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DYNAMICS OF A VIRAL INFECTIOLOGY
UNDER TREATMENT
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Abstract This paper deals with a nonlinear model of the viral dynamics
which describes the interactions between the human immune system and the
virus. The novelty of this work is the introduction of combined treatments in
the dynamics to modify the model. We investigate the qualitative behavior
of the model and find a threshold parameter that guarantees the asymptotic
stability of the equilibrium points, this parameter is known as the basic repro-
duction number. We estimated the parameters of the model by least-squares
minimization between the numerical solution of the system and clinical data
of cell cultures. It is also demonstrated that critical drug efficacy in terms of
the model parameter is greatly useful to curtail the spreading of the disease.

Keywords Mathematical modelling, stability analysis, critical drug efficacy,
parameter estimation.
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1. Introduction

Mathematical modelling has become a valuable tool for the analysis of dynamics of
infectious disease and for the support of treatment strategies developed in recent
years. The main convergence is to analyze the transmission patterns in vivo and
vitro, and methods to assess the effectiveness of treatment strategies. Infectious
disease (such as HIV [1, 4], HBV, HCV [10, 24], and CHIKV [5, 6], etc.) models
which describe within-host dynamics have been described by a system of nonlinear
ordinary differential equations. These diseases are most vulnerable to the human’s
immune system, especially to white blood cells named T cell. Due to the recent
advancements in drug development, mathematical modelling of viral kinetics under
treatment continues to play an instrumental role in improving our knowledge and
understanding of virus pathogenesis.

The basic and pioneering model describing the pathogen dynamics is due to
Nowak and May [17]. The model contains three compartments: susceptible (or
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uninfected) cells, infected cells, and free virus pathogens as:

dT (t)

dt
= λ− kT (t)V (t)− dTT (t), T (0) = T0,

dI(t)

dt
= kT (t)V (t)− dII(t), I(0) = I0,

dV (t)

dt
= NdII(t)− dV V (t), V (0) = V0.

(1.1)

A lot of considerations have been added that aim to get the best representation of
the virus infection. Most notable are latent cell reservoirs which serve as a major
barrier in curing virus infection. Despite the fact that the antiretroviral therapy
(ART) significantly limits the level of virus in the blood, there is still a low viral load
due to ongoing reactivation of latent infected cells reservoirs. Variant models have
been developed to study the dynamics of the virus in the presence of latent reservoirs
(see, e.g. [2, 7, 8]). In this paper, our target is to modify the model proposed by
Nowak et al. [17] with latently infected cells compartment under combined treatment
strategies. We study the qualitative behavior of the models including the existence
of the steady states. We investigate the local and global stability in terms of the
basic reproduction number using the Lyapunov method. Further, by using clinical
data from HIV infected individuals, we determine the model parameters which best
fit the data. Finally, numerical simulations are presented to support the theoretical
results.

2. Mathematical Model
We propose a latent viral dynamics model by incorporating the efficacy of combined
treatments. The model takes into account four types of compartments: uninfected
target cells (T ), productively infected cells (I), latently infected cells (L) and the
number of virions V (t) in plasma all at time t. We describe the infection dynamics
using the following differential equations:

dT (t)

dt
= λ− (1− u1)kT (t)V (t)− dTT (t),

dI(t)

dt
= (1− u1)(1− f)kT (t)V (t)− dII(t) + αL(t),

dL(t)

dt
= (1− u1)fkT (t)V (t)− dLL(t)− αL(t),

dV (t)

dt
= (1− u2)NdII(t)− dV V (t).

(2.1)

With initial conditions

T (0) = T0, I(0) = I0, L(0) = L0, V (0) = V0. (2.2)

The target cells, T , die at rate dTT and are recruited into the infection site at rate
λ. When these cells become infected by virus they can be eliminated at the constant
rate k, which is directly proportional to the product of the participating populations.
We assume that a fraction, f , of infection, generate latently infected cells with
replication-competent genomes and the remaining fraction of infection, (1 − f),
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leads to productively infected cells. Latently infected cells become productively
infected at a contant rate of α due to activation. We assume that each productively
infected cells produce N viral particles before it dies and the virus is then killed off
at a clearance rate, dV , proportional to the virus population. In some literature [17],
NdI is called the virus proliferation rate p. Productively infected cells and latently
infected cells die at rates dII and dLL, respectively. In addition, the drug efficacy
of combined treatment in this model involved reducing new infections and blocking
virions production, which are described in fractions (1−u1) and (1−u2), respectively,
with 0 ≤ u1, u2 ≤ 1. Based on biological considerations we assume that these model
parameters are positive constant and given in Table 1. Notably, it is biologically
reasonable to assume that infected cells have a higher death rate than target cells,
namely dI > dT . Furthermore, we assume that the total number of target cells
remains approximately constant, to make each T cell is susceptible only to the virus.
A schematic representation of the model (2.1) is given in figure 1.

Figure 1. Schematic diagram of viral kinetic model with the combination of treatments.

3. Qualitative Study of the Model
Now we must prove that solutions to the model (2.1) exist and they are positive as
well as bounded for all values of time in order to retain the biological validity of the
model,

Theorem 3.1 (Existence of Solution). Let t0 > 0, In the model (2.1), if the initial
conditions satisfy T0 > 0, I0 > 0, L0 > 0 and V0 > 0, then for all t ∈ R the functions
T (t), I(t), L(t) and V (t) will exist in a quadruple set denoted as R4

+.

Proof. The Picard-Lindelöf Theorem [14] states that for the initial value problem
y′(t) = f(y(t)), y(t0) = y0, t ∈ [t0 − ϵ, t0 + ϵ], if f is locally Lipschitz in y and
continuous in t, then for some value ϵ > 0, there exists a unique solution y(t) to the
initial value problem within the range [t0 − ϵ, t0 + ϵ]. Since the system of ODEs is
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autonomous, it suffices to show that the function f : R4 → R4 defined by

f(y) =


λ− (1− u1)kTV − dTT

(1− u1)(1− f)kTV − dII + αL

(1− u1)fkTV − dLL− αL

(1− u2)NdII − dV V


is locally Lipschitz in its y argument. Note that the Jacobian matrix

∇f(y) =


−(1− u1)kV − dT 0 0 −(1− u1)kT

(1− u1)(1− f)kV −dI α (1− u1)(1− f)kT

(1− u1)fkV 0 −(dL + α) (1− u1)fkT

0 (1− u2)NdI 0 −dV


is linear in y ∈ R4. Thus, ∇f(y) is continuous on a closed interval and differentiable
on an open interval I ∈ R4. By the Mean Value Theorem, we know

|f(y1)− f(y2)|
|y1 − y2|

≤ |∇f(y∗)|

for some y∗ ∈ I. By letting |∇f(y∗)| = K, we obtain |f(y1)− f(y2)| ≤ K|y1 − y2|
for all y1,y2 ∈ I and therefore f(y) is locally bounded for every y ∈ R4. Hence, f
has a continuous, bounded derivative on any compact subset of R4 and so f is locally
Lipschitz in y. By the Picard-Lindelöf Theorem, there exists a unique solution, y(t),
to the ordinary differential equation y′(t) = f(y(t)) with initial value y(0) = y0 on
[0, t0] for some time t0 > 0.

The next step in analyzing our model will be to prove positivity and boundedness
for the system of differential equations.

Theorem 3.2 (Positivity). Let t0 > 0, In the model (2.1), if the initial conditions
satisfy T0 > 0, I0 > 0, L0 > 0 and V0 > 0, then for all t ∈ [0, t0] the functions
T (t), I(t), L(t) and V (t) will be remain positive in R4

+.

Proof. Since all of the parameters used in the system are positive, we can place
lower bounds on each of the equations given in the model. Thus,

dT

dt
= λ− (1− u1)kTV − dTT ≥ −(1− u1)kTV − dTT,

dI

dt
= (1− u1)(1− f)kTV − dII + αL ≥ −dII,

dL

dt
= (1− u1)fkTV − dLL− αL ≥ −dLL,

dV

dt
= (1− u2)NdII − dV V ≥ −dV V.

Through basic differential equations methods we can resolve the inequalities and
produce:

T (t) ≥ T (0)e−dT t−k
∫ t0
0 (1−u1)V dt,
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I(t) ≥ I(0)e−dIt > 0,

L(t) ≥ L(0)e−dLt > 0,

V (t) ≥ V (0)e−dV t > 0.

Thus, for all t ∈ [0, t0] the functions T (t), I(t), L(t) and V (t) will be positive and
remain in the set R4

+.

Theorem 3.3 (Boundedness). Assume the initial conditions of (2.2) satisfy T0 >
0, I0 > 0, L0 > 0, V0 > 0 and 0 ≤ u1, u2 ≤ 1. If the unique solution provided
by Theorem 3.1 exists on the interval [0, t0] for some t0 > 0, then the functions
T (t), I(t), L(t) and V (t) will be bounded and remain positive for all t ∈ [0, t0].

Proof. The state variables we consider here represent supersolutions for given
problems (2.1-2.2). From the given equations we have

(T + I + L)′(t) = λ− dTT − dII − dLL.

Now, using X(t) = T (t) + I(t) + L(t) and d ≥ max{dT , dI , dL}, we get

X ′(t) = λ− dTT − dII − dLL ≤ λ− dX,

which implies that

lim
t→∞

supX(t) ≤ λ

d
∈ R+, for all t ∈ [0, t0],

where R+, is the set of non-negative real numbers. The upper bound for X is also
the upper bound for T, I, and L. Lastly

V ′(t) = (1− u2)NdII(t)− dV V (t)

≤ NdII(t)− dV V (t)

≤ NdIλ

d
− dV V (t),

which also leads to
lim
t→∞

supV (t) ≤ NdIλ

ddV
∈ R+.

Since 0 ≤ u1, u2 ≤ 1, then, T (t), I(t), L(t) and V (t) are bounded above with values
elements of R+. Via a maximum principle [20] theory for first-order nonlinear
differential equations, we obtain the solutions to the problems (2.1-2.2) bounded
for all t ∈ [0, t0] and lies in the compact set

D =

{
(T, I, L, V ) ∈ R4

+ : T, I, L ≤ λ

d
, V ≤ NdIλ

ddV

}
,

where the quadruple set R4
+ defines as R4

+ = {(T, I, L, V ) : T ≥ 0, I ≥ 0, L ≥ 0, V ≥
0}.

3.1. Equilibria of the System
An equilibrium point is the constant solution of (2.1) so that the rate of change
for each compartment is zero. By setting the right-hand side of (2.1) to zero,
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we get exactly two equilibria which are biologically meaningful. The non-infective
equilibrium (viral extinction) as

E0 = (T 0, I0, L0, V 0) =

(
λ

dT
, 0, 0, 0

)
and the infective equilibrium (viral persistence) as

E∗ = (T ∗, I∗, L∗, V ∗)

=

{
q,

dT dV
kNdI

(
λ

dT q
− 1

)
,

fλ

dL + α

(
1− dT q

λ

)
,
dT
k

(
λ

dT q
− 1

)}
,

where
q =

dV (α+ dL)

(1− u1)(1− u2)kN (α+ (1− f)dL)
.

3.2. Basic Reproduction Number
To apply the next generation method [3, 12] to the model (2.1), we need the com-
partments that spread the infection, so we need only the infected I, latent L and
virions V , compartments. Let us define the model dynamics using the equations

dI

dt
= (1− u1)(1− f)kTV − dII + αL,

dL

dt
= (1− u1)fkTV − dLL− αL,

dV

dt
= (1− u2)NdII − dV V.

For this system, at the disease free equilibrium point

F =

[
∂Fi(x0)

∂xj

]
=


0 0 (1− u1)(1− f)k

λ

dT

0 0 (1− u1)fk
λ

dT

0 0 0


and

V =

[
∂Vi(x0)

∂xj

]
=


dI −α 0

0 α+ dL 0

−(1− u2)NdI 0 dV

 .

Then, for the system (2.1), the next generation matrix is

FV −1 =



(1− u1)(1− u2)(1− f)kNλ

dT dV

(1− u1)(1− u2)(1− f)kNαλ

(α+ dL) dT dV

(1− u1)(1− f)kλ

dT dV

(1− u1)(1− u2)fkNλ

dT dV

(1− u1)(1− u2)fkNαλ

(α+ dL) dT dV

(1− u1)fkλ

dT dV

0 0 0


.
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The dominant eigenvalue of FV −1 is the basic reproduction number for the
system (2.1) and given by expression

RL = ρ
[
FV −1

]
=

(1− u1)(1− u2)kλN (α+ (1− f)dL)

dT dV (α+ dL)
=

λ

dT q
. (3.1)

The basic reproduction number RL is the average number of secondary infections
produced when one single virus cell is introduced into a host where every T cell is
susceptible [12].

Remark 3.1. Using basic reproduction number RL the infected equilibrium point
E∗ = (T ∗, I∗, L∗, V ∗) becomes

E∗ =

{
λ

dTRL
,
dT dV
kNdI

(RL − 1),
fλ

RL(dL + α)
(RL − 1),

dT
k
(RL − 1)

}
.

4. Local Stability of the Equilibria
In this section, we investigate the local stability properties of the equilibrium points
by approximating the nonlinear system of differential equations (2.1) with a linear
system at the points E0 and E∗. Then, we locally perturb the system from equilib-
rium and examine the resulting long time behavior. This is done by linearizing the
system about each equilibria, using the Jacobian for (2.1):

J =


−(1− u1)kV − dT 0 0 −(1− u1)kT

(1− u1)(1− f)kV −dI α (1− u1)(1− f)kT

(1− u1)fkV 0 −(dL + α) (1− u1)fkT

0 (1− u2)NdI 0 −dV

 .

Theorem 4.1. If RL < 1, then the non-infective equilibrium is locally asymptot-
ically stable. If RL > 1 then the non-infective equilibrium is an unstable saddle
point, and the endemic equilibrium is locally asymptotically stable.

Proof. We proceed by linearizing the system and using the Routh-Hurwitz crite-
rion [9] to determine conditions under which the linear system possesses only neg-
ative eigenvalues. Then, as a consequence of the Hartman Grobman theorem [11],
the local behavior of the linearized system is equivalent to that of the nonlinear
system.

First, we compute the Jacobian evaluated at the non-infective equilibrium E0 =

(T 0, I0, L0, V 0) =

(
λ

dT
, 0, 0, 0

)
, resulting in

J(E0) =



−dT 0 0 −(1− u1)k
λ

dT

0 −dI α (1− u1)(1− f)k
λ

dT

0 0 −(dL + α) (1− u1)fk
λ

dT

0 (1− u2)NdI 0 −dV


.
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From this, we compute the associated characteristic polynomial for eigenvalues η as

0 =
∣∣ηI− J(E0)

∣∣
=(η + dT )

[
(η + dI)(η + α+ dL)(η + dV )−

(1− u1)(1− u2)fαNkλdI
dT

− (1− u1)(1− u2)(1− f)NkλdI
dT

(
η +

α

1− f
+ dL

)]
.

Since η < −dT < 0 is the one negative eigenvalue of the system, After expanding
the remaining terms and ordering by powers of η, this equation ultimately simplifies
to

η3 +A1η
2 +A2η +A3 = 0,

where

A1 = dI + dL + dV + α,

A2 = dIdV + (dL + α)(dI + dV )−
(1− u1)(1− u2)(1− f)NkλdI

dT
,

A3 = (dL + α)dIdV − (1− u1)(1− u2)λNkdI
dT

((1− f)dL + α) .

According to the Routh-Hurwitz criteria, all roots of this cubic equation possess
negative real part if and only if A1, A2, A3 > 0 and A1A2 − A3 > 0. Clearly,
A1 > 0, and after rewriting A3 in terms of RL, we find

A3 = (dL + α)dIdV (1−RL).

Thus, if A3 > 0, it is necessary that RL < 1. Similarly, we rewrite A2 as

A2 = (dL + α)(dI + dV ) + dIdV

[
1−RL

(1− f)(dL + α)

(1− f)dL + α

]
.

Using the inequality
(1− f)(dL + α)

(1− f)dL + α
= 1− fα

(1− f)dL + α
< 1, (4.1)

and the previous condition RL < 1, we find A2 > 0.
Finally, we see that A2 > dIdV (1 − RL), and clearly A1 > dL + α. Therefore,

we find
A1A2 > dIdV (dL + α)(1−RL) = A3

and the Routh-Hurwitz criteria are satisfied. Thus, RL < 1 implies that all eigen-
values of the linearized system are negative, and hence the local asymptotic stability
of E0 follows. Conversely, if RL > 1, then the linearized system possesses at least
one positive eigenvalue, and the equilibrium is unstable.

The analysis for E∗ is similar to that of E0. Linearizing (2.1) about E∗, we find
the Jacobian

J(E∗) =


−(dT + (1− u1)kV

∗) 0 0 −(1− u1)kT
∗

(1− u1)(1− f)kV ∗ −dI α (1− u1)(1− f)kT ∗

(1− u1)fkV
∗ 0 −(dL + α) (1− u1)fkT

∗

0 (1− u2)NdI 0 −dV
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and this results in the characteristic equation

0 =(η + dTRL)(η + dI)(η + α+ dL)(η + dV )

− (1− u1)(1− u2)(1− f)NkλdI
dTRL

(
η +

α

1− f
+ dL

)
(dT + η).

After expanding the terms and ordering by powers of η, this equation ultimately
simplifies to a quartic polynomial

η4 +A1η
3 +A2η

2 +A3η +A4 = 0,

where

A1 = dTRL + dI + dL + dV + α,

A2 = dTRL(dI + dL + dV + α) + (dL + α)(dI + dV ) + dIdV

− (1− u1)(1− u2)(1− f)NkλdI
dTRL

,

A3 = dTRL(dL + α)(dI + dV ) + dTRLdIdV + (dL + α)dIdV

− (1− u1)(1− u2)λNkdI
dTRL

((1− f)dT + (1− f)dL + α) ,

A4 = dTRL(dL + α)dIdV − (1− u1)(1− u2)λNkdI
RL

((1− f)dL + α) .

According to the Routh-Hurwitz criteria, all roots of this quartic equation possess
negative real part if and only if A1A2 − A3 > 0 and A3(A1A2 − A3) − A4A

2
1 > 0.

As for the E∗ analysis, the positivity of A1 follows directly from the positivity of
the coefficients, and after rewriting A4, we find

A4 = dT (dL + α)dIdV (RL − 1).

Hence, it is necessary that RL > 1 in order to satisfy the criteria. Similarly, we
rewrite A3 as

A3 = dTRL(dL + α)(dI + dV ) + dTRLdIdV + (dL + α)dIdV

−
[
dT dIdV

(1− f)(dL + α)

(1− f)dL + α
+ dIdV (dL + α)

]
>dTRL(dL + α)(dI + dV ) + dT dIdV (RL − 1) > 0.

In this inequality we have canceled the third term with the last term and utilized
the inequality (4.1) to bound the fourth term. The only nonpositive term in A2 can
be rewritten as

A2 > dTRL(dI + dL + dV + α) + (dL + α)(dI + dV ) > 0,

using

− (1− u1)(1− u2)(1− f)NkλdI
dTRL

= −dIdV
(1− f)(dL + α)

(1− f)dL + α
> −dIdV .

By the definition of A1, we have A1 > dI + dV and using the above inequality for
A2, we find

A1A2 > (dI + dV ) [dTRL(dI + dL + dV + α) + (dL + α)(dI + dV )]
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> (dI + dV )dTRL(dL + α) + dV dTRLdI + dV dI(dL + α)

> A3.

Finally, we verify the last inequality A3(A1A2 −A3)−A4A
2
1 > 0, thus

A1A2 −A3 >(dL + α)
[
dTRL(dTRL + 2dI + 2dV + dL + α) + (dL + α)(dI + 2dV )

+ (dI + dV )
2
]
.

Hence, we obtain

A3(A1A2 −A3) > dTRL(dL + α)2(dI + dV )
[
dTRL(dTRL + 2dI + 2dV + dL + α)

+ (dL + α)(dI + 2dV ) + (dI + dV )
2
]

+ dT dIdV (RL − 1)(dL + α)
[
dTRL(dTRL + 2dI + 2dV + dL + α)

+ (dL + α)(dI + 2dV ) + (dI + dV )
2
]

> dT dIdV (RL − 1)(dL + α)(dTRL + dI + dV + dL + α)2

= A4A
2
1.

With this, all of the criteria have been satisfied and E∗ is stable if RL > 1. Con-
versely, if RL < 1, then the Jacobian possesses at least one positive eigenvalue, and
the endemic state is unstable.

Our analysis reveals if RL < 1 and cell values begin within a sufficiently close
distance of E0, then they will tend to E0 as t → ∞. Contrastingly, if RL > 1
and initial populations are sufficiently close to E∗, they will tend to E∗ in the long
run. Theorem 4.1 also emphasizes the crucial feature that equilibria are not stable
simultaneously, that is, bistability of E0 and E∗ does not occur.

5. Global Stability of the Equilibria
We also establish global asymptotic stability of the equilibria using a Lyapunov
function which demonstrates the stronger result that initial values of cells have no
effect on their long term (t → ∞) limiting values. Before proceeding with the
global stability analysis for the model (2.1), we present some inequalities developed
in [13], which will be used in the proofs. To begin with, we consider the function
G(x) = x − 1 − ln(x). Note that G(x) ≥ 0,∀x and that G(x) = 0 if and only if
x = 1.
Let x1, x2, · · · , xn be positive numbers. Then,

1− xi + ln(xi) = −G(xi) ≤ 0, i = 1, 2, · · · , n.

Summing over i = 1 to n, from above equation we obtain

n−
n∑

i=1

xi + ln

( n∏
i=1

xi

)
≤ 0.
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Choosing xi =
pi
qi

, where pi > 0, qi > 0 for i = 1 to n, it followes that

n−
n∑

i=1

pi
qi

+ ln

( n∏
i=1

pi
qi

)
≤ 0.

If p1, p2, · · · , pn = q1, q2, · · · , qn, then
n∏

i=1

pi
qi

= 1 which leads to

n−
n∑

i=1

pi
qi

≤ 0. (5.1)

Theorem 5.1. If RL ≤ 1, then the non-infective equilibrium (E0) is globally asymp-
totically stable and the disease dies out. If RL > 1, then the endemic equilibrium
(E∗) is globally asymptotically stable and the disease persists.

Proof. To investigate the global stability of E0, consider the following Lyapunov
function

U(t) = ((1− f)dL + α)T 0

[
T (t)

T 0
− 1− ln

(
T (t)

T 0

)]
+ (dL + α)

[
I(t) +

1

(1− u2)N
V (t)

]
+ αL(t).

Notice that U is nonnegative, and U is identically zero if and only if it is evaluated
at the non-infective equilibrium point (T 0, I0, L0, V 0) =

(
λ

dT
, 0, 0, 0

)
. We compute

the derivative along trajectories and find

dU

dt
= ((1− f)dL + α)

(
1− T 0

T

)[
λ− (1− u1)kTV − dTT

]
+(dL+α)

[
(1−u1)(1−f)kTV −dII+αL+

1

(1−u2)N

{
(1−u2)NdII−dV V

}]
+α

[
(1− u1)fkTV − dLL− αL

]
.

After using the definition of T 0, we are left with

dU

dt
= ((1− f)dL + α)(λ− dTT )

(
1− λ

dTT

)
+

[(
(1− f)dL + α

)
kT 0 − (dL + α)

dV
(1− u2)N

]
V

= − (1− f)dL + α

dTT
(λ− dTT )

2 +
(dL + α)dV
(1− u2)N

(RL − 1)V.

Thus, under the assumption that RL ≤ 1, we see that dU

dt
≤ 0 for all positive values

of T, I, L, and V , and the global asymptotic stability follows by LaSalle�s Invariance
Principle [15].
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Turning to the endemic equilibrium, none of the end values are zero, so we denote
this steady state by (T ∗, I∗, L∗, V ∗) and define a Lyapunov function as

U(t) = ((1− f)dL + α)T ∗
[
T (t)

T ∗ − 1− ln

(
T (t)

T ∗

)]
+ (dL+α)

[
I∗
{
I(t)

I∗
−1−ln

(
I(t)

I∗

)}
+

V ∗

(1−u2)N

{
V (t)

V ∗ −1−ln

(
V (t)

V ∗

)}]
+ αL∗

[
L(t)

L∗ − 1− ln

(
L(t)

L∗

)]
.

This function is nonnegative and identically zero only when evaluated at the endemic
equilibrium E∗ = (T ∗, I∗, L∗, V ∗). Computing the derivative along trajectories
yields

dU

dt
= ((1− f)dL + α)

(
1− T ∗

T

)[
λ− (1− u1)kTV − dTT

]
+ (dL + α)

[(
1− I∗

I

){
(1− u1)(1− f)kTV − dII + αL

}
+

1

N(1− u2)

(
1− V ∗

V

)(
(1− u2)NdII − dV V

)]
+ α

(
1− L∗

L

)[
(1− u1)fkTV − dLL− αL

]
= ((1− f)dL + α)

[
λ− dTT + dTT

∗ − λT ∗

T

]
+ (dL+α)

[
− (1−u1)(1−f)kTV I∗

I
−αLI∗

I
+dII

∗ − dIIV
∗

V
+

dV V
∗

(1−u2)N

+ αL∗ − (1− u1)αfkTV L∗

(dL + α)L

]
= U1 + U2.

For U1, we factor out a dTT
∗ term and use the form of T ∗ =

λ

dTRL
to find

U1 = ((1− f)dL + α)
[
λ− dTT + dTT

∗ − λT ∗

T

]
= ((1− f)dL + α)dTT

∗
[
RL − T

T ∗ + 1−RL
T ∗

T

]
= ((1− f)dL + α)dTT

∗
[
2− T

T ∗ − T ∗

T
+ (RL − 1)

(
1− T∗

T

)]
= ((1−f)dL+α)dTT

∗
[
2− T

T ∗ −
T ∗

T

]
+((1−f)dL+α)dTT

∗(RL−1)

(
1v − T∗

T

)
.

For U2, we factor out a L∗ term and use the following identities

T ∗V ∗ =
dL + α

(1− u1)kf
L∗, (1− u2)NdII

∗ = dV V
∗, and I∗

L∗ =
(1− f)dL + α

dIf
,

to find

U2 = (dL + α)

[
− (1− u1)(1− f)kTV I∗

I
− αLI∗

I
+ dII

∗ − dIIV
∗

V
+

dV V
∗

(1− u2)N
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+ αL∗ − (1− u1)αfkTV L∗

(dL + α)L

]
= (dL + α)L∗

[
α+

dII
∗

L∗ +
dV V

∗

(1− u2)NL∗ − (1− u1)(1− f)kTV I∗

L∗I
− dII

∗IV ∗

L∗I∗V

− αLI∗

L∗I
− (1− u1)αfk

(dL + α)

TV

L

]
= (dL + α)L∗

[
α+

2((1− f)dL + α)

f
− (1− f)(dL + α)

f

TV I∗

T ∗V ∗I

− ((1− f)dL + α)

f

IV ∗

I∗V
− α

LI∗

L∗I
− α

TV L∗

T ∗V ∗L

]
=

(dL + α)L∗

f

[
((1− f)dL + α)

(
2− IV ∗

I∗V

)
− (1− f)(dL + α)

TV I∗

T ∗V ∗I

+ αf

(
1− LI∗

L∗I
− TV L∗

T ∗V ∗L

)]
.

Thus, combining the rearrangements of U1 and U2 and using the following relation

((1− f)dL + α)dTT
∗(RL − 1) = ((1− f)dL + α)

(dL + α)L∗

f
,

we get

dU

dt
= ((1− f)dL + α)dTT

∗
[
2− T

T ∗ − T ∗

T

]
+

(dL + α)L∗

f

[
((1− f)dL + α)

(
3− T∗

T
− IV ∗

I∗V

)
− (1− f)(dL + α)

TV I∗

T ∗V ∗I

+ αf

(
1− LI∗

L∗I
− TV L∗

T ∗V ∗L

)]
.

Since (1− f)(dL + α) = (1− f)dL + α− αf , the above epression becomes

dU

dt
= −((1− f)dL + α)dT

(T − T ∗)2

T

+
(dL + α)L∗

f

[
(1− f)(dL + α)

(
3− T∗

T
− IV ∗

I∗V
− TV I∗

T ∗V ∗I

)
+ αf

(
4− T∗

T
− IV ∗

I∗V
− LI∗

L∗I
− TV L∗

T ∗V ∗L

)]
.

Since, each of the resulting terms above are nonpositive because the arithmetic mean
is greater than the geometric mean, using the inequality (5.1), we have dU

dt
≤ 0 for

all positive values of T, I, L, V , and dU

dt
= 0 if and only if T = T ∗, I = I∗, L = L∗,

and V = V ∗. So the maximum invariant set in {(T, I, L, V ) ∈ Ω :
dU

dt
≤ 0} is the

singleton set {E∗}. By LaSalle′s invariant principle [15], the endemic equilibrium
E∗ is globally asymptotically stable if RL > 1.

This analysis reveals one very important fact about the overall system: the end
states of the disease dynamics are only dependent on the value of RL, and not
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any other parameter or initial value. If RL > 1, then the system tends to E∗, an
end state with non-zero infected cells and virions, but if RL < 1, then the final
equilibrium is E0, which contains neither virions nor infected T -cells.

6. Parameter Estimation for Model (2.1) without
Treatment

The mathematical analysis of models is very useful for understanding asymptotic
behaviors and longtime qualitative outcomes, while the outcomes of a model criti-
cally depend on the values of the model parameters. Since models are confronted
with disease data, an accurate estimation of parameter values is essential for reliable
quantitative predictions within a finite time interval. For estimation of multiple pa-
rameters, a systematic approach for the fitting is desirable. Different techniques
were used for estimating the parameters in [21–23]. In this section, we have used a
straight forward method to calculate the parameters, which is known as nonlinear
least square (NLS) method.

6.1. Nonlinear Least Square Method
In least-squares approach, we assume that the time coordinates of the data are ex-
act, but their corresponding y-coordinates (virions) may be noisy or distorted. We
fit the solution curve through the data so that the sum of the squares of the vertical
distances from the data points to the point on the curve is as small as possible.
This distance is commonly known as least squares error. Next we illustrate how to
use NLS method to estimate unknown parameters

Step 1. Data Collection
In particular, suppose we are fitting the virions V (t), with the given data

{(t1, V̂1), (t2, V̂2), ..., (tn, V̂n)}.

Step 2. NLS fitting
So the basic problem is to identify the set parameters θ such that the following
sum-of-squares error (SSE) is as small as possible:

SSE
min θ

=

n∑
i=1

{
V (ti, θ)− V̂ (ti)

}2
,

where V (ti, θ) represents the virus concentration at time ti with parameter θ and
V̂ (ti) represents the data of patient’s virus concentration at time ti. Such a problem
is clearly a nonlinear least-squares problem, since the dependence of a solution on
the parameter θ is through a highly nonlinear system of differential equations.

Step 3. Solve the NLS problem numerically
We use a Matlab functions fminsearch which takes the least-squares error function
SSE(θ) and an initial guess of the parameter value θ0, and uses a direct search
routine to find a minimum value of least-squares error.

Certain parameters such as production rate λ and natural death rates dT of T
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cells can be estimated directly from population data as given in Table 1. The
rest of the parameters θ = (k, f, dI , α, dL, N, dV ) are estimated from the set of
data gathered from plasma donor samples obtained in [17] at primary stage of
HIV infection. We have taken most of our intial parameters from previous lit-
erature [19] except the fraction of latent infection f . Since f ∈ (0, 1), we take
the intial guess as θ0 = (2 × 10−7, 0.1, 0.5, 0.4, 0.004, 50, 5) with intial conditions
(T0, I0, L0, V0) = (106, 0, 0, 15.8), under no treatments (u1 = u2 = 0) we obtained
estimated parameters of model (2.1) in the Table 1.

Table 1. Description of parameter and values for model (2.1).
Parameter Description Value Reference

λ Production rate of T cells 105

cells ml−1 d−1
[17]

dT Death rate of T cell population 0.1 d−1 [17]
k Rate of T cell become infected by free virus 3.22× 10−7

ml d−1
Estimated

f Proportion of latent infection 0.087 Estimated
dI Death rate of Infected T cell population 0.80 d−1 Estimated
α Activation rate of latent cells 0.45d−1 Estimated
dL Death rate of latently T cell population 0.008 d−1 Estimated
N Number of free virus produced by I cells 7 Estimated
dV Death rate of free virions 0.12 d−1 Estimated

6.2. Critical Drug Efficacy
One of the important feature from the mathematical analysis reveals that long time
disease dynamics depends on the infected steady state which explicitly depends on
the basic reproductive number (RL). So a larger basic reproduction number retains
disease progression for larger period of time. By choosing the new parameter values
from Table 1, under no treatments (u1 = u2 = 0) the value of RL turns out to be

RL =
(α+ (1− f)dL) kλN

(α+ dL) dT dV
= 18.37 > 1. (6.1)

In the system (2.1), the efficacies of drugs are incorporated through the terms
(1− u1) and (1− u2) respectively. The values, ui = 0 and ui = 1 (i = 1, 2), reflect
completely ineffective and perfectly effective treatment respectively. For brevity,
the efficacies of drugs are combined to obtain a new term to reflect the overall
efficacy for this combination treatment and is given by 1 − u = (1 − u1)(1 − u2),
this rearrangement indicates that the drugs act independently of one another. Note
that u = u1 + u2 − u1u2 represents the total combined drug efficacy. This choice is
motivated by the condition for stability of E0 and E∗. Recalling that the stability
criterion (see theorem 5.1) for E0 is RL < 1, which equivalent to

(1− u)kλN (α+ (1− f)dL)

dT dV (α+ dL)
< 1 ⇒ 1− u <

(α+ dL) dT dV
kλN (α+ (1− f)dL)

.
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Similarly the condition RL > 1, for E∗ to be stable is equivalent to

(1− u)kλN (α+ (1− f)dL)

dT dV (α+ dL)
> 1 ⇒ 1− u >

(α+ dL) dT dV
kλN (α+ (1− f)dL)

.

Thus, there is a transcritical bifurcation point given by

1− u =
(α+ dL) dT dV

kλN (α+ (1− f)dL)
.

Motivated by this we define the critical efficacy, uc by

uc = 1− (α+ dL) dT dV
kλN (α+ (1− f)dL)

.

Thus, in order to achieve a successful treatment by way of elimination of virus
persistence, i.e., the uninfected steady state E0 being stable we need u > uc(≡
RL < 1). On the other hand, whenever u < uc(≡ RL > 1), the infected steady state
E∗ remains stable and the infection persists. With the base-case parameters given
in Table 1, in absence of treatments, the basic reproductive number is RL = 18.37,
by equation (6.1). This shows that to avoid infection the combined drug efficacy uc

should be maintained at a constant greater than

uc > 1− 1

RL
= 0.95,

i.e., maintaining constant drug effectiveness of at least 95% should theoretically
avoid infection. The goal is to choose u1 and u2 so that uc > 0.95(≡ RL < 1)
hereby resulting in a stable uninfected steady state.

7. Numerical Results
In this section, we explore the dynamics of virus infection model (2.1) to study
the impact of different treatments strategies on the proliferation of the viral and
infected cells within the host. Using various combinations of the two drugs, we
investigate and compare the numerical results from simulations. In doing so, we
are able to numerically illustrate how the efficacy of the drugs affects the level of
infection in order to achieve viral clearance.

7.1. Without Treatment Strategy
The results obtained for the stability of the uninfected and the infected steady
states are also numerically illustrated in this section. For this purpose, we take
into account two sets of parameters corresponding to the cases of stability of the
infected steady state RL > 1 and uninfected steady state RL < 1. All the models
are numerically solved using the Runge-Kutta 4th order scheme.

First, figure 2 and 3 illustrate the system dynamic interaction between the cells
T (t), I(t), L(t), and V (t). We can see that upon initiation of infection, the pop-
ulation of the infected cells (I, L) and virus V -cells increases significantly until it
reaches the peak. After achieving a peak, these cells decay until it reaches a steady
state. As we see that during the increase of the virus-cell population, the population
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of the target T -cells decreases (from 106 cells ml−1 d−1 to 5× 104 cells ml−1 d−1).
However, after reaching the minimum, the target cell population begins to increases
until it ultimately reaches a steady state. In this case, the steady state (5.4 × 104

cells ml−1 d−1), which is approximately 5.4% of the original population of T -cells.
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Figure 2. Dynamics and data fitting of model (2.1) in Semi-log scale.
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Figure 3. Dynamics of model (2.1) in normal scale.

Using the parameter values from Table 1, under no treatments (u1 = u2 = 0)
the value of RL turns out to be RL = 18.37 > 1 and thereby indicating that
the infected steady state is asymptotically stable. For this purpose, we choose
three different initial conditions of (T0, I0, L0, V0) as IC1 = (106, 0, 0, 15.8), IC2 =
(104, 10, 10, 158), and IC3 = (105, 100, 100, 1580). The evolution of the dynamics
of the modified model for this scenario was observed for a duration of 60 days and
we found the states of the system eventually converges to the infected steady state
E∗ = (5.44×104, 1.17×105, 1.78×104, 5.4×106) for all the three initial conditions.
This is illustrated in Figure 4 which supports the result that the infected steady



Dynamics of a viral infectiology under treatment 1817

state, E∗ is asymptotically stable whenever RL > 1 and eventually patient does not
recover without treatments.
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Figure 4. Dynamics of Model (2.1) for RL = 18.37 > 1 with three different intial conditions.

In order to study the case when RL < 1, we now choose a different value of k,
namely k = 1× 10−8 ml d−1, while retaining the other parameter values. Then the
value of RL = 0.57 < 1. Consequently, for this scenario, the uninfected steady state
E0 would have to be asymptotically stable. To illustrate we again choose three
different initial conditions as IC1 = (106, 100, 100, 15.8), IC2 = (104, 10, 10, 158),
and IC3 = (105, 0, 0, 1580) and ran the simulation for a duration of 120 days. It
can be observed, from Figure 5, that all the state variables of the system eventually
approach to the uninfected steady state E0 = (106, 0, 0, 0) indicating the asymptotic
stability of the uninfected steady state.
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Figure 5. Dynamics of Model (2.1) for RL = 0.57 < 1 with three different intial conditions.
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7.2. Constant Treatment Strategy
Now, we numerically examine the impact of the constant efficacies u1 and u2 on
the basic reproduction number RL. Recall that the infection clears out or persists
whenever RL < 1 or RL > 1, which is equivalent to u > uc or u < uc. In section
6.2, we show that our goal is to choose u1 and u2 such that RL is driven to a value
less than 1 and combined drug efficacy u(= 1 − (1 − u1)(1 − u2)) > uc = 0.95.
We illustrate this by a surface plot and a contour plot in Figure 6. We can easily

(a) Surface plot of RL. (b) Contour plot of RL.

Figure 6. Surface and contour plot of RL for various values of u1 and u2.

observe that for u1 = 0 and u2 = 0 the value of RL attains its maximum value of
18.37. We increase u1 and u2 from 0 to 1 and observe that the value of RL gradually
decreases and eventually tends towards 0 (corresponding to u1 = 1, u2 = 1). This
clearly reflects the impact of the efficacies in terms of clearance of the infection.

Now, we simulated the dynamics of the system as a result of administration
of the combined constant treatments. Recall that the parameter values (without
treatment) chosen are for RL > 1. In Figure 7, we fix the efficacy of u1 = 0.75
and consider three different efficacies of u2 = 0.7, 0.86, 0.9. For u2 = 0.7, the
combination efficacy, u = 0.925, which is less than the critical efficacy uc = 0.95
with RL = 1.38 > 1. In this case, the levels of infected I-cell, Latent L-cell and
virions V show some signs of decline over a period of 60 days as can be seen in Figure
7. But if the simulation is run for a longer time period, then we can see that despite
the initial signs of patient recovery, the levels of all three cells will rebound and
eventually move towards the infected steady state. Further, for u2 = 0.86, 0.9, the
combination efficacy u is always greater than the critical efficacy uc i.e., RL < 1.
For these cases, the levels of I, L and V show a gradual decline over the period
of 60 days and simulation for a longer period also confirms that the populations
tend towards the levels for the uninfected steady state E0. We observe that this
decline is biphasic in nature in case of V with a more rapid decline in the first phase
of a couple of days followed by a slower decline, which is consistent with clinical
results [18] for an HIV patient. We observe similar results by fixing u2 = 0.75 and
varying the values of u1 = 0.7, 0.86, 0.9. These results are presented in Figure 8.
We note that in this case also there is a biphasic decline that is observed earlier.

Interruptions in treatment can happen due to a variety of reasons such as side
effects and financial constraints for a continued long term treatment [16]. To illus-
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Figure 7. Cell dynamics during various values of u2 with fix u1 = 0.75.
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Figure 8. Cell dynamics during various values of u1 with fix u2 = 0.75.

trate one such scenario, we consider three sets of combination treatment (u1, u2)
as (0.88, 0.6), (0.83, 0.75), and (0.83, 0.75) for a period of 60 days. For these three
pairs of (u1, u2), u > uc. We see in Figure 9, as to how the viral load declines
in a biphasic manner if full treatment is adminstrated. The decline is significant
(approximately 102 folds). The discontinuation of treatment after 45 days results
in the rebound of the levels of HIV virions. Once the treatment period of 45 days
is over, we observed the dynamics of the system for another 15 days starting from
the levels at the cessation of treatment after 45 days. It can be seen that the peak
viral load on an average is lower with this on-off therapeutic protocol as compared
to the scenario when no treatment is administered over the entire period of 60 days.
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Figure 9. Pattern of viral load with an on-off treatment with the treatment being administered for 45
days and then the treatment being interrupted for the next 15 days.

8. Conclusion
In this study, we sought to learn more about virus infection dynamics by introducing
and analyzing mathematical models of the immune system in the presence of con-
stant treatments. We proved existence, uniqueness, positivity, and boundedness for
the model and derived the conditions on basic reproduction number that guarantees
the asymptotic stability of the equilibria. Further, by using clinical data from HIV
infected individuals, we determine the model parameters which best fit the data for
long time dynamics. Our model exhibits a wider variety of parameter values that
lead to long term viral persistence as t → ∞ due to the appearance of latent T cells.
In addition, we also examined how treatments impact the proliferation of the virus.
In doing so, we used asymptotic stability analyses to define treatment thresholds
in order to eliminate the virus and clear the infection. Additionally, we were able
to estimate the necessary drug efficacy of treatments for infected patients. All the
results are further illustrated by a number of numerical simulations. To speculate
long term latency of a viral infection, model (2.1) can be extended further by us-
ing delay in the different cell compartments or by imposing effect of immune cells
like B cells, killer cells, Dendritic cells, Myeloblasts, etc. Moreover, to intensify
our discussion about parameter estimation, an alternative method like Monte Carlo
Markov Chain (MCMC) can be used to compare the accuracy.
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