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MIXED MONOTONE ITERATIVE
TECHNIQUE FOR HILFER FRACTIONAL

EVOLUTION EQUATIONS WITH NONLOCAL
CONDITIONS∗
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Abstract The purpose of this paper is concerned with the existence of mild
L-quasi-solutions for Hilfer fractional evolution equations with nonlocal condi-
tions in an ordered Banach spaces E. By employing mixed monotone iterative
technique, measure of noncompactness and Sadovskii’s fixed point theorem,
we obtain the existence of mild L-quasi-solutions for Hilfer fractional evolu-
tion equations with noncompact semigroups. Finally, an example is provide
to illustrate the feasibility of our main results.

Keywords Mixed monotone iterative technique, coupled L-quasi-upper and
lower solutions, Hilfer fractional derivative, measure of noncompactness.
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1. Introduction
Fractional differential equations provide an excellent instrument for the description
of memory and hereditary properties of various materials and processes and there
has been a significant development in fractional differential equations theory. Hilfer
[14] proposed a generalized Riemann-Liouville fractional derivative, for short, Hilfer
fractional derivative, which includes Riemann-Liouville fractional derivative and
Caputo fractional derivative. This operator appeared in the theoretical simulation
of dielectric relaxation in glass forming materials.

In recent years, many authors began to consider Hilfer fractional differential
equations, we refer the reader to [1,2,9,11,12,14,15,30]. Hilfer fractional evolution
equations has also been widely concerned by many scholars. In [11], Gu and Trujillo
investigated a class of Hilfer fractional evolution equations, and established the
existence results of mild solutions by using fixed point theorem.

Later, the nonlocal problems have better effects in applications than the initial
problem, many contributions have been made in applications of fractional evolution
equations with nonlocal conditions, see [20, 23, 24] and the reference therein. In
[20], Liang and Yang investigated the exact controllability of the nonlocal Cauchy
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problem for the fractional integro differential evolution equations in Banach spaces
Dqx(t) +Ax(t) = f(t, x(t), Gx(t)) +Bu(t), t ∈ J,

x(0) =
m∑

k=1

ckx(tk),

where Dq denotes the Caputo fractional derivative of order q ∈ (0, 1),−A : D(A) ⊂
E → E is the infinitesimal generator of a C0-semigroup T (t)(t ≥ 0) of uniformly
bounded linear operator, B is a linear bounded operator; f is a given function and
the operator is given by

Gx(t) =

∫ t

0

K(t, s)x(s)ds.

In [1], Hamdy M. Ahmed et al. studied the existence of mild solutions for Hilfer
fractional stochastic integro-differential equations of the formDν,µ

0+ [u(t) + F (t, v(t))] +Au(t) =
∫ t

0
G(s, η(s))dω(s), t ∈ J := (0, b],

I
(1−ν)(1−µ)
0+ u(0)− g(u) = u0,

where (t, v(t)) = (t, u(t), u(b1(t))), . . . , u(bm(t)))
and (t, η(t)) = (t, u(t), u(a1(t))), . . . , u(an(t))), Dν,µ

0+ denotes the Hilfer fractional
derivative 0 ≤ ν ≤ 1, 0 < µ < 1, −A is the infinitesimal generator of an analytic
semigroup of bounded linear operators S(t), t ≥ 0 on a separable Hilbert space.

On the other hand, by employing the method of lower and upper to study the
existence of extremal mild solution for fractional evolution equation is an interesting
issue, which has been attention in [6,21,23,24,26]. In [6], Chen and Li used monotone
iterative technique in the presence of coupled lower and upper L-quasi-solutions to
discuss the existence of mild solutions to the initial value problem of impulsive
evolution equations in an ordered Banach space E:

u′(t) +Au(t) = f(t, u(t), u(t)), t ∈ J = [0, b], t ̸= tk,

∆u|t=tk = Ik(u(tk), u(tk)), k = 1, 2, . . . ,m,

u(0) = u0,

where A : D(A) ⊂ E → E is a closed linear operator and −A generates a C0-
semigroup T (t)(t ≥ 0) on E, f ∈ C(J × E × E,E), J = [0, b], b > 0 is a constant,
0 < t1 < t2 < · · · < tp, p ∈ N, Ik ∈ C(E × E,E) is an impulsive function,
k = 1, 2, . . . , p;u0 ∈ E.

In [27], Vikram Singh et al. investigated the existence and uniqueness of mild
solutions for Sobolev type fractional impulsive differential systems with nonlocal
conditions

cDβ [Bu(t)] = Au(t) + f(t, u(t),
∫ t

0
K(t, s, u(s))ds), t ∈ J = [0, a], t ̸= tj ,

∆u|t=tj = Ij(u(tj)), j = 1, 2, . . . ,m,m ∈ N,
LD1−β [Tu(0)] = u0 + g(u(t)).



Mixed monotone iterative technique for. . . 1825

By applying monotone iterative technique combined with the method of lower and
upper solutions.

However, there are few papers that study Hilfer fractional evolution equations
with nonlocal problems by applying the mixed monotone iterative technique and
coupled L-quasi-upper and lower solutions. Motivated above discussion, in this
paper, we use the fixed point theorem combined with mixed monotone iterative
technique to discuss the existence of mild L-quasi-solutions for Hilfer fractional
evolution equations with nonlocal conditions

Dν,µ
0+ u(t) +Au(t) = f(t, u(t), u(t)), t ∈ (0, b],

I1−γ
0+ u(0) = u0 +

m∑
i=1

λiu(τi), τi ∈ (0, b],
(1.1)

where Dν,µ
0+ denotes the Hilfer fractional derivative of order µ and type ν, which

will be given in the next section, 0 ≤ ν ≤ 1, 1
2 < µ < 1, γ = ν + µ − νµ, the state

u(·) takes value in a Banach space E with norm ∥ · ∥ and −A : D(A) ⊂ E → E
is the infinitesimal generator of a C0-semigroup {T (t)}t≥0 of uniformly bounded
linear operator in E. J = [0, b](b > 0), J ′ = (0, b], f : J ′ × E × E → E is given
functions satisfying some assumptions, u0 ∈ E and τi(i = 1, 2, . . . ,m) are prefixed
points satisfying 0 < τ1 ≤ · · · ≤ τm < b and λi are real numbers. Here the nonlocal
condition I1−γ

0+ u(0) = u0 +
m∑
i=1

λiu(τi) can be applied in physical problem better

effect than the initial conditions I1−γ
0+ u(0) = u0.

The rest of this paper is organized as follows: In Section 2, we review some Lem-
mas and notations. In Section 3, we prove the existence of mild L-quasi-solutions
for Hilfer fractional differential system (1.1). In Section 4, an example is given to
illustrate the effectiveness of the our results.

2. Preliminaries
Throughout this paper, by C(J,E) and C(J ′, E), we denote the spaces of all
continuous functions from J to E and J ′ to E, respectively. Let E be an or-
dered Banach space with the norm ∥ · ∥ and partial order ≤, whose positive cone
P = {x ∈ E : x ≥ θ} is normal with normal constant N .

Define C1−γ(J,E) =
{
u ∈ C(J ′, E) : t1−γu(t) ∈ C(J,E)

}
. Clearly, C1−γ(J,E)

is a Banach space with the norm ∥u∥γ = supt∈J′ |t1−γu(t)|. And C1−γ(J,E) is also
an ordered Banach space with the partial order ≤ induced by the positive cone
P ′ = {u ∈ C1−γ(J,E)|u(t) ≥ θ, t ∈ J} which is also normal with the same normal
constant N .

First, we recall some definitions and basic results on fractional calculus, for more
details see [9, 11,15,19,30].

Definition 2.1. The Riemann-Liouville fractional integral of order γ of a function
f : [0,∞) → R is defined as

Iγ0+f(t) =
1

Γ(γ)

∫ t

0

(t− s)γ−1f(s)ds, t > 0, γ > 0,

provided the right side is point-wise defined on [0,∞).
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Definition 2.2. The Riemann-Liouville derivative of order γ with the lower limit
zero for a function f : [0,∞) → R can be written as

Dγ
0+f(t) =

1

Γ(n− γ)

dn

dtn

∫ t

0

f(s)

(t− s)γ+1−n
ds, t > 0, n− 1 < γ < n.

Definition 2.3. The Caputo fractional derivative of order γ for a function f :
[0,∞) → R can be written as

cDγ
0+f(t) = Dγ

0+

[
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

]
, t > 0, n− 1 < γ < n,

where n = [γ] + 1 and [γ] denotes the integer part of γ.

Definition 2.4 (Hilfer fractional derivative see [14]). The generazlied Riemann-
Liouville fractional derivative of order 0 ≤ ν ≤ 1 and 0 < µ < 1 with lower limit a
is defined as

Dν,µ
a+ f(t) = I

ν(1−µ)
a+

d

dt
I
(1−ν)(1−µ)
a+ f(t)

for functions such that the expression on the right hand side exists.

Remark 2.1. For 0 < µ < 1, the Laplace transformation of Hilfer fractional
derivatives is given by

L[Dµ,ν
0+ f(x)](λ) = λµL[f(x)](λ)− λν(µ−1)(I

(1−ν)(1−µ)
0+ f)(0+),

where (I
(1−ν)(1−µ)
0+ f)(0+) is the Riemann-Liouville fractional integral of order (1−

ν)(1− µ) in the limits as t → 0+, and

L[f(x)](λ) =
∫ ∞

0

e−λxf(x)dx. (2.1)

The symbol α(·) is the Kuratowski noncompactness measure defined on bounded
subset Ω of E. For any Ω ⊂ C(J,E) and t ∈ J , set Ω(t) = {u(t) : u ∈ B} ⊂ E. If
B is bounded in C(J,E), then Ω(t) is bounded in E, and α(Ω(t)) ≤ α(Ω).

Lemma 2.1 ( [18]). Let B ⊂ C(J,E) be bounded and equicontinuous, then coB ⊂
C(J,E) is also bounded and equicontinuous.

Lemma 2.2 ( [17]). Let E be a Banach space, and let D ⊂ E be bounded. Then
there exists a countable set D0 ⊂ D, such that α(D) ≤ 2α(D0).

Lemma 2.3 ( [10]). Let E be a Banach space, and let Ω ⊂ C(J,E) is equicontinuous
and bounded, then α(Ω(t)) is continuous on J , and α(Ω) = maxt∈J α(Ω(t)).

Lemma 2.4 ( [13]). Let Ω = {un}∞n=1 ⊂ C(J,E) be a bounded and countable set
and there exists a function m ∈ L1(J,R+) such that for every n ∈ N,

∥un(t)∥ ≤ m(t), a.e.t ∈ J.

Then α(Ω(t)) is Lebesgue integral on J , and

α
({∫

J

un(t)dt : n ∈ N
})

≤ 2

∫
J

α(Ω(t))dt.
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Lemma 2.5 ( [11]). Assume that −A is the infinitesimal generator of a C0-
semigroup {T (t)}t≥0 of uniformly bounded linear operator in E. If f ∈ C1−γ(J,E),
for any u ∈ C1−γ(J,E), a function u is a solution of the equationDν,µ

0+ u(t) +Au(t) = f(t, u(t), u(t)), t ∈ J ′,

I1−γ
0+ u(0) = u0,

(2.2)

if and only if u satisfies the following integral equation:

u(t) = Sν,µ(t)u0 +

∫ t

0

Kµ(t− s)f(s, u(s), u(s))ds,

where

Sν,µ(t) = I
ν(1−µ)
0+ Kµ(t), Kµ(t) = µ

∫ ∞

0

σtµ−1ξµ(σ)T (t
µσ)u0dσ, (2.3)

the function ξµ is the function of Wright type:

ξµ(σ) =
1

πµ

∞∑
n=1

(−σ)n−1Γ(nµ+ 1)

n!
sin(nπµ), σ ∈ (0,∞).

Lemma 2.6 ( [11]). Assume that A generate a C0-semigroup {T (t)}t≥0 of uniformly
bounded linear operator in E and T (t) is continuous in the uniform operator topology
for t > 0. That is, there exists M ≥ 1 such that supt∈[0,+∞) |T (t)| ≤ M . Then the
operators Sν,µ(t) and Kµ(t) have the following properties.

(i) For any fixed t ≥ 0, {Sν,µ(t)}t>0 and {Kµ(t)}t>0 are linear operators, and
for any u ∈ E,

∥Sν,µ(t)u∥ ≤ Mtγ−1

Γ(γ)
∥u∥, ∥Kµ(t)u∥ ≤ Mtµ−1

Γ(µ)
∥u∥.

(ii) The operators Sν,µ(t) and Kµ(t) are strongly continuous for all t ≥ 0.
(iii) If T (t)(t ≥ 0) is an equicontinuous semigroup, then Sν,µ(t) and Kµ(t) are

equicontinuous in E for t > 0.

Definition 2.5. A function u ∈ C1−γ(J,E) is said to be a mild solution of (2.2) if
u0 ∈ E the integral equation

u(t) = Sν,µ(t)u0 +

∫ t

0

Kµ(t− s)f(s, u(s), u(s))ds,

is satisfied, for all t ∈ J ′.

Next, we present useful lemma which plays an important role in our main results.

Lemma 2.7. Suppose A is the infinitesimal generator of a C0-semigroup {T (t)}t≥0

of uniformly bounded linear operator in E, for 0 ≤ ν ≤ 1, 0 < µ < 1, then

Dν,µ
0+

(
Sν,µ(t)u0

)
= −A

(
Sν,µ(t)u0

)
,

and

Dν,µ
0+

(∫ t

0

Kµ(t− s)f(s, u(s), u(s))ds
)

=−A

∫ t

0

Kµ(t− s)f(s, u(s), u(s))ds+ f(t, u(t), u(t)). (2.4)
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Proof. Let λ > 0, we consider the one sided stable probability density as follows

ϖµ(σ) =
1

π

∞∑
n=1

(−1)n−1σ−µn−1Γ(nµ+ 1)

n!
sin(nπµ), σ ∈ (0,∞),

whose Laplace transform is given by∫ ∞

0

e−λσϖµ(σ)dσ = e−λµ

, µ ∈ (0, 1). (2.5)

Then, using (2.5), we have

(λµI +A)−1u =

∫ ∞

0

e−λµsT (s)u0ds =

∫ ∞

0

µtµ−1e−(λt)µT (tµ)udt

=

∫ ∞

0

∫ ∞

0

e−(λtσ)µtµ−1ϖµ(σ)W (tµ)udσdt

= µ

∫ ∞

0

∫ ∞

0

e−λθ θ
µ−1

σµ
ϖµ(σ)T

( θµ

σµ

)
udθdσ

=

∫ ∞

0

e−λτ
[
µ

∫ ∞

0

τµ−1

σµ
ϖµ(σ)T

( τµ
σµ

)
udσ

]
dτ

=

∫ ∞

0

e−λt
[
µ

∫ ∞

0

tµ−1

σµ
ϖµ(σ)T

( tµ

σµ

)
udσ

]
dt

=

∫ ∞

0

e−λt
[
µ

∫ ∞

0

σtµ−1ξµ(σ)T (t
µσ)udσ

]
dt

=

∫ ∞

0

e−λtKµ(t)udt, (2.6)

where ξµ is a probability density function defined on (0,∞) such that

ξµ(σ) =
1

µ
σ−1− 1

µϖµ(σ
− 1

µ ) ≥ 0.

Since the Laplace inverse transform of λν(µ−1) is

L−1(λν(µ−1)) =


tν(1−µ)−1

Γ(ν(1−µ)) , 0 < ν ≤ 1,

δ(t), ν = 0,
(2.7)

where δ(t) is the Delta function.
It follows from (2.6), (2.7) and Laplace transform, it is obvious to see that

L(Sν,µ(t)u0) = L(Iν(1−µ)
0+ Kµ(t)u0)

= L
( tν(1−µ)−1

Γ(ν(1− µ))
∗Kµ(t)u0

)
= L

(
L−1(λν(µ−1)) ∗Kµ(t)u0

)
= λν(µ−1)(λµI +A)−1u0, (2.8)

where ∗ denotes the convolution of functions. By Remark 2.2, we obtain

L(Dν,µ
0+ [Sν,µ(t)u0]) = λµL(Sν,µ(t)u0)− λν(µ−1)u0
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= λµ
[
λν(µ−1)(λµI +A)−1

]
u0 − λν(µ−1)u0

= λν(µ−1)(λµI +A)−1
[
λµ − (λµ +A)

]
u0

= λν(µ−1)(λµI +A)−1
[
λµ − λµ −A

]
u0

= −λν(µ−1)(λµI +A)−1Au0

= −Aλν(µ−1)(λµI +A)−1u0. (2.9)

Combing (2.8) and (2.9) yields

Dν,µ
0+ [Sν,µ(t)u0] = −A[Sν,µ(t)u0].

Similarly, we have

L
(∫ t

0

Kµ(t− s)f(s, u(s), u(s))ds
)
= L(Kµ(t)) · L

(
f(t, u(t), u(t))

)
, (2.10)

and

L
(
Dν,µ

0+

[ ∫ t

0

Kµ(t− s)f(s, u(s), u(s))ds
])

=λµL
(∫ t

0

Kµ(t− s)f(s, u(s), u(s))ds
)
− λν(µ−1) · 0

=λµL(Kµ(t)) · L
(
f(t, u(t), u(t))

)
=λµ(λµI +A)−1 · L

(
f(t, u(t), u(t))

)
=(λµI +A−A)(λµI +A)−1 · L

(
f(t, u(t), u(t))

)
=−A(λµI +A)−1 · L

(
f(t, u(t), u(t))

)
+ L

(
f(t, u(t), u(t))

)
. (2.11)

Thus, it follows from (2.10) and (2.11) that

Dν,µ
0+

[ ∫ t

0

Kµ(t− s)f(s, u(s), u(s))ds
]

=−A

∫ t

0

Kµ(t− s)f(s, u(s), u(s))ds+ f(t, u(t), u(t)). (2.12)

For the convenience of discussion, we assume that

(H0) Assume A generate a C0-semigroup {T (t)}t≥0 of uniformly bounded linear
operator in E and T (t) is continuous in the uniform operator topology for
t > 0. That is, there exists M ≥ 1 such that supt∈[0,+∞) ∥T (t)∥ ≤ M .

(H1) λi > 0(i = 1, 2, . . . ,m) and
m∑
i=1

λi <
Γ(γ)

Mbγ−1 .

In view of [6] and [20], we present the following lemma.



1830 H. Gou, Y. Li & Q. Li

Lemma 2.8. Assume that (H0) and (H1) holds. For any u ∈ C1−γ(J,E) such
that f(·, u(·), u(·)) ∈ C1−γ(J ×E×E,E), then the problem (1.1) has a unique mild
solution u ∈ C1−γ(J) given by

u(t) =Sν,µ(t)Θu0 +

m∑
i=1

λiSν,µ(t)Θ

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds

+

∫ t

0

Kµ(t− s)f(s, u(s), u(s))ds, (2.13)

where Θ =
[
I −

∑m
i=1 λiSν,µ(τi)

]−1

.

Proof. By assumption (H1), we have∥∥∥ m∑
i=1

λiSν,µ(t)
∥∥∥ ≤

m∑
i=1

|λi| ·
∥∥∥Sν,µ(t)

∥∥∥ ≤
m∑
i=1

|λi|
Mbγ−1

Γ(γ)
< 1.

By operator spectrum theorem, the operator Θ:=
(
I−

∑m
i=1 λiSν,µ(τi))

)−1
exists

and is bounded. Furthermore, by Neumann expression, we obtain

∥Θ∥ ≤
∞∑
i=0

∥
m∑
i=1

λiSν,µ(τi)∥n =
1

1− ∥
∑m

i=1 λiSν,µ(τi)∥
≤ 1

1− Mbγ−1

Γ(γ)

∑m
i=1 λi

.

According to Definition 2.5, a solution of system (2.2) can be expressed by

u(t) = Sν,µ(t)I
1−γ
0+ u(0) +

∫ t

0

Kµ(t− s)f(s, u(s), u(s))ds. (2.14)

Next, we substitute t = τi into (2.13) and by applying λi to both side of (2.13), we
have

λiu(τi) = λiSν,µ(τi)I
1−γ
0+ u(0) + λi

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds. (2.15)

Thus, we have

I1−γ
0+ u(0) = u0 +

m∑
i=1

λiu(τi)

= u0 +

m∑
i=1

λiSν,µ(τi)I
1−γ
0+ u(0) +

m∑
i=1

λi

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds

= u0 +

m∑
i=1

λiSν,µ(τi)I
1−γ
0+ u(0) +

m∑
i=1

λi

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds.

Since I −
∑m

i=1 λiSν,µ(τi) has a bounded inverse operator Θ, which implies

I1−γ
0+ u(0) =

[
I −

m∑
i=1

λiSν,µ(τi)
]−1(

u0 +

m∑
i=1

λi

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds
)

= Θu0 +

m∑
i=1

λi

∫ τi

0

ΘKµ(τi − s)f(s, u(s), u(s))ds. (2.16)
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Submitting (2.16) to (2.14), we obtain that (2.13). It is imply that u is also a
solution of the integral of Eq.(2.13) when u is a solution of system (2.12).

The necessity has been proved. Next, we will prove its sufficiency. Applying
I1−γ
0+ to both side of (2.12), and by Lemma 2.7, we have

I1−γ
0+ u(t) =I1−γ

0+

(
Sν,µ(t)Θu0 +

m∑
i=1

λiSν,µ(t)Θ

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds

+

∫ t

0

Kµ(t− s)f(s, u(s), u(s))ds
)
.

Therefore, we have

lim
t→0

I1−γ
0+ u(t) = lim

t→0
I1−γ
0+ Sν,µ(t)Θu0

+

m∑
i=1

λi lim
t→0

I1−γ
0+ Sν,µ(t)Θ

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds

=I1−γ
0+ (lim

t→0
Sν,µ(t)(Θu0)

+ I1−γ
0+ lim

t→0
Sν,µ(t)

m∑
i=1

λiΘ

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds

=I1−γ
0+

(Θu0

Γ(γ)
tγ−1

)
+ I1−γ

0+

(∑m
i=1 λiΘ

∫ τi
0

Kµ(τi − s)f(s, u(s), u(s))ds

Γ(γ)
tγ−1

)
=Θu0 +

m∑
i=1

λiΘ

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds. (2.17)

Substituting t = τi into (2.12), we have

u(τi) =Sν,µ(τi)Θu0 +

m∑
i=1

λiSν,µ(τi)Θ

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds

+

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds.

Then, we obtain

u0 +

m∑
i=1

λiu(τi)

=u0 +

m∑
i=1

λiSν,µ(τi)Θu0

+

m∑
i=1

λi

m∑
i=1

λiSν,µ(τi)Θ

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds

+

m∑
i=1

λi

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds
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=
(
I +

m∑
i=1

λiSν,µ(τi)Θ
)(

u0 +

m∑
i=1

λi

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds
)

=
(
Θ

−1
+

m∑
i=1

λiSν,µ(τi)
)(

Θu0 +

m∑
i=1

λiΘ

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds
)

=Θu0 +

m∑
i=1

λiΘ

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds. (2.18)

It follows (2.16) and (2.17) that I1−γ
0+ u(0) = u0 +

∑m
i=1 λiu(τi).

Next, by using Dν,µ
0+ to both sides of (2.12) and Lemma 2.9, we have

Dν,µ
0+ u(t)

=Dν,µ
0+

[
Sν,µ(t)Θu0 +

m∑
i=1

λiSν,µ(t)Θ

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds

+

∫ t

0

Kµ(t− s)f(s, u(s), u(s))ds
]

=Dν,µ
0+

[
Sν,µ(t)Θu0 +

m∑
i=1

λiSν,µ(t)Θ

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds
]

+Dν,µ
0+

[ ∫ t

0

Kµ(t− s)f(s, u(s), u(s))ds
]

=
[
Θu0 +

m∑
i=1

λiΘ

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds
]
Dν,µ

0+

[
Sν,µ(t)

]
+Dν,µ

0+

[ ∫ t

0

Kµ(t− s)f(s, u(s), u(s))
]

=−
[
Θu0 +

m∑
i=1

λiΘ

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds
]
ASν,µ(t)

−A

∫ t

0

Kµ(t− s)f(s, u(s), u(s))ds+ f(t, u(t), u(t))

=−A
(
Sν,µ(t)Θu0 +

m∑
i=1

λiSν,µ(t)Θ

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds

+

∫ t

0

Kµ(t− s)f(s, u(s), u(s))ds
)
+ f(t, u(t), u(t))

=−Au(t) + f(t, u(t), u(t)).

Hence,
Dν,µ

0+ u(t) +Au(t) = f(t, u(t), u(t)).

This proof is completed.
From Lemma 2.8, we adopt the following definition of mild solution of the prob-

lem (1.1).

Definition 2.6. A function u ∈ C1−γ(J,E) is said to be a mild solution of the
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problem (1.1), if it satisfies the operator equation

u(t) =Sν,µ(t)Θu0 +

m∑
i=1

λiSν,µ(t)Θ

∫ τi

0

Kµ(τi − s)f(s, u(s), u(s))ds

+

∫ t

0

Kµ(t− s)f(s, u(s), u(s))ds, t ∈ J ′, (2.19)

where the operators Sν,µ(t) and Kµ(t) are given by (2.3).

Definition 2.7. A C0-semigroup {T (t)}t≥0 in E is said to be positive, if order
inequality T (t)x ≥ θ holds for each x ≥ θ, x ∈ E and t ≥ 0.

Remark 2.2. For any C ≥ 0, −(A + CI) also generates a C0-semigroup S(t) =
e−CtT (t)(t ≥ 0) on E. And S(t)(t ≥ 0) is a positive C0-semigroup if T (t)(t ≥ 0) is
a positive C0-semigroup. For the detail, see [17,25].

For u ∈ E, we define two families {S∗
ν,µ(t)}t≥ and {K∗

µ(t)}t≥0 of operators by

S∗
ν,µ(t)u = I

ν(1−µ)
0+ K∗

µ(t)u, K∗
µ(t)u = µ

∫ ∞

0

σtµ−1ξµ(σ)S(t
µσ)udσ

where ξµ(σ) is given by (2.3).
Since T (t)(t ≥ 0) is positive, by Remark 2.4, it is easy know that S(t)(t ≥ 0) is

also positive. And by the definition of ξµ(σ), the operators S∗
ν,µ(t) and K∗

µ(t) are
also positive for all t ≥ 0.

To prove our main result, for any C > 0, we consider the following the system
Dν,µ

0+ u(t) + (A+ CI)u(t) = f(t, u(t), u(t)) + Cu(t), t ∈ (0, b],

I
(1−ν)(1−µ)
0+ u(0) = u0 +

m∑
i=1

λiu(τi), τi ∈ (0, b].
(2.20)

First, we assume that

(F0) For any C ≥ 0, −(A+CI) also generates a C0-semigroup S(t) = e−CtT (t)(t ≥
0) on E and S(t) is continuous in the uniform operator topology for t > 0.
That is, there exists M∗ ≥ 1 such that supt∈[0,+∞) ∥S(t)∥ ≤ M∗.

(F1) λi > 0(i = 1, 2, . . . ,m) and
m∑
i=1

λi <
Γ(γ)

M∗bγ−1 .

By assumption (F1), we have∥∥∥ m∑
i=1

λiS
∗
ν,µ(t)

∥∥∥ ≤ M∗bγ−1

Γ(γ)

m∑
i=1

λi < 1.

By operator spectrum theorem, the operator I−
∑m

i=1 λiS
∗
ν,µ(τi)) has a bounded

inverse operator

Θ :=
(
I −

m∑
i=1

λiS
∗
ν,µ(τi))

)−1

.

Furthermore, by Neumann expression, Θ can be expressed by

Θ =

∞∑
i=0

( m∑
i=1

λiS
∗
ν,µ(τi)

)n

.
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By the positivity of C0-semigroup S(t)(t ≥ 0), it is easy know that S∗
ν,µ(t) is positive,

we have
Θu =

∞∑
i=0

( m∑
i=1

λiS
∗
ν,µ(τi)

)n

u ≥ u ≥ θ, ∀u ≥ θ.

So, Θ is a positive operator, and

∥Θ∥ ≤
∞∑
i=0

∥
m∑
i=1

λiS
∗
ν,µ(τi)∥n =

1

1− ∥
∑m

i=1 λiS∗
ν,µ(τi)∥

≤ 1

1− M∗bγ−1

Γ(γ)

∑m
i=1 λi

.

In view of Lemma 2.8, we present the following lemma.

Lemma 2.9. Assume that (F0) and (F1) holds. For any u ∈ C1−γ(J,E) such that
f(·, u(·), u(·)) ∈ C1−γ(J × E × E,E), then the problem (2.20) has a unique mild
solution u ∈ C1−γ(J) given by

u(t) =S∗
ν,µ(t)Θu0 +

m∑
i=1

λiS
∗
ν,µ(t)Θ

∫ τi

0

K∗
µ(τi − s)[f(s, u(s), u(s)) + Cu(s)]ds

+

∫ t

0

K∗
µ(t− s)[f(s, u(s), u(s)) + Cu(s)]ds, (2.21)

where Θ =
[
I −

∑m
i=1 λiS

∗
ν,µ(τi)

]−1

.

From Lemma 2.9 and Definition 2.7, we state the following definition of mild
solution of the problem (2.20).

Definition 2.8. A function u ∈ C1−γ(J,E) is said to be a mild solution of the
problem (2.20), if for any u ∈ C1−γ(J,E), the integral equation

u(t) =S∗
ν,µ(t)Θu0 +

m∑
i=1

λiS
∗
ν,µ(t)Θ

∫ τi

0

K∗
µ(τi − s)[f(s, u(s), u(s)) + Cu(s)]ds

+

∫ t

0

K∗
µ(t− s)[f(s, u(s), u(s)) + Cu(s)]ds,

is satisfied.

In the following, we will state some lemmas whose proofs are similar to those of
the paper [11]. Here, we omit it.

Lemma 2.10. Under assumption (F0), the operators S∗
ν,µ(t) and K∗

µ(t) have the
following properties.

(i) for any fixed t > 0, {K∗
µ(t)}t>0, and {S∗

ν,µ(t)}t>0 are linear operators, and
for any u ∈ E

∥K∗
µ(t)∥ ≤ M∗tµ−1

Γ(µ)
, ∥S∗

ν,µ(t)∥ ≤ M∗tγ−1

Γ(γ)
.

(ii) The operators {K∗
µ(t)}t>0 and {S∗

ν,µ(t)}t>0 are strongly continuous for t > 0.
(iii) If S(t)(t ≥ 0) is an equicontinuous semigroup, then S∗

ν,µ(t) and K∗
µ(t) are

equicontinuous in E for t > 0.

Lemma 2.11 (Sadovskii fixed point theorem). Let D ba a convex, closed and
bounded subset of a Banach space E and Q : D → D be a condensing map. Then
Q has one fixed point in D.
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Lemma 2.12 ( [31]). Let a ≥ 0, µ > 0, c(t) and u(t) be the nonnegative locally
integrable functions on 0 ≤ t < T < +∞, such that

u(t) ≤ c(t) + a

∫ t

0

(t− s)µ−1u(s)ds,

then
u(t) ≤ c(t) +

∫ t

0

[ ∞∑
n=1

(aΓ(µ))n

Γ(nµ)
(t− s)nµ−1c(s)

]
ds, 0 ≤ t < T.

3. Main results
For v, w ∈ C1−γ(J,E) with v ≤ w, we use [v, w] to denote the order interval
{u ∈ C1−γ}(J,E)|v ≤ u ≤ w} in C1−γ(J,E), and [v(t), w(t)] to denote the order
interval u ∈ E|v(t) ≤ u(t) ≤ w(t), t ∈ J in E. In this section, we will discuss the
existence of extremal mild solutions for problem (1.1).

Definition 3.1. An abstract function u ∈ C1−γ(J,E) is called a solution of the
problem (1.1) if u(t) satisfies all the equalities of (1.1).

Definition 3.2. Let L ≥ 0 be a constant. If functions v0, w0 ∈ C1−γ(J,E) satisfies

Dν,µ
0+ v0(t) +Av0(t) ≤ f(t, v0(t), w0(t)) + L(v0(t)− w0(t)), t ∈ J,

I1−γ
0+ v0(0) ≤ u0 +

m∑
i=1

λiv0(τi),
(3.1)

Dν,µ
0+w0(t) +Aw0(t) ≥ f(t, w0(t), v0(t)) + L(w0(t)− v0(t)), t ∈ J,

I1−γ
0+ w0(0) ≥ u0 +

m∑
i=1

λiw0(τi),
(3.2)

we call v0, w0 coupled lower and upper L-quasi-solution of the problem (1.1). Only
choosing = in (3.1) and (3.2), we call (v0, w0) coupled L-quasi-solution pair of the
problem (1.1). Furthermore, if u0 := v0 = w0, we call u0 a solution of the problem
(1.1).

Theorem 3.1. Assume that E be an ordered Banach space and its positive cone P
is normal, and −A generates a positive C0-semigroup {T (t)}t≥0 on E, f ∈ C(J ×
E×E,E) and u0 ∈ E. If the problem (1.1) has a lower solution v0 ∈ C1−γ(J,E) and
an upper solution w0 ∈ C1−γ(J,E) with v0 ≤ w0. Suppose also that the conditions
(F0), (F1) and the following conditions

(F2) There exist a constant C > 0 and L ≥ 0 such that

f(t, u2, v2)− f(t, u1, v1) ≥ −C(u2 − u1)− L(v1 − v2),

for any t ∈ J , and v0(t) ≤ u1 ≤ u2 ≤ w0(t), v0(t) ≤ v2 ≤ v1 ≤ w0(t).
(F3) There exist a constant L1 > 0 such that for all t ∈ J ,

α({f(t, un, vn)}) ≤ L1(α({un}) + α({vn})),

and increasing or decreasing sequences {un}⊂[v0(t), w0(t)], {vn}⊂[v0(t),w0(t)].
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(F4) Let vn = Q(vn−1, wn−1), wn = Q(wn−1, vn−1), n = 1, 2, . . . , such that the
sequence vn(0) and wn(0) are convergent.

are satisfied, then the problem (1.1) has minimal and maximal coupled mild L-
quasi-solutions between v0 and w0, which can be obtained by a monotone iterative
procedure starting from v0 and w0 respectively.

Proof. Since C > 0, the problem (1.1) can be written as the system (2.20). By
(2.21), we can define operator Q : [v0, w0]× [v0, w0] → C1−γ(J,E) as follows

Q(u, v)(t) =S∗
ν,µ(t)Θu0

+

m∑
i=1

λiS
∗
ν,µ(t)Θ

∫ τi

0

K∗
µ(τi−s)[f(s, u(s), v(s))+(C + L)u(s)−Lv(s)]ds

+

∫ t

0

K∗
µ(t− s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds, t ∈ J ′.

(3.3)

Since f is continuous, it is easily see that the mapQ :→ C1−γ(J,E) is continuous.
And by Lemma 2.9, the mild solutions of the problem (1.1) are equivalent to the
fixed points of the operator Q. We will divide the proof in the following steps.

Step 1. We show Q : [v0, w0] × [v0, w0] → C1−γ(J,E) is a mixed monotone
operator.

In fact, for ∀t ∈ J ′, v0(t) ≤ u1(t) ≤ u2(t) ≤ w0, v0(t) ≤ v2(t) ≤ v1(t) ≤ w0(t),
by the assumptions (F2) and (F3), we have

f(t, u1(t), v1(t)) + (C + L)u1(t)− Lv1(t) ≤ f(t, u2(t), v2(t)) + (C + L)u2(t)− Lv2(t).

So ∫ t

0

K∗
µ(t− s)[f(s, u1(s), v1(s)) + (C + L)u1(s)− Lv1(t)]ds

≤
∫ t

0

K∗
µ(t− s)[f(s, u2(s), v2(s)) + (C + L)u2(s)− Lv2(s)]ds.

Thus, from (3.3) we have Q(u1, v1) ≤ Q(u2, v2).
Step 2. We show that v0 ≤ Q(v0, w0), Q(w0, v0) ≤ w0. Let h(t) = Dν,µ

0+ v0(t) +
Av0(t) + Cv0(t), h ∈ C1−γ(J,E) and h(t) ≤ f(t, v0, w0) + (C + L)v0 − Lw0, t ∈ J ′.
By Definition 2.7 and 3.2, we have

v0(t) =S∗
ν,µ(t)v0(0) +

∫ t

0

K∗
µ(t− s)h(s)ds

≤S∗
ν,µ(t)Θu0

+

m∑
i=1

λiS
∗
ν,µ(t)Θ

∫ τi

0

K∗
µ(τi−s)[f(s, v0(s), w0(s))+(C+L)v0(s)−Lw0(s)]ds

+

∫ t

0

K∗
µ(t− s)[f(s, v0(s), w0(s)) + (C + L)v0(s)− Lw0(s)]ds

=Q(v0, w0)(t), t ∈ J ′.

It implies that v0 ≤ Q(v0, w0). Similarly, it can prove that Q(w0, v0) ≤ w0. Thus,
Q : [v0, w0]× [v0, w0] → [v0, w0] is a continuous mixed monotone operator.
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Now, we define two sequences {vn} and {wn} in [v0, w0] by the iterative scheme

vn = Q(vn−1, wn−1), wn = Q(wn−1, vn−1), n = 1, 2, . . . . (3.4)

Then from the monotonicity of Q, we have

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0. (3.5)

Step 3. We prove that {vn} and {wn} are convergent in J ′.
For convenience, we denote B = {vn : n ∈ N} + {wn : n ∈ N} and B1 = {vn :

n ∈ N}, B2 = {wn : n ∈ N}, B10 = {vn−1 : n ∈ N}, B20 = {wn−1 : n ∈ N}.
Then B1 = Q(B10, B20) and B2 = Q(B20, B10). From B10 = B1

⋃
{v0} and B20 =

B2

⋃
{w0} it follows that α(B10(t)) = α(B1(t)) and α(B20(t)) = α(B2(t)) for t ∈ J ′.

Let φ(t) := α(B(t)), t ∈ J ′, we will show that φ(t) ≡ 0 in J ′.
For t ∈ J ′, from (3.1), using Lemma 2.2, assumption (F3) and (F4), we have

φ(t) = α(B(t)) = α(B1(t) +B2(t))

=α(Q(B10, B20)(t) +Q(B20, B10)(t))

=α
({

S∗
ν,µ(t)Θu0 +

m∑
i=1

λiS
∗
ν,µ(t)Θ

∫ τi

0

K∗
µ(τi − s)

× [f(s, vn−1(s), wn−1(s)) + (C + L)vn−1(s)− Lwn−1(s)]ds

+

∫ t

0

K∗
µ(t− s)[f(s, vn−1(s), wn−1(s)) + (C + L)vn−1(s)− Lwn−1(s)]ds

+ S∗
ν,µ(t)Θu0

+

m∑
i=1

λiS
∗
ν,µ(t)Θ

∫ τi

0

K∗
µ(τi−s)[f(s, wn−1(s), vn−1(s))+(C+L)wn−1(s)−Lvn−1(s)]ds

+

∫ t

0

K∗
µ(t− s)[f(s, wn−1(s), vn−1(s)) + (C + L)wn−1(s)− Lvn−1(s)]ds

})
≤M∗bγ−1

Γ(γ)
α
({

Θu0 +

m∑
i=1

λiΘ

∫ τi

0

K∗
µ(τi − s)[f(s, vn−1(s), wn−1(s))

+ (C + L)vn−1(s)− Lwn−1(s)]ds+Θu0

+

m∑
i=1

λiΘ

∫ τi

0

K∗
µ(τi−s)[f(s, wn−1(s), vn−1(s))+(C+L)wn−1(s)−Lvn−1(s)]ds

})
+

2M∗bµ−1

Γ(µ)

∫ t

0

α
({

f(s, vn−1(s), wn−1(s))

+ f(s, wn−1(s), vn−1(s))+C(vn−1(s)+wn−1)
})

ds

≤M∗bγ−1

Γ(γ)

[
α
({

vn(0)
})

+ α
({

wn(0)
})]

+
2M∗bµ−1(L1 + C)

Γ(µ)

∫ t

0

(α(B10(s)) + α(B20(s)))ds

≤4M∗bµ−1(L1 + C)

Γ(µ)

∫ t

0

φ(s)ds.

Hence by Lemma 2.12, φ(t) ≡ 0 in J . Hence, for any t ∈ J, {vn(t)}+{wn(t)} is pre-
compact. So {vn(t)}, {wn(t)} are precompact. Combing this with the monotonicity
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(3.5), we easily prove that {vn(t)} and {wn(t)} are convergent, i.e., limn→∞ vn(t) =
u(t), t ∈ J . Similarly, limn→∞ wn(t) = u(t), t ∈ J .

Evidently {vn(t)}, {wn(t)} ∈ C1−γ(J,E), so u(t), u(t) are bounded integrable in
J . Since for any t ∈ J , we have

vn(t) =Q(vn−1, wn−1)(t)

=S∗
ν,µ(t)Θu0 +

m∑
i=1

λiS
∗
ν,µ(t)Θ

∫ τi

0

K∗
µ(τi − s)(f(s, vn−1(s), wn−1(s))

+ (C + L)vn−1(s)− Lwn−1(s))ds

+

∫ t

0

K∗
µ(t− s)(f(s, vn−1(s), wn−1(s)) + (C + L)vn−1(s)− Lwn−1(s))ds

(3.6)

and

wn(t) =Q(wn−1, vn−1)(t)

=S∗
ν,µ(t)Θu0 +

m∑
i=1

λiS
∗
ν,µ(t)Θ

∫ τi

0

K∗
µ(τi − s)(f(s, wn−1(s), vn−1(s))

+ (C + L)wn−1(s)− Lvn−1(s))ds

+

∫ t

0

K∗
µ(t− s)(f(s, wn−1(s), vn−1(s)) + (C + L)wn−1(s)− Lvn−1(s))ds.

(3.7)

If n → ∞ in (3.6) and (3.7), by the Lebesgue dominated convergence theorem, we
obtain

u(t) =Q(u(t))

=S∗
ν,µ(t)Θu0

+

m∑
i=1

λiS
∗
ν,µ(t)Θ

∫ τi

0

K∗
µ(τi − s)[f(s, u(s), u(s)) + (C + L)u(s)− Lu(s)]ds

+

∫ t

0

K∗
µ(t− s)[f(s, u(s), u(s)) + (C + L)u(s)− Lu(s)]ds,

and

u(t) =Q(u(t))

=S∗
ν,µ(t)Θu0 +

m∑
i=1

λiS
∗
ν,µ(t)Θ

∫ τi

0

K∗
µ(τi − s)[f(s, u(s), u(s))

+ (C + L)u(s)− Lu(s)]ds

+

∫ t

0

K∗
µ(t− s)[f(s, u(s), u(s)) + (C + L)u(s)− Lu(s)]dsds.

Thus, we have u(t), u(t) ∈ C1−γ(J,E), and u = Qu, u = Qu. Combing this with
monotonicity (3.5), we see that v0 ≤ u ≤ u ≤ w0. By the monotonicity of Q,
it is easy to see that u and u are the minimal and maximal coupled fixed points
of Q in [v0, w0]. Therefore, u and u are the minimal and maximal coupled mild
L-quasi-solutions of the problem (1.1) in [v0, w0], respectively..
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Remark 3.1. If we replace positive cone P is normal by positive cone P is regular.
Then the conclusion in Theorem 3.1 is also valid. For more detail, see [6].

As a supplement to Theorem 3.1, we further discuss the existence of mild solu-
tions for the problem (1.1) in weakly sequentially complete Banach space, we only
need to verify the conditions (F1) and (F2) are satisfied.

Corollary 3.1. Assume that E be an ordered and weakly sequentially complete
Banach space and its positive cone P is normal, and −A generates a positive C0-
semigroup {T (t)}t≥0 on E, f ∈ C(J ×E ×E,E) and u0 ∈ E. If the problem (1.1)
has coupled lower and upper L-quasi-solution v, w0 with v0 ≤ w0. Suppose also
that the conditions (F0)-(F4) are satisfied. Then the problem(1.1) has minimal and
maximal coupled mild L-quasi-solutions between v0 and w0, which can be obtained
by a monotone iterative procedure starting from v0 and w0 respectively.

Proof. In view of Theorem 3.1, if E is weakly sequentially complete, the condition
(F3) and (F4) holds automatically. And by Theorem 2.2 in [8], any monotonic and
order bounded sequence is precompact. By the monotonicity (3.3), it is east to see
that vn(t) and wn(t) are convergent on J . Thus, vn(0) and wn(0) are convergent,
i.e. condition (F4) holds. For t ∈ J , let {un} and {vn} be increasing or decreasing
sequences obeying condition (F3), then by condition (F1), {f(t, un, vn) + Cun −
Lvn} is a monotone and order-bounded sequence. By the property of measure of
noncompactness, we have

α({f(t, un, vn)}) ≤ α({f(t, un, vn) + Cun − Lvn}) + Cα({un}) + Lα({vn}) = 0,

and (F3) holds and by Theorem 3.1, our conclusion is valid.
Now, we discuss the exists of mild solution to the problem (1.1) between the

minimal and maximal coupled mild L-quasi-solutions u and u. If we replace the
assumptions (F3) by the following assumptions:

(F3)* The exists a L1 > 0 such that

α(f(t,D1, D2)) ≤ L1(α(D1) + α(D2)),

for any t ∈ J, where D1 = {vn} and D2 = {w} are countable sets in [v0(t), w0(t)].
We have the following results.

Theorem 3.2. Assume that E be an ordered Banach space and its positive cone P is
normal, and −A generates a positive and equicontinuous C0-semigroup {T (t)}t≥0 on
E, f ∈ C(J×E×E,E) and u0 ∈ E. If the problem (1.1) has coupled lower and upper
L-quasi-solutions v0 ∈ C1−γ(J,E) and w0 ∈ C1−γ(J,E) with v0 ≤ w0. Suppose
also that the conditions (F0)-(F2), (F3)* are satisfied. Then the problem(1.1) has
minimal and maximal coupled mild L-quasi-solutions u and u between v0 and w0,
and at least has one mild solution between u and u in [v0, w0], and

vn(t) → u(t), wn(t) → u(t), (n → +∞), t ∈ J,

where vn = Q(vn−1, wn−1), wn = Q(wn−1, vn−1), n = 1, 2, . . . , which satisfy

v0(t) ≤ v1(t) ≤ · · · vn(t) ≤ · · ·u(t) ≤ u(t) ≤ · · · ≤ wn(t) ≤ · · ·w1(t) ≤ w0(t),∀t ∈ J.

Proof. It is easy to see that (F3)∗ ⇒ (H3). Hence, by Theorem 3.1, the problem
(1.1) has minimal and maximal coupled mild L-quasi-solutions u and u between v0
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and w0. Next, we prove the existence of the mild solution of the equation between
v0 and w0. Let Au = Q(u, u), clearly, we know that A : [v0, w0] → [v0, w0] is
continuous and the mild solution of the problem (1.1) is equivalent to fixed point of
operator A. First, we will prove that A : [v0, w0] → C1−γ(J,E) is an equicontinuous
operator. Since T (t)(t ≥ 0) is a equicontinuous C0-semigroup, and S(t)(t ≥ 0) is
also a equicontiuous C0-semigroup. By the normality of the cone P , there exists
M > 0 such that

∥f(t, u(t), v(t)) + (C + L)u(t)− Lv(t)∥ ≤ M, u ∈ [v0, w0].

For any u ∈ C1−γ(J,E), let y(t) = t1−γu(t), for t1 = 0, 0 < t2 ≤ b, we get

∥y(t2)− y(0)∥ = ∥t1−γ
2 Q(u, v)(t2)∥

≤
∥∥∥t1−γ

2 S∗
ν,µ(t2)

∥∥∥(Θu0) +

m∑
i=1

λiΘ∥t1−γ
2 S∗

ν,µ(t2)∥
∫ τi

0

K∗
µ(τi − s)

× [f(t, u(t), v(t)) + (C + L)u(t)− Lv(t)]ds

+ t1−γ
2

∥∥∥∫ t2

0

K∗
µ(t2 − s)[f(t, u(t), v(t)) + (C + L)u(t)− Lv(t)]ds

∥∥∥
≤
∥∥∥t1−γ

2 S∗
ν,µ(t2)

∥∥∥(Θu0) +M

m∑
i=1

λiΘ∥t1−γ
2 S∗

ν,µ(t2)∥
∫ τi

0

K∗
µ(τi − s)ds

+M
∥∥∥∫ t2

0

t1−γ
2 K∗

µ(t2 − s)ds
∥∥∥

→0, as t2 → t1 = 0.

For 0 < t1 < t2 ≤ b, by (3.1), we get that

∥y(t2)− y(t1)∥ ≤
∥∥∥t1−γ

2 Q(u, v)(t2)− t1−γ
1 Q(u, v)(t1)

∥∥∥
≤
∥∥∥t1−γ

2 S∗
ν,µ(t2)− t1−γ

1 S∗
ν,µ(t1)

∥∥∥(Θu0) +
∥∥∥t1−γ

2 S∗
ν,µ(t2)− t1−γ

1 S∗
ν,µ(t1)

∥∥∥
×

m∑
i=1

λiΘ

∫ τi

0

K∗
µ(τi − s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds

+

∫ t2

0

t1−γ
2 K∗

µ(t2 − s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds

−
∫ t1

0

t1−γ
1 K∗

µ(t1 − s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds

≤
(∥∥∥t1−γ

2 S∗
ν,µ(t2)− t1−γ

2 S∗
ν,µ(t1)

∥∥∥
+
∥∥∥t1−γ

2 S∗
ν,µ(t1)− t1−γ

1 Sν,µ(t1)
∥∥∥)(Θu0) +

∥∥∥t1−γ
2 S∗

ν,µ(t2)− t1−γ
1 S∗

ν,µ(t1)
∥∥∥

×
m∑
i=1

λiΘ

∫ τi

0

K∗
µ(τi − s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds

+
∥∥∥ ∫ t2

t1

t1−γ
2 K∗

µ(t2 − s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds
∥∥∥

+
∥∥∥ ∫ t1

0

t1−γ
2 K∗

µ(t2 − s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds
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−
∫ t1

0

t1−γ
1 K∗

µ(t2 − s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds
∥∥∥

+
∥∥∥∫ t1

0

t1−γ
1 K∗

µ(t2 − s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds

−
∫ t1

0

t1−γ
1 K∗

µ(t1 − s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds
∥∥∥

=J1 + J2 + J3 + J4 + J5 + J6,

where

J1 =
(∥∥∥t1−γ

2 S∗
ν,µ(t2)− t1−γ

2 S∗
ν,µ(t1)

∥∥∥)(Θu0),

J2 =
(∥∥∥t1−γ

2 S∗
ν,µ(t1)− t1−γ

1 S∗
ν,µ(t1)

∥∥∥)(Θu0),

J3=
∥∥∥t1−γ2 S∗

ν,µ(t2)−t1−γ1 S∗
ν,µ(t1)

∥∥∥ m∑
i=1

λiΘ

∫ τi

0

K∗
µ(τi−s)[f(s, u(s), v(s))

+ (C+L)u(s)−Lv(s)]ds,

J4 =
∥∥∥∫ t2

t1

t1−γ
2 K∗

µ(t2 − s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds
∥∥∥,

J5 =
∥∥∥∫ t1

0

t1−γ
2 K∗

µ(t2 − s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds

−
∫ t1

0

t1−γ
1 K∗

µ(t2 − s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds
∥∥∥,

J6 =
∥∥∥∫ t1

0

t1−γ
1 K∗

µ(t2 − s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds

−
∫ t1

0

t1−γ
1 K∗

µ(t1 − s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds
∥∥∥.

Here we calculate∥∥∥t1−γ
2 Q(u, v)(t2)− t1−γ

1 Q(u, v)(t1)
∥∥∥ ≤

6∑
i=1

∥Ji∥.

Therefore, it is not difficult to see that ∥Ji∥ tend to 0, when t2 − t1 → 0, i =
1, 2, . . . , 6.

For J1, by Lemma 2.10, we get

J1 =
(∥∥∥t1−γ

2 S∗
ν,µ(t2)− t1−γ

2 S∗
ν,µ(t1)

∥∥∥)(Θu0)

≤
∥∥∥t1−γ

2

(
S∗
ν,µ(t2)− Sν,µ(t1)

)∥∥∥(Θu0) → 0, as t2 → t1.

For J2, by Lemma 2.10, we get

J2 =
(∥∥∥t1−γ

2 S∗
ν,µ(t1)− t1−γ

1 S∗
ν,µ(t1)

∥∥∥)(Θu0)

≤ M∗bγ−1

Γ(γ)

∥∥∥t1−γ
2 − t1−γ

1

∥∥∥∥Θu0∥
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≤ M∗bγ−1

Γ(γ)

∥∥∥(t2 − t1)
1−γ

∥∥∥∥Θu0∥ → 0, as t2 → t1.

For J3, by Lemma 2.10, we have

J3 =

m∑
i=1

λiΘ
∥∥∥t1−γ

2 S∗
ν,µ(t1)− t1−γ

1 S∗
ν,µ(t1)

∥∥∥∫ τi

0

K∗
µ(τi − s)[f(s, u(s), v(s))

+ (C + L)u(s)− Lv(s)]ds

≤
M

m∑
i=1

|λi|

1−M∗
m∑
i=1

|λi|

∥∥∥t1−γ
2 S∗

ν,µ(t1)− t1−γ
1 S∗

ν,µ(t1)
∥∥∥∫ τi

0

K∗
µ(τi − s)ds

→0, as t2 → t1.

For J4, by Lemma 2.10, we have

J4 =
∥∥∥∫ t2

t1

t1−γ
2 K∗

µ(t2 − s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds
∥∥∥

≤ M

∫ t2

t1

t1−γ
2 K∗

µ(t2 − s)ds

→ 0, as t2 → t1.

For J5, by Lemma 2.10, we have

J5 =
∥∥∥∫ t1

0

t1−γ
2 K∗

µ(t2 − s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds

−
∫ t1

0

t1−γ
1 K∗

µ(t2 − s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds
∥∥∥

≤2M∗

Γ(µ)

∫ t1

0

[
t1−γ
2 (t2 − s)µ−1 − t1−γ

1 (t1 − s)µ−1
]
[f(s, u(s), v(s))

+ (C + L)u(s)− Lv(s)]ds.

Noting that∫ t1

0

[
t1−γ2 (t2−s)µ−1−t1−γ1 (t1−s)µ−1

]
[f(s, u(s), v(s))+(C+L)u(s)−Lv(s)]ds

≤
∫ t1

0

t1−γ2 (t2−s)µ−1[f(s, u(s), v(s))+(C+L)u(s)−Lv(s)]ds.

and ∫ t1

0

[
t1−γ2 (t2−s)µ−1−t1−γ1 (t1−s)µ−1

]
[f(s, u(s), v(s))+(C+L)u(s)−Lv(s)]ds

exists, and by Lebesgue dominated convergence Theorem, we have∫ t1

0

[
t1−γ2 (t2−s)µ−1−t1−γ1 (t1−s)µ−1

]
[f(s, u(s), v(s))+(C+L)u(s)−Lv(s)]ds
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→0, as t2 → t1.

It is easy to see that limt2→t1 J5 = 0.
For J6, by Lemma 2.10, we have

J6 =
∥∥∥∫ t1

0

t1−γ
1 K∗

µ(t2 − s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds

−
∫ t1

0

t1−γ
1 K∗

µ(t1 − s)[f(s, u(s), v(s)) + (C + L)u(s)− Lv(s)]ds
∥∥∥

≤M
∥∥∥K∗

µ(t2 − s)−K∗
µ(t1 − s)

∥∥∥∫ t1

0

t1−γ
1 ds

→ 0, as t2 → t1.

In conclusion,

∥y(t2)− y(t1)∥ ≤
∥∥∥t1−γ

2 Q(u, v)(t2)− t1−γ
1 Q(u, v)(t1)

∥∥∥ → 0,

as t2 → t1, i.e, ∥∥∥Q(u, v)(t2)−Q(u, v)(t1)
∥∥∥
γ
→ 0, as t2 → t1,

which means that Q : [v0, w0] × [v0, w0] → [v0, w0] is equicontinuous. Thus, A :
[v0, w0] → [v0, w0] is also equicontinuous.

So, for any D ⊂ [v0, w0], A(D) ⊂ [v0, w0] is bounded and equicontinuous. There-
fore, by Lemma 2.2, there exists a countable set D0 = {un} ⊂ D such that

α(A(D)) ≤ 2α(A(D0)). (3.8)

For t ∈ J, by the definition of the operator Q, we have

α(A(D0(t)))

=α
({

S∗
ν,µ(t)Θu0 +

m∑
i=1

λiS
∗
ν,µ(t)Θ

∫ τi

0

K∗
µ(τi − s)[f(s, un(s), un(s) + Cun(s)))]ds

+

∫ t

0

K∗
µ(t− s[f(s, un(s), un(s) + Cun(s)))]ds

})
≤
2(M∗)2

∑m
i=1 λib

µ+γ−2(L1 + C)

Γ(γ)Γ(µ)(1−M∗ ∑m
i=1)

∫ τi

0

α(D0(s))ds

+
2M∗bµ−1(L1 + C)

Γ(µ)

∫ t

0

α(D0(s))ds

≤
2(M∗)2

∑m
i=1 λib

µ+γ−1(L1 + C)

Γ(γ)Γ(µ)(1−
∑m

i=1 λi)
α(D) +

2M∗bµ(L1 + C)

Γ(µ)
α(D)

≤2M∗bµ(L1 + C)

Γ(µ)

[ bγ−1M∗ ∑m
i=1 λi

Γ(γ)(1−
∑m

i=1 λi)
+ 1

]
α(D)

=
2M∗bµ(L1 + C)

Γ(µ)

[ (bγ−1 − Γ(γ))M∗ ∑m
i=1 λi + Γ(γ)

Γ(γ)(1−M∗ ∑m
i=1 λi)

]
α(D).
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Since A(D0) is bounded and equicontinuous, we know from Lemma 2.3 that

α(A(D0)) = max
t∈I

α(A(D0)(t)).

And by (3.8), we have
α(A(D)) ≤ ηα(D),

where
η =

2M∗bµ(L1 + C)

Γ(µ)

[ (bγ−1 − Γ(γ))M∗ ∑m
i=1 λi + Γ(γ)

Γ(γ)(1−M∗ ∑m
i=1 λi)

]
.

(i) If η < 1, then the operator A : [v0, w0] → [v0, w0] is condensing, by Lemma
2.11, A has fixed point u in [v0, w0], so u is the mild solution of the problem (1.1)
in [v0, w0].

(ii) If η ≥ 1. Divide J = [0, b] into n equal parts, let ∆n : 0 = t′0 < t′1 < · · · <
t′n = b and t′i(i = 1, 2, . . . , n− 1) such that

2M∗∥∆n∥µ(L1 + C)

Γ(µ)

[ (∥∆n∥γ−1 − Γ(γ))M∗ ∑m
i=1 λi + Γ(γ)

Γ(γ)(1−M∗ ∑m
i=1 λi)

]
< 1. (3.9)

By (i) and (3.9), the problem (1.1) has mild solution u1(t) in [0, t′1]; Again by
(i) and (3.9), if Eq. (1.1) with u(t′1) = u1(t

′
1) as initial value, then it has mild

solution u2(t) in [t′1, t
′
2] and satisfies u2(t

′
1) = u1(t

′
1). Thus, the mild solution of the

equation continuously extend from [0, t′1] to [0, t′2]; Continuing such a process, the
mild solution of the equation can be continuously extend to J . So, we obtain a mild
solution u ∈ C(J,E) of the problem (1.1), which satisfies u(t) = ui(t), t

′
i−1 ≤ t ≤

t′i, i = 1, 2, . . . , n.
Finally, since u = Au = Q(u, u), v0 ≤ u ≤ w0, by the mixed monotonicity of

Qv1 = Q(v0, w0) ≤ Q(u, u) ≤ Q(w0, v0) = w1. Similarly, v2 ≤ u ≤ w2, in general,
vn ≤ u ≤ wn, letting n → ∞, we get u ≤ u ≤ u. Therefore, the problem (1.1) at
least has one mild solution between u and u.

4. Examples
In this section, we present an example, which illustrate the applicability of our main
results.

Example 4.1. We consider the following fractional partial differential equationDν,µ
0+ u(t, x) = ∆u(t, x) + f(t, x, u(t, x), u(t, x)), (t, x) ∈ J × Ω,

I
(1−ν)(1−µ)
0+ u(0, x) = u0 +

∑m
i=1 λiu(τi, x),

(4.1)

where Dν,µ
0+ is the Hilfer fractional derivative, 0 ≤ ν ≤ 1, 0 < µ < 1, t ∈ J = [0, b],

λi ̸= 0, i = 1, 2, . . . ,m, integer N ≥ 1, Ω ⊂ RN is a bounded domain with a
sufficiently smooth boundary ∂Ω, f : J × E × E → E is continuous.

Let E = Lp(Ω) with 1 < p < ∞, P = {u ∈ Lp(Ω)} : u(x) ≥ 0, q.e.x ∈ Ω}, and
define the operator A : D(A) ⊂ E → E as follows:

D(A) = W 2,p ∩W 1,p
0 (Ω), Au = −∆u.
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Then E is a Banach space, P is a normal cone of E, and −A generates a positive C0-
semigroup T (t)(t ≥ 0) in E (see [25]). Let f(t, u(t), u(t)) = f(t, x, u(t, x), u(t, x)),
u0 = u0(·), then the problem (4.3) can be written as the abstract (1.1).

Theorem 4.1. If the following conditions

(H5) Let u0(x) ≥ 0, x ∈ Ω, and there exists a function w = w(t, x) ∈ C1−γ(J × Ω)
such that Dν,µ

0+w(t, x) ≥ ∆w(t, x) + f(t, x, w(t, x), w(t, x)),

I
(1−ν)(1−µ)
0+ w(0, x) ≥ u0 +

∑m
i=1 λiw(τi, x).

(4.2)

(H6) There exist a constant C > 0 and L ≥ 0 such that

f(t, x, u2, v2)− f(t, x, u1, v1) ≥ −C(u2 − u1)− L(v1 − v2),

for any t ∈ J , and v0(t) ≤ u1 ≤ u2 ≤ w0(t), v0(t) ≤ v2 ≤ v1 ≤ w0(t).

(H7) λi > 0(i = 1, 2, . . . ,m) and
∑m

i=1 λi <
Γ(γ)

M∗bγ−1 .
(H8) There exists a constant L1 > 0 such that

α({f(t, un, vn)}) ≤ L1(α({un}) + α({vn})),

for ∀t ∈ J , and increasing or decreasing monotonic sequences
{un} ⊂ [v0(t), w0(t)] and {vn} ⊂ [v0(t), w0(t)].

Then the problem (4.3) has minimal and maximal mild solutions between 0 and
w(x, t), which can be obtained by a monotone iterative procedure starting from 0
and w(t), respectively.

Proof. Assumption (H5) implies that v0 ≡ 0 and w0 ≡ w(x, t) are lower and
upper solutions of the problem (4.3), respectively, and from (H6)-(H8), it is easy
to verify that all conditions (F1)-(F3) are satisfied. So our conclusion follows from
Theorem 3.1.
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