

2
σ2
1)x

1+θ +
β

m(1− p)
(5.2)

+ µ− ln(1− p) +
1

2
σ2
1 ,

J(y) =−M(µ+ α+ λ+
1

2
σ2
2)(R

s
0 − 1) + (m+

β

µ
)(µ+ α+ λ)y (5.3)
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+ 2θµKyθ − (µ− θ

2
σ2
2)(1− p)1+θy1+θ.

In view of (5.1), we can obtain

H(x) + J̌ → −∞, as x → +∞, or x → 0

Ȟ + J(y) → −∞, as y → +∞,

and
Ȟ + J(y) → Ȟ −M(µ+ α+ λ+

1

2
σ2
2)(R

s
0 − 1) ≤ −2, as y → 0.

Take κ > 0 small enough, and let U := [κ, 1
κ ]× [κ, 1

κ ]. It follows that

LV ≤ −1, (x, y) ∈ R2
+ \ U.

Thus there is a nontrivial positive periodic solution to system (2.2). For (S(t), I(t))=
(W (t)x(t), y(t)), then system (1.2) also has a nontrivial positive periodic solution.
The proof is complete.

6. Numerical simulations
In this section we give numerical simulations by Milstein’s Higher Order Method
[15]. We assume that the unit of time is one year and the population sizes are
measured in unit of 1 million. The examples are just numerical experiments to
confirm our results.
Example 6.1. To illustrate the threshold of disease and the effects of the environ-
ment white noises, we choose the parameters in deterministic system and stochastic
system as follows:

µ = 0.08, K = 1, β = 0.87, α = 0.05, λ = 0.22, p = 0.1.

Let initial value be (S(0), I(0)) = (0.7, 0.2). We have four different cases.

(a) For deterministic system (1.1), R0 = 1.0738 > 1, the disease will persist.
(b) For stochastic system (1.2), σ1 = 0.02, σ2 = 0.02 and Rs

0 = 1.0732 > 1. By
Theorem 3.2, I(t) will persist.

(c) For stochastic system (1.2), σ1 = 0.02, σ2 = 0.30 and Rs
0 = 0.9515 < 1. By

Theorem 3.1, I(t) will tend to zero exponentially with probability one.
(d) For stochastic system (1.2), σ1 = 0.02, σ2 = 0.55 and Rs

0 = 0.7498 < 1. By
Theorem 3.1, I(t) will tend to zero exponentially with probability one.

With σ2 in denominator, the white noise σ2 decreases the basic reproduction number
of disease. From case (a), (b) and (c) in Fig. 1, we can know that in the deterministic
impulsive model (1.1), I(t) tends to 0 if and only if R0 = β⟨S∗⟩1

µ+α+λ < 1, while in the
ISDE SIR model (1.2), I(t) tends to 0 if Rs

0 = β⟨S∗⟩1
µ+α+λ+ 1

2σ
2
2

= µ+α+λ
µ+α+λ+ 1

2σ
2
2
R0 <

1. In other words, the conditions for I(t) to become extinct in the ISDE SIR
model are weaker than that in the corresponding deterministic impulsive model.
Furthermore, from Theorem 3.1 one can see that I(t) tends to 0 exponentially in a
speed e(µ+α+λ+ 1

2σ
2
2)(R

s
0−1) when Rs

0 < 1. In theory, the bigger σ2 is, the faster the
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Figure 1. The pathway simulations of S(t) and I(t) for the deterministic system (1.1) and the stochastic
system (1.2) with initial value (S(0), I(0)) = (0.7, 0.2). (a) Solutions to deterministic system (1.1) with
R0 = 1.0738; (b) Solutions to stochastic system (1.2) with σ1 = 0.02, σ2 = 0.02, Rs

0 = 1.0732,; (c)
Solutions to stochastic system (1.2) with σ1 = 0.02, σ2 = 0.3, Rs

0 = 0.9515; (d) Solutions to stochastic
system (1.2) with σ1 = 0.02, σ2 = 0.55, Rs

0 = 0.7498.

disease goes extinct, which is illustrated in case (c) and (d) in Fig. 1. In general,
this means the environmental noises can help to suppress the spread of disease.
Example 6.2. Here we will give demonstrations of the existence of the boundary
periodic solution (Sp(t), 0) of System (1.2) and show it is globally attractive when
the disease becomes extinct. To satisfy the conditions of Theorem 4.1, we choose
the same parameters

µ = 0.08, K = 1, β = 0.87, α = 0.05, λ = 0.22, p = 0.1.

And

(a) σ1 = 0.020, σ2 = 0.30, with initial value S(0) = 0.7, I(0) = 0.2;
(b) σ1 = 0.015, σ2 = 0.55, with initial value S(0) = 0.7, I(0) = 0.2;
(c) σ1 = 0.020, σ2 = 0.30, with initial values S(0) = 0.6, I(0) = 0.2; S(0) =

0.7, I(0) = 0.2 and S(0) = 0.8, I(0) = 0.2;
(d) σ1 = 0.015, σ2 = 0.55, with initial values S(0) = 0.6, I(0) = 0.2; S(0) =

0.7, I(0) = 0.2 and S(0) = 0.8, I(0) = 0.2.
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As illustrated in Fig 1, above parameters can make sure the disease will die out
in stochastic system. In addition, to simulate the disease-free periodic solution in
the deterministic system (as showed in case (a) and (b) of Fig 2.), we decrease the
transmission rate β = 0.5 for deterministic system (therefore the basic reproduction
number R0 = 0.6171 < 1).

0 10 20 30 40 50 60

t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
h
e
 p

ro
p
o
rt

io
n
 o

f 
th

e
 s

u
s
c
e
p
ti
b
le

σ
1
=0.02,  σ

2
=0.3

Stochastic

Deterministic

(a)

0 10 20 30 40 50 60

t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
h
e
 p

ro
p
o
rt

io
n
 o

f 
th

e
 s

u
s
c
e
p
ti
b
le

σ
1
=0.015,  σ

2
=0.55

Stochastic

Deterministic

(b)

0 10 20 30 40 50 60

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
h
e
 p

ro
p
o
rt

io
n
 o

f 
th

e
 s

u
s
c
e
p
ti
b
le

σ
1
=0.02,  σ

2
=0.3

S(0)=0.6,I(0)=0.2

S(0)=0.7,I(0)=0.2

S(0)=0.8,I(0)=0.2

(c)

0 10 20 30 40 50 60

t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
h
e
 p

ro
p
o
rt

io
n
 o

f 
th

e
 s

u
s
c
e
p
ti
b
le

σ
1
=0.01,  σ

2
=0.55

S(0)=0.6,I(0)=0.2

S(0)=0.7,I(0)=0.2

S(0)=0.8,I(0)=0.2

(d)

Figure 2. Simulations of the boundary periodic solution and global attraction for the stochastic system
(1.2) when disease goes extinct. (a) the positive boundary periodic solution to stochastic system (1.2)
with σ1 = 0.02, σ2 = 0.03 and initial value (S(0), I(0)) = (0.7, 0.2); (b) the positive boundary periodic
solution to stochastic system (1.2) with σ1 = 0.015, σ2 = 0.55 and initial value (S(0), I(0)) = (0.7, 0.2);
(c) global attraction for the stochastic system (1.2) with σ1 = 0.02, σ2 = 0.3 and different initial values
(S(0), I(0)) = (0.6, 0.2), (S(0), I(0)) = (0.7, 0.2), (S(0), I(0)) = (0.8, 0.2); (d) global attraction for the
stochastic system (1.2) with σ1 = 0.015, σ2 = 0.55 and different initial values (S(0), I(0)) = (0.6, 0.2),
(S(0), I(0)) = (0.7, 0.2), (S(0), I(0)) = (0.8, 0.2).

Although Example 6.2 and Example 6.3 are just pathway simulations, they can
also confirm our results from another aspect.

It shows that when the disease becomes extinct, the disease-free solution S∗(t)
of the deterministic model will display periodic behavior after some time. The
stochastic solution S(t) of stochastic model (1.2) will fluctuate in a very small
neighborhood around the deterministic periodic solution when the white noise σ1

is not so big, which indicates the existence of the positive stochastic boundary
periodic solution. It also shows that the amplitude of the oscillation around the
trajectory of the deterministic periodic solution depends on the intensity of white
noise (σ1 = 0.020 or σ1 = 0.015).



Impulsive stochastic SIR epidemic model 1411

We note that the pathways in case (c) and (d) of Figure 2 overlap each other
very well which implies that wherever S(t) start from, the density functions of S(t)
converge to the disease-free periodic solution respectively.

In summary, the simulations in Figure 2 confirm our conclusion that the disease-
free periodic solution is global attractive under assumed conditions.

Moreover, the global attraction of stochastic periodic solution is analogue to the
convergence of density functions to a a stationary distribution. But it is hard to
demonstrate because it is a spectrum of density functions. So here we use pathway
simulation to substitute it. However, if readers are interested in the convergence of
density functions to a stationary distribution, it could be found in Figure 1 and 2
in Lin’s paper [27].
Example 6.3. In order to show the existence of the nontrivial periodic solution
of System (1.2), we describe the dynamic behaviors of deterministic system and
stochastic system in phase portrait respectively by choosing initial value S(0) =
0.7, I(0) = 0.2 and parameters as following:

µ = 0.08, K = 1, β = 0.87, α = 0.05, λ = 0.22, p = 0.1,

and

(a) deterministic system; (b) σ1 = 0.02, σ2 = 0.02; (c) σ1 = 0.01, σ2 = 0.01.

Therefore, the condition of Theorem 5.1 holds. We can see that, after a while, the
trajectory of the deterministic solution goes into periodic orbit and the pathways
of stochastic solution also show some measure of periodic behavior but with oscilla-
tions. Same as Example 2, the fluctuation of the stochastic pathways also depend
on the intensities of white noises (σ1 = 0.02, σ2 = 0.02 or σ1 = 0.01, σ1 = 0.02).

7. Conclusion
In this paper, we study a stochastic SIR model with pulse vaccinations in which we
assume random effects directly influence the susceptible, infective and indirectly the
recovered group. First, we transform the impulsive stochastic model into equivalent
stochastic system without pulses. Then we establish the threshold Rs

0: under extra
mild condition µ ≥ 1

2 (σ
2
1 ∨σ2

2), if Rs
0 < 1 then the disease will go extinct; if Rs

0 > 1,
then the disease will prevail. We also prove that: if µ ≥ 1

2 (σ
2
1 ∨ σ2

2) and Rs
0 < 1

are satisfied, then there exists a disease-free periodic solution which is globally
attractive; if Rs

0 > 1, then there exists at least one positive periodic solution which
means the disease will persist.

The environmental noises play an important role in determining the epidemic
dynamics. It follows from Theorem 3.1 and Figure 1. that white noises reduce
the basic reproduction number R0 and the disease will die out if Rs

0 < 1 even as
R0 > 1. Therefore, white noises help to suppress the spread of disease. According
to Theorem 4.1 and Theorem 5.1, the existences of disease-free periodic solution
and positive periodic solution are governed by Rs

0 which indicates that the noises
can influence the long time behavior of the disease.

Pulse vaccinations also have effects on the dynamic behavior of disease. From
Equation (3.3), one can see that ⟨S⟩t ≤ ⟨S∗⟩1 + o(t), where o(t) is an infinitesimal
of t. It means that PVS can also largely reduce the susceptible in the existence of
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Figure 3. Simulations of phase trajectories of positive periodic solutions (S(t), I(t)). (a) the deter-
ministic system (1.1); (b) the stochastic system (1.2) with with σ1 = 0.02, σ2 = 0.02; (c) the stochastic
system (1.2) with with σ1 = 0.01, σ2 = 0.01.

environment noises. Moreover, Theorem 4.1 and Theorem 5.1 verify the existence
of periodic solutions even as the impulsive stochastic model (1.2) has no periodic
coefficient, which implies the periodicity comes from the periodic pulse vaccinations.
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