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Abstract Let B be a multiplicative perturbation of A ∈ Cm×n given by
B = D∗

1AD2, where D1 ∈ Cm×m and D2 ∈ Cn×n are both nonsingular. New
upper bounds for ∥B† −A†∥U and ∥B† −A†∥Q are derived, where A†, B† are
the Moore-Penrose inverses of A and B, and ∥ · ∥U , ∥ · ∥Q are any unitarily
invariant norm and Q-norm, respectively. Numerical examples are provided
to illustrate the sharpness of the obtained upper bounds.
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1. Introduction
Throughout this paper, N,R,R+,C,Cn and Cm×n are the sets of positive integers,
real numbers, nonnegative real numbers, complex numbers, column vector of n-
dimensions and m×n complex matrices, respectively. Let 0m×n be the zero matrix
of Cm×n. When m = n, let Im denote the identity matrix of Cm×m. An element
P ∈ Cm×m is said to be an orthogonal projection if P 2 = P and P ∗ = P .

For any A ∈ Cm×n, let R(A), N (A), AT , A∗, ∥A∥F , ∥A∥2, ∥A∥U and ∥A∥Q de-
note the range, the null space, the transpose, the conjugate transpose, the Frobenius
norm, the 2-norm, any unitarily invariant norm and any Q-norm of A, respectively.
The Moore-Penrose inverse of A [6], written A†, is the unique element of Cn×m

which satisfies

AA†A = A, A†AA† = A†, (AA†)∗ = AA† and (A†A)∗ = A†A.

The Moore-Penrose inverse has various applications. One research field of the
Moore-Penrose inverse is its perturbation theory. In this paper, we deal with norm
estimations for the Moore-Penrose inverse associated with rank-preserving pertur-
bations of matrices. Let A ∈ Cm×n be given and B ∈ Cm×n be a perturbation of A.
Clearly, rank(B) = rank(A) if and only if there exist D1 ∈ Cm×m and D2 ∈ Cn×n

such that
B = D∗

1AD2, where D1 and D2 are both nonsingular. (1.1)
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The matrix B given by (1.1) is usually called a multiplicative perturbation of A,
and norm estimations for ∥B†−A†∥U and ∥B†−A†∥Q are studied in the literatures
[2, 5, 8], where ∥ · ∥U and ∥ · ∥Q denote any unitarily invariant norm and Q-norm
[1], respectively. Upper bounds for ∥B† − A†∥U and ∥B† − A†∥Q are figured out
in [2, Theorems 4.1 and 4.2] firstly. The results obtained in [2] are improved in [8,
Theorems 3.1, 3.3 and 3.5], which are improved further in [5, Theorems 3.1 and 3.2].
Note that the Frobenius norm and the 2-norm are two special kinds of Q-norms. In
a recent paper [4], new upper bounds for ∥B† − A†∥F and ∥B† − A†∥2 are derived
without using the Singular Value Decomposition (SVD), which serves however as
the main tool in [2, 5, 8]. Based on the new method employed in [4], improvements
of [5, Theorems 2.1, 3.1 and 3.2] are made in the special cases of the Frobenius
norm and the 2-norm.

The purpose of this paper is to generalize the main results of [4] from the Frobe-
nius norm and the 2-norm to the general unitarily invariant norm and Q-norm. Let
B be a multiplicative perturbation of A ∈ Cm×n given by (1.1). In this paper, we
focus on the study of norm estimations for ∥B† −A†∥U and ∥B† −A†∥Q, and have
managed to derive new upper bounds along the line initiated in [4, Theorems 2.2
and 3.3]. Thus, the main results of [5] are improved in the cases of the unitarily
invariant norm and the Q-norm; see the comparison of (3.30) with (3.37), and (4.3)
with (4.4).

The rest of this paper is organized as follows. In Section 2, we put forward some
basic knowledge about the unitarily invariant norm, especially a norm equality of
P−PQ and Q−QP is provided in the case that dimR(P )=dimR(Q), where P and
Q are orthogonal projections acting on the same finite-dimensional Hilbert space.
Let B be a multiplicative perturbation of A ∈ Cm×n given by (1.1), and ∥ · ∥U and
∥ ·∥Q be any unitarily invariant norm and Q-norm. In Sections 3 and 4, we focus on
the study of upper bounds for ∥B† − A†∥U and ∥B† − A†∥Q, respectively. Finally
in Section 5, we provide three numerical examples to illustrate the sharpness of the
upper bounds (3.30) and (4.3).

2. Some properties of the unitarily invariant norm
The term of the unitarily invariant norm can be found in [1, Sec. IV.2], which
is originally defined on Cn×n for some n ∈ N. We extend such a term in two
steps. An extension to Cm×n, called the (m,n)-unitarily invariant norm, is given in
Definition 2.1. A further extension to

∞⋃
m,n=1

Cm×n is given in Definition 2.2, which

is the exact meaning of the unitarily invariant norm adopted in this paper. The
purpose of this section is to put forward some basic knowledge about this new kind
of unitarily invariant norm.

Now, we give the definitions as follows:

Definition 2.1. Let m,n ∈ N be given. An (m,n)-unitarily invariant norm is a
norm ∥ · ∥ defined on the linear space Cm×n such that ∥A∥ = ∥UAV ∥, for any
A ∈ Cm×n and any unitary matrices U ∈ Cm×m and V ∈ Cn×n.

Definition 2.2. A unitarily invariant norm ∥·∥U is a mapping defined on
∞⋃

m,n=1
Cm×n

such that for each m,n ∈ N, the restriction of ∥ · ∥U to Cm×n is an (m,n)-unitarily
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invariant norm, and for any A ∈ Cm×n, any k, l ∈ N, it holds that

∥A∥U =

∥∥∥∥∥∥
 A 0m×k

0l×n 0l×k

∥∥∥∥∥∥
U

.

Trivial as it is, Lemma 2.1 below is stated for the sake of completeness.

Lemma 2.1. Let ∥ · ∥U be any unitarily invariant norm. Then for any A ∈ Cm×n,
it holds that ∥A∥U = ∥A∗∥U .

Proof. Let A = U

Σ 0

0 0

V ∗ be the SVD of A, where U ∈ Cm×m and V ∈ Cn×n

are unitary matrices. Then A∗ = V

Σ 0

0 0

U∗, so

∥A∥U =

∥∥∥∥∥∥
Σ 0

0 0

∥∥∥∥∥∥
U

= ∥Σ∥U =

∥∥∥∥∥∥V
Σ 0

0 0

U∗

∥∥∥∥∥∥
U

= ∥A∗∥U .

Recall that any (n, n)-unitarily invariant norm is a symmetric norm, which can
be stated as follows:

Lemma 2.2 ( [1, Proposition IV.2.4]). Let ∥ · ∥ be an (n, n)-unitarily invariant
norm. Then for any A,B,C ∈ Cn×n, it holds that

∥ABC∥ ≤ ∥A∥2 · ∥B∥ · ∥C∥2.

An extension of the preceding lemma is as follows:

Corollary 2.1. Let ∥ · ∥U be any unitarily invariant norm. Then for any A ∈
Cm×n, B ∈ Cn×k and C ∈ Ck×l, it holds that

∥ABC∥U ≤ ∥A∥2 · ∥B∥U · ∥C∥2. (2.1)

Proof. Let Ã be the inclusion of A into C(m+n+k+l)×(m+n+k+l) defined by

Ã =

 A 0m×(m+k+l)

0(n+k+l)×n 0(n+k+l)×(m+k+l)

 .

Similarly, define B̃ and C̃. Then

ÃB̃C̃ =

 ABC 0m×(m+n+k)

0(n+k+l)×l 0(n+k+l)×(m+n+k)

 ,

hence by Lemma 2.2 we have

∥ABC∥U = ∥ÃB̃C̃∥U ≤ ∥Ã∥2 · ∥B̃∥U · ∥C̃∥2 = ∥A∥2 · ∥B∥U · ∥C∥2.

For any Hilbert spaces H and K, let B(H,K) be the set of bounded linear
operators from H to K. If H = K, then B(H,H) is simplified to be B(H). Let IH
denote the identity operator on H.

At the end of this section, we state a result of [7] as follows.
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Theorem 2.1. [7, Theorem 7.1] Let H be a finite-dimensional Hilbert space,
P, Q ∈ B(H) be orthogonal projections such that dimR(P )=dimR(Q). Then for
any unitarily invariant norm ∥ · ∥U , it holds that ∥Q(IH − P )∥U = ∥P (IH −Q)∥U .

3. Unitarily invariant norm estimations for the Mo
ore–Penrose inverse of multiplicative perturba-
tions of matrices

Throughout this section, ∥ · ∥U is any unitarily invariant norm. Let B be a mul-
tiplicative perturbation of A ∈ Cm×n given by (1.1). In this section, we study
estimations for ∥B†−A†∥U and get a new upper bound established in Theorem 3.1,
which leads to the generalization of the main technique result in [5, Sec. 3]; see
Corollary 3.2 below.

Lemma 3.1. Let B be a multiplicative perturbation of A ∈ Cm×n given by (1.1).
Then

∥BB†(Im −AA†)∥U = ∥AA†(Im −BB†)∥U ,
∥B†B(In −A†A)∥U = ∥A†A(In −B†B)∥U .

Proof. Since both D1 and D2 are nonsingular, we have

rank(AA†) = rank(A) = rank(B) = rank(BB†),

rank(A†A) = rank(A∗) = rank(B∗) = rank(B†B).

The conclusion follows immediately from Theorem 2.1.

Theorem 3.1. Let B be a multiplicative perturbation of A ∈ Cm×n given by (1.1).
Then for any s1, s2, s3, s4, s5 ∈ C, we have

∥B† −A†∥U ≤ ξ1(s1) + ξ2(s2, s3) + ξ3(s4, s5),

where

Λ1 = AA†(Im − s̄1 D1),Λ2 = (In − s1 D
−1
2 )A†A, (3.1)

Λ3 = AA†(Im − s2 D1),Λ4 = (Im − s3 D
−1
1 )(Im −AA†), (3.2)

Λ5 = A†A(In − s4 D2),Λ6 = (In − s5 D
−1
2 )(In −A†A), (3.3)

ξ1(s1) = ∥B†∥2 · ∥Λ1∥U + ∥A†∥2 · ∥Λ2∥U , (3.4)
ξ2(s2, s3) = ∥B†∥2 ·min {∥Λ3∥U , ∥Λ4∥U} ,
ξ3(s4, s5) = ∥A†∥2 ·min {∥Λ5∥U , ∥Λ6∥U} .

Proof. Clearly, B† −A† = Ω1 +Ω2 +Ω3, where

Ω1 = B†AA† −B†BA† = B†B · Ω1 ·AA†, (3.5)
Ω2 = B†(Im −AA†) = B†B · Ω2 · (Im −AA†), (3.6)
Ω3 = −(In −B†B)A† = (In −B†B) · Ω3. (3.7)

Therefore, we have

∥B† −A†∥U ≤ ∥Ω1∥U + ∥Ω2∥U + ∥Ω3∥U . (3.8)
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First, we derive an upper bound for ∥Ω1∥U . Since B = D∗
1AD2, we have

BD−1
2 = D∗

1A and (D−1
1 )∗B = AD2. (3.9)

The first equation above yields

B†BD−1
2 A† = B†D∗

1AA†. (3.10)

It follows from (3.5) and (3.10) that for any s1 ∈ C,

Ω1 = X − Y, hence ∥Ω1∥U ≤ ∥X∥U + ∥Y ∥U , (3.11)

where
X = B†(Im − s1D

∗
1)AA† and Y = B†B(In − s1D

−1
2 )A†.

The equations above, together with Corollary 2.1 and Lemma 2.1 yield

∥X∥U = ∥B†(Im − s1D
∗
1)AA†∥U ≤ ∥B†∥2 · ∥(Im − s1D

∗
1)AA†∥U

= ∥B†∥2 · ∥AA†(Im − s̄1D1)∥U , (3.12)
∥Y ∥U = ∥B†B(In − s1D

−1
2 )A†AA†∥U

≤ ∥B†B∥2 · ∥(In − s1D
−1
2 )A†A∥U · ∥A†∥2

≤ ∥A†∥2 · ∥(In − s1D
−1
2 )A†A∥U . (3.13)

Next, we derive upper bounds for ∥Ω2∥U and ∥Ω3∥U . By (3.6)–(3.7), Corol-
lary 2.1 and Lemmas 2.1 and 3.1, we have

∥Ω2∥U = ∥B†(Im −AA†)∥U = ∥B†BB†(Im −AA†)∥U
≤ ∥B†∥2 · ∥BB†(Im −AA†)∥U (3.14)
= ∥B†∥2 · ∥AA†(Im −BB†)∥U , (3.15)

∥Ω3∥U = ∥(In −B†B)A†∥U = ∥(In −B†B)A†AA†∥U
≤ ∥A†∥2 · ∥(In −B†B)A†A∥U (3.16)
= ∥A†∥2 · ∥A†A(In −B†B)∥U = ∥A†∥2 · ∥B†B(In −A†A)∥U
= ∥A†∥2 · ∥(In −A†A)B†B∥U . (3.17)

It follows from (3.9) that for any s2, s3, s4, s5 ∈ C,

(Im −BB†)AA† = (Im −BB†)(Im − s2D1)
∗AA†,

(Im −AA†)BB† = (Im −AA†)(Im − s3D
−1
1 )∗BB†,

A†A(In −B†B) = A†A(In − s4D2)(In −B†B),

B†B(In −A†A) = B†B(In − s5D
−1
2 )(In −A†A).

Taking ∗-operation we get

AA†(Im −BB†) = AA†(Im − s2D1)(Im −BB†), (3.18)
BB†(Im −AA†) = BB†(Im − s3D

−1
1 )(Im −AA†), (3.19)

(In −B†B)A†A = (In −B†B)(In − s4D2)
∗A†A, (3.20)

(In −A†A)B†B = (In −A†A)(In − s5D
−1
2 )∗B†B. (3.21)
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It follows from (3.15) and (3.18) that

∥Ω2∥U ≤ ∥B†∥2 · ∥AA†(Im − s2D1)(Im −BB†)∥U
≤ ∥B†∥2 · ∥AA†(Im − s2D1)∥U . (3.22)

Similarly, by (3.14) and (3.19) we can get

∥Ω2∥U ≤ ∥B†∥2 · ∥(Im − s3D
−1
1 )(Im −AA†)∥U . (3.23)

We may combine (3.16), (3.17), (3.20) with (3.21) to get

∥Ω3∥U ≤ ∥A†∥2 · ∥A†A(In − s4D2)∥U , (3.24)
∥Ω3∥U ≤ ∥A†∥2 · ∥(In − s5D

−1
2 )(In −A†A)∥U . (3.25)

The conclusion then follows from (3.8), (3.11)–(3.13) and (3.22)–(3.25).

Remark 3.1. Let B be a multiplicative perturbation of A ∈ Cm×n given by (1.1).
Then A =

(
D−1

1

)∗
BD−1

2 , which means that A is also a multiplicative perturbation
of B. In view of such an observation, by the preceding theorem we get the following
corollary:

Corollary 3.1. Let B be a multiplicative perturbation of A ∈ Cm×n given by (1.1).
Then for any u1, u2, u3, u4, u5 ∈ C, we have

∥B† −A†∥U ≤ ρ1(u1) + ρ2(u2, u3) + ρ3(u4, u5),

where

Θ1 = BB†(Im − ū1D
−1
1 ),Θ2 = (In − u1D2)B

†B, (3.26)
Θ3 = BB†(Im − u2D

−1
1 ),Θ4 = (Im − u3D1)(Im −BB†), (3.27)

Θ5 = B†B(In − u4D
−1
2 ),Θ6 = (In − u5D2)(In −B†B), (3.28)

ρ1(u1) = ∥A†∥2 · ∥Θ1∥U + ∥B†∥2 · ∥Θ2∥U , (3.29)
ρ2(u2, u3) = ∥A†∥2 ·min {∥Θ3∥U , ∥Θ4∥U} ,
ρ3(u4, u5) = ∥B†∥2 ·min {∥Θ5∥U , ∥Θ6∥U} .

Corollary 3.2. Let B be a multiplicative perturbation of A ∈ Cm×n given by (1.1).
Then for any si, ui ∈ C (1 ≤ i ≤ 5), we have

∥B† −A†∥U ≤ min{LU (s1, s2, s3, s4, s5), RU (u1, u2, u3, u4, u5)}, (3.30)

where ξ1(s1), ξ2(s2, s3), ξ3(s4, s5), ρ1(u1), ρ2(u2, u3) and ρ3(u4, u5) are given by The-
orem 3.1 and Corollary 3.1 respectively, and

LU (s1, s2, s3, s4, s5) = ξ1(s1) + ξ2(s2, s3) + ξ3(s4, s5),

RU (u1, u2, u3, u4, u5) = ρ1(u1) + ρ2(u2, u3) + ρ3(u4, u5).
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Remark 3.2. With the notations above, we have

ξ1(1) ≤ ∥B†∥2 · ∥Im −D1∥U + ∥A†∥2 · ∥In −D−1
2 ∥U

def
= λ1(U), (3.31)

ξ2(1, 1) ≤ ∥B†∥2 ·min
{
∥Im −D1∥U , ∥Im −D−1

1 ∥U
} def

= λ2(U), (3.32)

ξ3(1, 1) ≤ ∥A†∥2 ·min
{
∥In −D2∥U , ∥In −D−1

2 ∥U
} def

= λ3(U), (3.33)

ρ1(1) ≤ ∥A†∥2 · ∥Im −D−1
1 ∥U + ∥B†∥2 · ∥In −D2∥U

def
= µ1(U), (3.34)

ρ2(1, 1) ≤ ∥A†∥2 ·min
{
∥Im −D−1

1 ∥U , ∥Im −D1∥U
} def

= µ2(U), (3.35)

ρ3(1, 1) ≤ ∥B†∥2 ·min
{
∥In −D−1

2 ∥U , ∥In −D2∥U
} def

= µ3(U). (3.36)

Thus, we can apply Corollary 3.2 to get the technique result of [5, Sec. 3] as follows:

Corollary 3.3 ( [5, Theorem 3.1]). Let B be a multiplicative perturbation of
A ∈ Cm×n given by (1.1). Then

∥B† −A†∥U ≤ min{Φ1(D1, D2),Φ2(D1, D2)}, (3.37)

where λi(U), µi(U) are defined by (3.31)–(3.36) for i = 1, 2, 3, and

Φ1(D1, D2) =

3∑
i=1

λi(U), Φ2(D1, D2) =

3∑
i=1

µi(U).

4. Q-norm estimations for the Moore–Penrose in-
verse of multiplicative perturbations of matrices

Recall that a unitarily invariant norm is called a Q-norm, written ∥ · ∥Q, if there
exists another unitarily invariant norm ∥ · ∥U such that

∥A∥2Q = ∥A∗A∥U , for any m,n ∈ N and A ∈ Cm×n. (4.1)

Throughout the rest of this section, ∥ · ∥Q and ∥ · ∥U are Q-norm and unitarily
invariant norm respectively, both of them are defined on

∞⋃
m,n=1

Cm×n such that

(4.1) is satisfied.
Let B be a multiplicative perturbation of A ∈ Cm×n given by (1.1). In this

section, we study the Q-norm estimations for B† −A†, and get a new upper bound
established in Theorem 4.1, which leads to the generalization of [5, Theorems 3.2];
see Corollary 4.2 for the details.

Theorem 4.1. Let B be a multiplicative perturbation of A ∈ Cm×n given by (1.1).
Then for any s1, s2, s3, s4, s5 ∈ C, we have

∥B† −A†∥Q ≤
√
Υ1(s1)2 +Υ2(s2, s3)2 +Υ3(s4, s5)2,

where Λ1–Λ6 are defined by (3.1)–(3.3), and

Υ1(s1) = ∥B†∥2 · ∥Λ1∥Q + ∥A†∥2 · ∥Λ2∥Q,
Υ2(s2, s3) = ∥B†∥2 ·min {∥Λ3∥Q, ∥Λ4∥Q} ,
Υ3(s4, s5) = ∥A†∥2 ·min {∥Λ5∥Q, ∥Λ6∥Q} .
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Proof. By the proof of Theorem 3.1 we know that B†−A† = Ω1+Ω2+Ω3, where
Ω1,Ω2 and Ω3 are given by (3.5)–(3.7) such that

(Ω1 +Ω2)
∗Ω3 = 0 and Ω1Ω

∗
2 = 0,

which means that

∥B† −A†∥2Q = ∥(Ω1 +Ω2 +Ω3)
∗(Ω1 +Ω2 +Ω3)∥U

= ∥(Ω1 +Ω2)
∗(Ω1 +Ω2) + Ω∗

3Ω3∥U
≤ ∥(Ω1 +Ω2)

∗(Ω1 +Ω2)∥U + ∥Ω∗
3Ω3∥U = ∥Ω1 +Ω2∥2Q + ∥Ω3∥2Q

= ∥(Ω1 +Ω2)
∗∥2Q + ∥Ω3∥2Q = ∥(Ω1 +Ω2)(Ω1 +Ω2)

∗∥U + ∥Ω3∥2Q
= ∥Ω1Ω

∗
1∥U + ∥Ω2Ω

∗
2∥U + ∥Ω3∥2Q = ∥Ω∗

1∥2Q + ∥Ω∗
2∥2Q + ∥Ω3∥2Q

= ∥Ω1∥2Q + ∥Ω2∥2Q + ∥Ω3∥2Q.

Therefore,
∥B† −A†∥Q ≤

√
∥Ω1∥2Q + ∥Ω2∥2Q + ∥Ω3∥2Q . (4.2)

The conclusion then follows from (4.2), and from (3.11)–(3.13) and (3.22)–(3.25) by
replacing ∥ · ∥U with ∥ · ∥Q therein.

In view of Remark 3.1, a corollary can be induced as follows:

Corollary 4.1. Let B be a multiplicative perturbation of A ∈ Cm×n given by (1.1).
Then for any u1, u2, u3, u4, u5 ∈ C, we have

∥B† −A†∥Q ≤
√

σ1(u1)2 + σ2(u2, u3)2 + σ3(u4, u5)2,

where Θ1–Θ6 are defined by (3.26)–(3.28), and

σ1(u1) = ∥A†∥2 · ∥Θ1∥Q + ∥B†∥2 · ∥Θ2∥Q,
σ2(u2, u3) = ∥A†∥2 ·min {∥Θ3∥Q, ∥Θ4∥Q} ,
σ3(u4, u5) = ∥B†∥2 ·min {∥Θ5∥Q, ∥Θ6∥Q} .

Corollary 4.2. Let B be a multiplicative perturbation of A ∈ Cm×n given by (1.1).
Then for any si, ui ∈ C (1 ≤ i ≤ 5), we have

∥B† −A†∥Q ≤ min{LQ(s1, s2, s3, s4, s5), RQ(u1, u2, u3, u4, u5)}, (4.3)

where Υ1(s1),Υ2(s2, s3),Υ3(s4, s5), σ1(u1), σ2(u2, u3) and σ3(u4, u5) are given by
Theorem 4.1 and Corollary 4.1 respectively, and

LQ(s1, s2, s3, s4, s5) =
√
Υ1(s1)2 +Υ2(s2, s3)2 +Υ3(s4, s5)2,

RQ(u1, u2, u3, u4, u5) =
√

σ1(u1)2 + σ2(u2, u3)2 + σ3(u4, u5)2.

As illustrated by Remark 3.2, a result of [5, Sec. 3] turns out to be the special
case of Corollary 4.2, which can be stated as follows:

Corollary 4.3 ( [5, Theorem 3.2]). Let B be a multiplicative perturbation of A ∈
Cm×n given by (1.1). Then

∥B† −A†∥Q ≤ min{Ψ1(D1, D2),Ψ2(D1, D2)}, (4.4)
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where

λ1(Q) = ∥B†∥2 · ∥Im −D1∥Q + ∥A†∥2 · ∥(In −D−1
2 ∥Q,

λ2(Q) = ∥B†∥2 ·min
{
∥Im −D1∥Q, ∥Im −D−1

1 ∥Q
}
,

λ3(Q) = ∥A†∥2 ·min
{
∥In −D2∥Q, ∥In −D−1

2 ∥Q
}
,

µ1(Q) = ∥A†∥2 · ∥Im −D−1
1 ∥Q + ∥B†∥2 · ∥In −D2∥Q,

µ2(Q) = ∥A†∥2 ·min
{
∥Im −D−1

1 ∥Q, ∥Im −D1∥Q
}
,

µ3(Q) = ∥B†∥2 ·min
{
∥In −D−1

2 ∥Q, ∥In −D2∥Q
}
,

Ψ1(D1, D2) =

(
3∑

i=1

λi(Q)2

) 1
2

, Ψ2(D1, D2) =

(
3∑

i=1

µi(Q)2

) 1
2

.

5. Numerical examples
In this section, we provide three numerical examples to illustrate the sharpness
of upper bounds (3.30) and (4.3). For any A ∈ Cm×n, let sj(A) denote the j-th
element in the sequence of singular values of A which are sorted from large to small.
The Schatten p-norm of A [1, p92] is defined by

∥A∥p =

 n∑
j=1

(
sj(A)

)p 1
p

, for 1 ≤ p < +∞.

Note that each ∥ · ∥p is a unitarily invariant norm, which is furthermore a Q-norm
if p ≥ 2 [1, p95].

Example 5.1. We consider the optimality of upper bounds (3.30) and (4.3). Let
a, b ∈ R be given such that 0 < b < a. Let B be a multiplicative perturbation of
A ∈ C3×2 given by (1.1), where t ∈ [−π

2 ,
π
2 ] and

A =


sin(t) − cos(t)

cos(t) sin(t)

0 0

 , D1 = I3 and D2 =

a 0

0 b

 .

Then A† = AT , and

B =


a sin(t) −b cos(t)

a cos(t) b sin(t)

0 0

 , B† =

 1
a sin(t) 1

a cos(t) 0

− 1
b cos(t)

1
b sin(t) 0

 ,

so A†A = B†B = I2, AA† = BB† = diag(I2, 0), ∥A†∥2 = 1, ∥B†∥2 = 1
b , and

∥B† −A†∥p =

[∣∣∣∣1− 1

a

∣∣∣∣p + ∣∣∣∣1− 1

b

∣∣∣∣p]
1
p

.
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For any s1, u1 ∈ C, let ξ1(s1) and ρ1(u1) be defined by (3.4) and (3.29), respec-
tively. Then

ξ1(s1) =
1

b
· 2

1
p · |1− s̄1|+

[∣∣∣1− s1
a

∣∣∣p + ∣∣∣1− s1
b

∣∣∣p] 1
p

,

ρ1(u1) = 2
1
p · |1− ū1|+

1

b
·
[
|1− au1|p + |1− bu1|p

] 1
p

.

In particular,

ξ1(1) =

[∣∣∣∣1− 1

a

∣∣∣∣p + ∣∣∣∣1− 1

b

∣∣∣∣p]
1
p

= ∥B† −A†∥p.

Now we let s1 = 1, u1 ∈ C be arbitrary, and si = ui = 1 for 2 ≤ i ≤ 5. Then for
any 1 ≤ p < +∞, by (3.30) we have

∥B† −A†∥p ≤ min {ξ1(1), ρ1(u1)} ≤ ξ1(1) = ∥B† −A†∥p.

Therefore, with the choice of si and ui as above, upper bound (3.30) is optimal for
any Schatten p-norm ∥ · ∥p in the case that 1 ≤ p < ∞. The same is true for upper
bound (4.3) with respect to any Schatten p-norm ∥ · ∥p with 2 ≤ p < ∞.

It is remarkable that upper bounds (3.37) and (4.4) may both fail to be optimal.

More precisely, let θ =
[
|1− a|p + |1− b|p

] 1
p . Then for 1 ≤ p < +∞, upper bound

(3.37) turns out to be

∥B† −A†∥p ≤ min

{
ξ1(1) + min{θ, ξ1(1)},

1

b

[
θ +min{θ, ξ1(1)}

]}
. (5.1)

If we choose a, b ∈ R with 0 < b ≤ 1 < a such that ξ1(1) ≤ θ (for instance, a > 1
and b = 1

a or b = 1), then ∥B† − A†∥p = ξ1(1) ≤ θ, hence the right side of (5.1)
is 2 ∥B† − A†∥p. Furthermore, with the choice of such a and b, upper bound (4.4)
emerges as

∥B† −A†∥p ≤ min{L,R} = L =
√
2 ∥B† −A†∥p,

where 2 ≤ p < +∞, and

L =

√
ξ1(1)2 +

(
min{θ, ξ1(1)}

)2
and R =

1

b

√
θ2 +

(
min{θ, ξ1(1)}

)2
.

Example 5.2. Let B be a multiplicative perturbation of A given by (1.1), where
A and D2 are of the same forms as in Example 5.1, whereas D1 is given by
D1 = diag(1, c, 1) for some c > 0. Taking Schatten 1.5-norm as an example of
the unitarily invariant norm, we make a comparison of upper bounds (3.30) and
(3.37) by choosing the parameters as follows:

t = 0.366527946360803, a = 1.03010885403880, b = 1.03119860898309,

c = 0.970535221105394, s1 = 1.0305− 0.0010i, s2 = 1.6849 + 1.4915i,

s3 = 1.0000, s4 = 1.2144− 0.0023i, s5 = 1.1963 + 0.0035i,

u1 = 0.9708− 0.0002i, u2 = 1.3014 + 1.2306i, u3 = 1.0000,

u4 = 1.1039 + 0.0006i, u5 = 1.0905 + 0.0002i.

The details are listed in Table 1, where ε1 and ε2 are the relative errors of upper
bound (3.30) and upper bound (3.37), respectively.
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Table 1. Numerical values of Schatten 1.5-norm associated to Example 5.2.

∥B† −A†∥1.5 upper bound (3.30), ε1 [5, Theorem 3.1], ε2
0.03013147685055 0.03039184726925 0.15336733380427

0.8641% 408.9937%

Table 2. Numerical values of Schatten 2.5-norm associated to Example 5.3.

∥B† −A†∥2.5 upper bound (4.3), ∆1 [5, Theorem 3.2], ∆2

0.06565210054381 0.06736956871418 0.13894465418377
2.6160% 111.6378%

Example 5.3. Let B be a multiplicative perturbation of A given by (1.1), where
A,D1 and D2 are of the same forms as in Example 5.2. Taking Schatten 2.5-norm
as an example of the Q-norm, we make a comparison of upper bounds (4.3) with
(4.4) by choosing the parameters as follows:

t = 1.349998626675060, a = 0.940000808375520, b = 0.980000334983814,

c = 1.050000338313970, s1 = 0.9667, s2 = 1.0000 + 1.0000i,

s3 = 1.0000, s4 = 1.0000 + 1.0000i, s5 = 1.0000 + 1.0000i,

u1 = 1.0331, u2 = 1.0240, u3 = 1.1192 + 1.0342i,

u4 = 0.9609 + 1.3259i, u5 = 1.3285− 0.0005i.

The details are listed in Table 2, where ∆1 and ∆2 are the relative errors of upper
bound (4.3) and upper bound (4.4), respectively.
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