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MODULATION INSTABILITY AND OPTICAL
SOLITONS OF
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Abstract This paper studies the solitons of Radhakrishnan-Kundu-Lakshma-
nan (RKL) model with power law nonlinearity. The modified simple equation
method and exp(−φ(q)) method are presented as integration mechanisms.
Dark, bright, singular and periodic soliton solutions are extracted as well as
the constraint conditions for their existence. A prized discussion on the stabil-
ity of these soliton profiles on the basis of index of the power law nonlinearity
is also carried out with the help of physical description of solutions. The in-
tegration techniques have been proved to be extremely efficient and robust to
find new optical solitary wave solutions for various nonlinear evolution equa-
tions describing optical pulse propagation. Moreover, using linear stability
analysis, modulation instability of the RKL model is studied. Different effects
contributing to the modulation instability spectrum gain are analyzed.

Keywords Optical solitons, constraints, modified simple equation method,
exp(−φ(q)) method, modulation instability.
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1. Introduction
Self localized waves or solitons have received a lot of attention in the context of nu-
merous engineering and physical sciences in recent times [15, 22, 25, 30]. Despite of
being the reality of the modern world, research in the theory of optical solitons have
not slowed down. Researchers have been reporting new results on regular basis. The
advancement of telecom business completely depends on the dynamical behaviour of
these solitons in optical wave guides. The dynamics of soliton propagation have been
forged through a number of mathematical models [1, 5–10, 14, 16, 17, 21, 23, 31–33].
The (RKL) model has been the part of many recent studies to narrate the propaga-
tion of optical pulses through optical fibres. Optical fibre is a new kind of medium
consisting of two concentric cylindrical layers of glass. The light propagates through
the inner layer known as core with refractive index n1 while the exterior layer known
as cladding with refractive index n2 lower than n1 guaranteeing that the light pulses
are reflected back to the core. Optical fibres communication systems function be-
tween the micrometer wavelength zone of frequency spectrum. In this work, the
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RKL model is considered with the power law nonlinearity. Such kind of nonlin-
ear response is observed in semiconductors. The modified simple equation and
exp(−φ(q)) method are used to carry out the integration of the RKL model. A
variety of exact solutions including, dark, bright, singular and periodic solutions
are retrieved. Also a valuable discussion on the index of power law nonlinearity
have been made and stability of the soliton solutions is discussed through graphical
depictions.

The generalized RKL equation is studied to inspect the passage of optical soli-
tons in different kinds of irregular media [4,12,26]. In dimensionless form, it is given
as

ipt + apxx + bF (|p|2)p = iλ{F (|p|2)p}x − iγpxxx. (1.1)
In Eq. (1.1), a is the coefficient of group velocity dispersion and b represents the
coefficient of the generalized type of irregularity. F represents the kind of nonlinear
medium under investigation. On the right hand side of Eq. (1.1), third order
dispersion coefficient is denoted by γ and the self-steepening coefficient is λ. The
theme of the current work is to solve the Eq. (1.1) for the specific nonlinear medium
through two integration tools.
The power law nonlinearity crops up in nonlinear plasmas in weak turbulence theory
as well as in nonlinear optics. Several kinds of materials including semi conductors
exhibit power law nonlinearity [3]. So, the RKL equation incorporating of power
law nonlinearity which is given by the functional F (q) = qm. It is mandatory to
have 0 < m < 2 and also m ̸= 2 [11,18,19] for the stability of the soliton solutions.
Thus the governing equation (1.1) takes the form

ipt + apxx + b(|p|2m)p = iλ{(|p|2m)p}x − iγpxxx. (1.2)

Consider
p(x, t) = U(q)eiϕ(x,t), (1.3)

where
q = x− vt. (1.4)

In (1.3), U(q) stands for the amplitude while velocity is denoted by v whereas the
phase of the soliton is ϕ(x, t) which is defined as

ϕ(x, t) = −κx+ ωt+ θ. (1.5)

Here θ, ω and κ, denotes the phase constant, wave number and frequency respec-
tively. Putting Eqs. (1.3)-(1.5) into Eq. (1.2) and separating the real and imaginary
parts, we retrieve

(ω + aκ2 + γκ3)U − (b− λκ)U2m+1 − (a+ 3γκ)U ′′ = 0, (1.6)

and
(v + 2aκ2 + 3γκ2)U ′ + λ(2m+ 1)U ′U2m + γU ′′′ = 0. (1.7)

Integrating Eq. (1.12), we get

(v + 2aκ+ 3γκ2)U + λU2m+1 + γU ′′ = 0. (1.8)

Balancing U2m+1 and U ′′, we get

(2m+ 1)N = N + 2 implies N =
1

m
. (1.9)



Radhakrishnan-Kundu-Lakshmanan model 1377

In order to get solution in closed form, we introduce a new transformation

U(x, t) = ϕ1/2m(x, t). (1.10)

Eq. (1.10) transforms Eqs. (1.6) and (1.8) into

4m2(ω + aκ2 + γκ3)ϕ2 − 4m2(b− λκ)ϕ3 − (a+ 3γκ){(1− 2m)(ϕ′)2 + 2mϕϕ′′} = 0,
(1.11)

and

4m2(v + 2aκ+ 3γκ2)ϕ2 + 4m2λϕ3 + γ{(1− 2m)(ϕ′)2 + 2mϕϕ′′} = 0. (1.12)

The rest of the paper is systemized as follow: In “The modified simple equation
method” subsection, the modified simple equation method is discussed and applied
on Eqs. (1.11) and (1.12). In “exp(−φ(q)) method” subsection the exp(−φ(q))
method and its application on Eqs. (1.11) and (1.12) are inspected. Modulation
instability analysis is carried out in the third section while the results obtained are
presented and discussed in the section “Results and Discussion”. Finally, the paper
is concluded in the “Conclusions” Section.

2. Methods
2.1. Modified simple equation approach
In this subsection, we integrate the RKL equation through modified simple equation
method [13,24] incorporating power law media. To start of, it is assumed that Eqs.
(1.11) and (1.12) has the following solution form

ϕ(q) =

N∑
i=0

ai

(
ψ′(q)

ψ(q)

)i

, (2.1)

where ai and ψ(q) are the unknowns, provided aN ̸= 0.
Balancing ϕ3 and ϕϕ′′ in Eqs. (1.11) and (1.12), we have

N = 2. (2.2)

Thus, from Eq. (2.1), Eqs. (1.11) and (1.12) accepts the subsequent form of solution

U(q) = a0 + a1

(
ψ′(q)

ψ(q)

)
+ a2

(
ψ′(q)

ψ(q)

)2

, (2.3)

where a0, a1 and a2 are the constants to be determined such that a2 ̸= 0. By
putting (2.3) into Eqs. (1.6) and (1.8), a system is extracted by comparing the
coefficients of ψ−j , j = 0, 1, 2, 3, 4, 5, 6 to zero, a bunch of algebraic equations is
fetched as follows:
ψ−0 coeff:

4m2γ κ3a0
2 + 4m2λκ a0

3 + 4m2aκ2a0
2 − 4m2ba0

3 + 4m2ω a0
2 = 0,

4m2va0
2 + 12m2γ κ2a0

2 + 8m2aκ a0
2 + 4m2λa0

3 = 0,
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ψ−1 coeff:(
− 12m2ba0

2a1 + 8m2γ κ3a0a1 + 8m2ω a0a1 + 12m2λκ a0
2a1

+ 8m2aκ2a0a1
)( d

dξ
ψ (ξ)

)
− (2 ama0a1 + 6 γ κma0a1)

(
d3

dξ3
ψ (ξ)

)
= 0,

(
8m2va0a1 + 24m2γ κ2a0a1 + 12m2λa0

2a1 + 16m2aκ a0a1
)( d

dξ
ψ (ξ)

)
+ 2 γ ma0a1

(
d3

dξ3
ψ (ξ)

)
= 0,

ψ−2 coeff:(
−12 γ κma0a2 − 4 ama0a2 − 2 ama1

2 − 6 γ κma1
2
)( d

dξ
ψ (ξ)

)(
d3

dξ3
ψ (ξ)

)
+
(
6 γ κma1

2−3 γ κ a1
2−4 ama0a2−aa12−12 γ κma0a2+2 ama1

2
)( d2

dξ2
ψ (ξ)

)2

+(18 γ κma0a1+6 ama0a1)

(
d

dξ
ψ (ξ)

)(
d2

dξ2
ψ (ξ)

)
+
(
8m2γ κ3a0a2+8m2ω a0a2

+ 8m2aκ2a0a2 + 4m2γ κ3a1
2 + 4m2aκ2a1

2 + 12m2λκ a0a1
2

− 12m2ba0
2a2 − 12m2ba0a1

2 + 4m2ω a1
2 + 12m2λκ a0

2a2

)( d

dξ
ψ (ξ)

)2

= 0,

(
4 γ ma0a2 + 2 γ ma1

2
)( d

dξ
ψ (ξ)

)(
d3

dξ3
ψ (ξ)

)
+
(
− 2 γ ma1

2 + γ a1
2

+ 4 γ ma0a2
)( d2

dξ2
ψ (ξ)

)2

− 6 γ ma0a1

(
d2

dξ2
ψ (ξ)

)(
d

dξ
ψ (ξ)

)
+
(
12m2λa0

2a2

+ 12m2λa0a1
2 + 12m2γ κ2a1

2 + 4m2va1
2 + 24m2γ κ2a0a2

+ 16m2aκ a0a2 + 8m2aκ a1
2 + 8m2va0a2

)( d

dξ
ψ (ξ)

)2

= 0,

ψ−3 coeff:

(−6 ama1a2 − 18 γ κma1a2)

(
d

dξ
ψ (ξ)

)2(
d3

dξ3
ψ (ξ)

)
+
(
4 ama1a2 − 12 γ κ a1a2

− 4 aa1a2 + 12 γ κma1a2

)( d

dξ
ψ (ξ)

)(
d2

dξ2
ψ (ξ)

)2

+
(
20 ama0a2 + 2 ama1

2

+ 6 γ κ a1
2 + 6 γ κma1

2 + 2 aa1
2 + 60 γ κma0a2

)( d

dξ
ψ (ξ)

)2(
d2

dξ2
ψ (ξ)

)
+(

4m2λκ a1
3 + 8m2γ κ3a1a2 − 24m2ba0a1a2 − 4 ama0a1 − 12 γ κma0a1

+ 8m2aκ2a1a2 + 8m2ω a1a2 + 24m2λκ a0a1a2

)( d

dξ
ψ (ξ)

)3

= 0,

(4 γ a1a2 − 4 γ ma1a2)

(
d

dξ
ψ (ξ)

)(
d2

dξ2
ψ (ξ)

)2

+
(
− 20 γ ma0a2 − 2 γ ma1

2

− 2 γ a1
2
)( d

dξ
ψ (ξ)

)2(
d2

dξ2
ψ (ξ)

)
+
(
16m2aκ a1a2 + 24m2λa0a1a2
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+ 8m2va1a2 + 24m2γ κ2a1a2 + 4m2λa1
3 + 4 γ ma0a1

)( d

dξ
ψ (ξ)

)3

+ 6 γ ma1

(
d

dξ
ψ (ξ)

)2

a2

(
d3

dξ3
ψ (ξ)

)
= 0,

ψ−4 coeff:

(
−4 ama2

2 − 12 γ κma2
2
)( d

dξ
ψ (ξ)

)3(
d3

dξ3
ψ (ξ)

)
+
(
− 12 γ κ a2

2

+ 4 ama2
2 − 4 aa2

2 + 12 γ κma2
2
)( d

dξ
ψ (ξ)

)2(
d2

dξ2
ψ (ξ)

)2

+
(
8 aa1a2

+ 10 ama1a2 + 30 γ κma1a2 + 24 γ κ a1a2

)( d

dξ
ψ (ξ)

)3(
d2

dξ2
ψ (ξ)

)
+
(

− 12 ama0a2−12m2ba0a2
2+4m2ω a2

2−3 γ κ a1
2−36 γ κma0a2 + 12m2λκ a1

2a2

− 12m2ba1
2a2 − 6 γ κma1

2 + 12m2λκ a0a2
2 + 4m2γ κ3a2

2

− 2 ama1
2 − aa1

2 + 4m2aκ2a2
2
)( d

dξ
ψ (ξ)

)4

= 0,

(
4 γ a2

2 − 4 γ ma2
2
)( d

dξ
ψ (ξ)

)2(
d2

dξ2
ψ (ξ)

)2

+
(
− 8 γ a1a2 − 10 γ ma1a2

)
(
d

dξ
ψ (ξ)

)3(
d2

dξ2
ψ (ξ)

)
+
(
12m2γ κ2a2

2 + 12 γ ma0a2 + 12m2λa1
2a2

+ γ a1
2 + 12m2λa0a2

2 + 4m2va2
2 + 2 γ ma1

2 + 8m2aκ a2
2
)( d

dξ
ψ (ξ)

)4

+ 4 γ ma2
2

(
d

dξ
ψ (ξ)

)3(
d3

dξ3
ψ (ξ)

)
= 0,

ψ−5 coeff:

(
12 γ κma2

2 + 24 γ κ a2
2 + 8 aa2

2 + 4 ama2
2
)( d

dξ
ψ (ξ)

)4(
d2

dξ2
ψ (ξ)

)
+(

− 12 γ κ a1a2 − 8 ama1a2 − 12m2ba1a2
2 − 24 γ κma1a2 + 12m2λκ a1a2

2

− 4 aa1a2
)( d

dξ
ψ (ξ)

)5

= 0,

(
−4 γ ma2

2 − 8 γ a2
2
)( d

dξ
ψ (ξ)

)4(
d2

dξ2
ψ (ξ)

)
+
(
12m2λa1a2

2 + 4 γ a1a2 + 8 γ ma1a2
)( d

dξ
ψ (ξ)

)5

= 0,

ψ−6 coeff: (
− 4m2ba2

3 − 12 γ κma2
2 − 4 aa2

2 − 12 γ κ a2
2 + 4m2λκ a2

3

− 4 ama2
2
)( d

dξ
ψ (ξ)

)6

= 0,
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(
4 γ ma2

2 + 4m2λa2
3 + 4 γ a2

2
)( d

dξ
ψ (ξ)

)6

= 0,

Solving the aforementioned system of algebraic equations, we have
Case1:

κ =
1

4

−λa+ γ b

γ λ
,

ω = − 1

32

−a3λ3 − 9λ2a2γ b+ 5λaγ2b2 + 8λ3avγ + 5 γ3b3 + 24 bγ2vλ2

γ2λ3
,

a0 = 0, a1 = ±
γ (m+ 1)

√
− 1

4
−5λ2r2+2λ rbγ+3 b2γ2+16 vγ λ2

γ2

λ2m
, a2 = −γ (m+ 1)

m2λ
,

(2.4)(
d3

dξ3
ψ (ξ)

)
= −1

4

(
d
dξψ (ξ)

)
m2
(
−5λ2r2 + 2λ rbγ + 3 b2γ2 + 16 vγ λ2

)
λ2γ2

, (2.5)

(
d2

dξ2
ψ (ξ)

)
= ±

√
− 1

4
−5λ2r2+2λ rbγ+3 b2γ2+16 vγ λ2

γ2 m
(

d
dξψ (ξ)

)
λ

, (2.6)

From Eqs. (2.5) and (2.6), we have

ψ (ξ) = c1 + c2e
± 1

2

√
−16 vγ λ2+5λ2a2−2λ abγ−3 b2γ2mξ

γ λ , (2.7)

and
ψ′(ξ) = ±1

2

c2
√
−16 vγ λ2 + 5λ2a2 − 2λabγ − 3 b2γ2mH

γλ
, (2.8)

where c1 and c2 are arbitrary constants. So, using Eqs. (2.7) and (2.8) in Eq. (2.3)
and simplification gives

p(x, t) =
{
∓ 1

4

(m+ 1)
(
16 vγ λ2 − 5λ2a2 + 2λabγ + 3 b2γ2

)
c2H

γλ3 (c1 + c2H)
2

} 1
2m

× ei(−κx+ωt+θ), (2.9)

where κ and γ are given above and H = e±
1
2

√
−16 vγ λ2+5λ2a2−2λ abγ−3 b2γ2mξ

γ λ .
Setting c1 = ±1 and c2 = e±

1
2

√
−16 vγ λ2+5λ2a2−2λ abγ−3 b2γ2m

γ λ ξ0

p(x, t) =

{
± 1

16

(m+ 1)
(
16 vγ λ2 − 5λ2a2 + 2λabγ + 3 b2γ2

)
γλ3

× sech2

[
1

4

√
−3 b2γ2 + (−16 vλ2 − 2λab) γ + 5λ2a2m (ξ + ξ0)

γ λ

]} 1
2m

× ei(−κx+ωt+θ), (2.10)

p(x, t) =

{
± 1

16

(m+ 1)
(
16 vγ λ2 − 5λ2a2 + 2λabγ + 3 b2γ2

)
γλ3



Radhakrishnan-Kundu-Lakshmanan model 1381

× csch2

[
1

4

√
−3 b2γ2 + (−16 vλ2 − 2λab) γ + 5λ2a2m (ξ + ξ0)

γ λ

]} 1
2m

× ei(−κx+ωt+θ), (2.11)

where Eqs. (2.10) and (2.11) respectively denotes the bright and singular soliton
solutions which hold for −3 b2γ2 +

(
−16 vλ2 − 2λab

)
γ + 5λ2a2 > 0.

p(x, t) =

{
± 1

16

(m+ 1)
(
16 vγ λ2 − 5λ2a2 + 2λabγ + 3 b2γ2

)
γλ3

× sec2

[
1

4

√
−(−3 b2γ2 + (−16 vλ2 − 2λab) γ + 5λ2a2)m (ξ + ξ0)

γ λ

]} 1
2m

× ei(−κx+ωt+θ), (2.12)

p(x, t) =

{
± 1

16

(m+ 1)
(
16 vγ λ2 − 5λ2a2 + 2λabγ + 3 b2γ2

)
γλ3

× csc2

[
1

4

√
−(−3 b2γ2 + (−16 vλ2 − 2λab) γ + 5λ2a2)m (ξ + ξ0)

γ λ

]} 1
2m

× ei(−κx+ωt+θ), (2.13)

where Eqs. (2.12) and (2.13) denotes the periodic singular soliton solutions. These
solutions remain valid until −3 b2γ2 +

(
−16 vλ2 − 2λab

)
γ + 5λ2a2 < 0.

Figure 2. 2-D plot of solution given in Eq. (2.10) for different value of index m.

Case2:

κ =
1

4

−λa+ γ b

γ λ
, m = 1,
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(a) γ = 1, b = 8, v = −1, λ = 10, a =
1, m = 0

(b) γ = 1, b = 8, v = −1, λ = 10, a =
1, m = 0.1

(c) γ = 1, b = 8, v = −1, λ = 10, a =
1, m = 0.2

(d) γ = 1, b = 8, v = −1, λ = 10, a =
1, m = 1

(e) γ = 1, b = 8, v = −1, λ = 10, a =
1, m = 2

Figure 1. Graphical depiction of solutions given in Eqs. (2.10) respectively with suitable choice of
parameters.
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ω = − 1

32

−a3λ3 − 9λ2a2γ b+ 5λaγ2b2 + 8λ3avγ + 5 γ3b3 + 24 bγ2vλ2

γ2λ3

a0 = − 1

16

−5λ2a2 + 2λabγ + 3 b2γ2 + 16 vγ λ2

λ3γ
, a2 = −2

γ

λ
(2.14)

a1 = 2 γ

√
− 1

8
−3 b2γ2−16 vγ λ2+5λ2a2−2λ abγ

γ2

λ2
,(

d3

dξ3
ψ (ξ)

)
=

1

8

(
d
dξψ (ξ)

) (
−5λ2a2 + 2λabγ + 3 b2γ2 + 16 vγ λ2

)
γ2λ2

, (2.15)

and (
d2

dξ2
ψ (ξ)

)
=

√
− 1

8
−3 b2γ2−16 vγ λ2+5λ2a2−2λ abγ

γ2

(
d
dξψ (ξ)

)
λ

. (2.16)

From Eqs. (2.15) and (2.16), we have

ψ (ξ) = c1 + c2e
1
4

√
6 b2γ2+32 vγ λ2−10λ2a2+4λ abγξ

γ λ , (2.17)

and

ψ′ =
1

4

c2
√
6 b2γ2 + 32 vγ λ2 − 10λ2a2 + 4λabγe

1
4

√
6 b2γ2+32 vγ λ2−10λ2a2+4λ abγξ

γ λ

γλ
,

(2.18)
where c1 and c2 are arbitrary constants. So, by using Eqs. (2.17) and (2.16) in Eq.
(2.3) gives

p(x, t)

=

{
− 1

16

3 b2γ2 + 16 vγ λ2 − 5λ2a2 + 2λabγ

λ3γ

+
1

4

(
3 b2γ2+16 vγ λ2−5λ2a2+ 2λabγ

)
c2e

1
4

√
2
√

3 b2γ2+16 vγ λ2−5λ2a2+2λ abγ(ξ)
γ λ

λ3γ

(
c1+c2e

1
4

√
2
√

3 b2γ2+16 vγ λ2−5λ2a2+2λ abγ(ξ)
γ λ

)2

} 1
2m

× ei(−κx+ωt+θ). (2.19)

By setting c1 = ±1 and c2 = e
1
4

√
2
√

3 b2γ2+16 vγ λ2−5λ2a2+2λ abγ(ξ0)
γ λ , we have

p(x, t) =

{
− 1

16

3 b2γ2 + 16 vγ λ2 − 5λ2a2 + 2λabγ

λ3γ(
1− sech2

[
1

8

√
2
√
3 b2γ2 + (2λab+ 16 vλ2) γ − 5λ2a2 (ξ + ξ0)

γ λ

]) 1
2m

× ei(−κx+ωt+θ), (2.20)

p(x, t) =

{
− 1

16

3 b2γ2 + 16 vγ λ2 − 5λ2a2 + 2λabγ

λ3γ
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1− csch2

[
1

8

√
2
√
3 b2γ2 + (2λab+ 16 vλ2) γ − 5λ2a2 (ξ + ξ0)

γ λ

]) 1
2m

× ei(−κx+ωt+θ), (2.21)

where Eqs. (2.20) and (2.21) represent bright and singular solitons respectively
following the constraint 3 b2γ2 +

(
2λab+ 16 vλ2

)
γ − 5λ2a2 > 0. Similarly,

p(x, t) =

{
− 1

16

3 b2γ2 + 16 vγ λ2 − 5λ2a2 + 2λabγ

λ3γ(
1− sec2

[
1

8

√
2
√
−(3 b2γ2 + (2λab+ 16 vλ2) γ − 5λ2a2) (ξ + ξ0)

γ λ

]) 1
2m

× ei(−κx+ωt+θ), (2.22)

p(x, t) =

{
− 1

16

3 b2γ2 + 16 vγ λ2 − 5λ2a2 + 2λabγ

λ3γ(
1− csc2

[
1

8

√
2
√
−(3 b2γ2 + (2λab+ 16 vλ2) γ − 5λ2a2) (ξ + ξ0)

γ λ

]) 1
2m

× ei(−κx+ωt+θ), (2.23)

where Eqs. (2.22) and (2.23) represent periodic singular solitons respectively. These
solutions remain valid until 3 b2γ2 +

(
2λab+ 16 vλ2

)
γ − 5λ2a2 < 0.

Case 3:

κ =
1

4

−λa+ γ b

γ λ
, m =

1

2
,

ω = − 1

32

−a3λ3 − 9λ2a2γ b+ 5λaγ2b2 + 8λ3avγ + 5 γ3b3 + 24 bγ2vλ2

γ2λ3
,

a0 = − 1

16

−5λ2a2 + 2λabγ + 3 b2γ2 + 16 vγ λ2

λ3γ
, a2 = −6

γ

λ
(2.24)

a1 = 6 γ

√
− 1

16
−3 b2γ2−16 vγ λ2+5λ2a2−2λ abγ

γ2

λ2(
d3

dξ3
ψ (ξ)

)
=

1

16

(
d
dξψ (ξ)

) (
−5λ2a2 + 2λabγ + 3 b2γ2 + 16 vγ λ2

)
γ2λ2

, (2.25)

and

(
d2

dξ2
ψ (ξ)

)
=

√
− 1

16
−3 b2γ2−16 vγ λ2+5λ2a2−2λ abγ

γ2

(
d
dξψ (ξ)

)
λ

. (2.26)

From Eqs. (2.25) and (2.26), we have

ψ (ξ) = c1 + c2e
1
4

√
−5λ2a2+2λ abγ+3 b2γ2+16 vγ λ2ξ

γ λ , (2.27)
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and

ψ′ =
1

4

c2
√
−5λ2a2 + 2λabγ + 3 b2γ2 + 16 vγ λ2e

1
4

√
−5λ2a2+2λ abγ+3 b2γ2+16 vγ λ2ξ

γ λ

γλ
,

(2.28)
where c1 and c2 are arbitrary constants. So, by using Eqs. (2.27) and (2.28), we
have

p(x, t)

=

{
− 1

16

−5λ2a2 + 2λabγ + 3 b2γ2 + 16 vγ λ2

λ3γ

+
3

8

(
−5λ2a2+2λabγ + 3 b2γ2+16 vγ λ2

)
c2e

1
4

√
−5λ2a2+2λ abγ+3 b2γ2+16 vγ λ2ξ

γ λ

λ3γ

(
c1 + c2e

1
4

√
−5λ2a2+2λ abγ+3 b2γ2+16 vγ λ2ξ

γ λ

)2

} 1
2m

× ei(−κx+ωt+θ). (2.29)

By setting c1 = ±1 and c2 = e
1
4

√
−5λ2a2+2λ abγ+3 b2γ2+16 vγ λ2ξ0

γ λ , we have

p(x, t) =

{
− 1

16

−5λ2a2 + 2λabγ + 3 b2γ2 + 16 vγ λ2

λ3γ(
1− 3

2
sech2

[1
8

√
3 b2γ2 + (2λab+ 16λ2v) γ − 5λ2a2 (ξ + ξ0)

γ λ

]) 1
2m

× ei(−κx+ωt+θ). (2.30)

p(x, t) =

{
− 1

16

−5λ2a2 + 2λabγ + 3 b2γ2 + 16 vγ λ2

λ3γ(
1− 3

2
csch2

[1
8

√
3 b2γ2 + (2λab+ 16λ2v) γ − 5λ2a2 (ξ + ξ0)

γ λ

]) 1
2m

× ei(−κx+ωt+θ). (2.31)

Here Eqs. (2.30) and (2.31) respectively denotes the bright and singular solitons
satisfying the constraint condition 3 b2γ2+

(
2λab+ 16λ2v

)
γ−5λ2a2 > 0. Similarly,

p(x, t) =

{
− 1

16

−5λ2a2 + 2λabγ + 3 b2γ2 + 16 vγ λ2

λ3γ(
1− 3

2
sec2

[1
8

√
−(3 b2γ2 + (2λab+ 16λ2v) γ − 5λ2a2) (ξ + ξ0)

γ λ

]) 1
2m

× ei(−κx+ωt+θ). (2.32)

p(x, t) =

{
− 1

16

−5λ2a2 + 2λabγ + 3 b2γ2 + 16 vγ λ2

λ3γ
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1− 3

2
csc2

[1
8

√
−(3 b2γ2 + (2λab+ 16λ2v) γ − 5λ2a2) (ξ + ξ0)

γ λ

]) 1
2m

× ei(−κx+ωt+θ), (2.33)

where κ and ω are given in the solution set Case 3. Eqs. (2.32) and (2.33) denotes
periodic singular solitons which hold for the constraint 3 b2γ2+

(
2λab+ 16λ2v

)
γ−

5λ2a2 < 0.
Case 4:

κ =
1

4

−λa+ γ b

γ λ
, m = −2,

ω = − 1

32

−a3λ3 − 9λ2a2γ b+ 5λaγ2b2 + 8λ3avγ + 5 γ3b3 + 24 bγ2vλ2

γ2λ3
,

a0 = − 1

16

−5λ2a2 + 2λabγ + 3 b2γ2 + 16 vγ λ2

λ3γ
, a2 =

1

4

γ

λ
, (2.34)

a1 =
1

4

√
5λ2a2 − 2λabγ − 3 b2γ2 − 16 vγ λ2

λ2
.(

d3

dξ3
ψ (ξ)

)
= −1

4

(
d
dξψ (ξ)

) (
−5λ2a2 + 2λabγ + 3 b2γ2 + 16 vγ λ2

)
γ2λ2

, (2.35)

and (
d2

dξ2
ψ (ξ)

)
= −1

2

√
5λ2a2 − 2λabγ − 3 b2γ2 − 16 vγ λ2

(
d
dξψ (ξ)

)
γ λ

. (2.36)

From Eqs. (2.36) and (2.35), we have

ψ (ξ) = c1 + c2e
− 1

2

√
−3 b2γ2−16 vγ λ2+5λ2a2−2λ abγξ

λ γ , (2.37)

and

ψ′=−1

2

c2
√

−3 b2γ2 − 16 vγ λ2+5λ2a2−2λabγe−
1
2

√
−3 b2γ2−16 vγ λ2+5λ2a2−2λ abγξ

λ γ

λγ
,

(2.38)
where c1 and c2 are arbitrary constants.
By setting c1 = ±1 and c2 = e−

1
2

√
−3 b2γ2−16 vγ λ2+5λ2a2−2λ abγξ0

λ γ , we have

p(x, t)=

{
− 1

16

3 b2γ2+16 vγ λ2 − 5λ2a2+2λabγ

γ λ3
(
1+e−

1
2

√
−3 b2γ2−16 vγ λ2+5λ2a2−2λ abγ(ξ+ξ0)

λ γ

)2

} 1
2m

× ei(−κx+ωt+θ).

(2.39)
which is not a stable soliton because m = −2. It suggests that the soliton solutions
exists when 0 < m < 2.

2.2. The exp(−φ(q)) method
In this section, the extraction of solitons for the RKL equation is carried out. The
power law nonlinearity is considered. To start with, we assume the solution of Eqs.
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(1.6) and (1.8) is of the following form

U(q) =

N∑
i=0

ai(e
−φ(q))i, aN ̸= 0, (2.40)

where φ = φ(q) satisfies the following ODE:

φ
′
(q) + ζ exp(φ(q)) + η exp(−φ(q) = 0 (2.41)

ζ and η are arbitrary constants.
Eq. (2.41) enjoys the subsequent solutions forms

φ(q) = − ln

(√
ζ

η
tan[

√
ζη(q + q0)]

)
, ζη > 0 (2.42)

φ(q) = − ln

(
−

√
ζ

η
cot[

√
ζη(q + q0)]

)
, ζη > 0

φ(q) = − ln

(
−

√
ζ

−η
tanh[

√
−ζη(q + q0)]

)
, ζη < 0

φ(q) = − ln

(√
ζ

−η
coth[

√
−ζη(q + q0)]

)
, ζη < 0

φ(q) = ln

(
− 1

η(q + q0)

)
, ζ = 0, η > 0,

where q0 is an integration constant and ζη > 0 or ζη < 0 depends λ′s sign. The
value of N determined as earlier is

N = 2. (2.43)

Therefore,
ϕ(q) = a0 + a1exp(−φ(q)) + a2exp(−φ(q))2. (2.44)

Now, Plugging the values of U and U ′′ in Eqs. (1.6) and (1.8) using Eq. (2.41),
and comparing coefficients of exp(−iφ(q)), i = 0, 1, 2, 3, 4, 5 and 6, an nonlinear
algebraic system of equations is gained
exp(−0 φ(q)) coeff:

4m2
(
ω + aκ2 + γ κ3

)
a0

2 − 4m2 (b− λκ) a0
3 − (a+ 3 γ κ)

(
(1− 2m) a1

2η2

+ 2ma0
(
ζ η a1 + 2 a2η

2
) )

= 0,

4m2
(
v + 2 aκ+ 3 γ κ2

)
a0

2 + 4m2λa0
3 + γ

(
(1− 2m) a1

2η2

+ 2ma0
(
ζ η a1 + 2 a2η

2
) )

= 0.

exp(−1 φ(q)) coeff:

− 12m2 (b−λκ) a02a1+8m2
(
ω+aκ2+γ κ3

)
a0a1−(a+ 3 γ κ)

(
− 2 (1−2m)

a1η (−ζ a1 − 2 a2η)

+ 2ma0
(
6 a2ζ η + 2 a1η + λ2a1

)
+ 2ma1

(
ζ η a1 + 2 a2η

2
) )

= 0,
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12m2λa0
2a1+8m2

(
v+2 aκ+ 3 γ κ2

)
a0a1+γ

(
−2 (1− 2m) a1η (−ζ a1 − 2 a2η)

+ 2ma0
(
6 a2ζ η + 2 a1η + λ2a1

)
+ 2ma1

(
ζ η a1 + 2 a2η

2
) )

= 0.

exp(−2 φ(q)) coeff:

− 4m2 (b− λκ)
(
a0
(
2 a0a2+a1

2
)
+2 a1

2a0+a2a0
2
)
+4m2

(
ω+aκ2+γ κ3

)
(
2 a0a2 + a1

2
)
− (a+ 3 γ κ)

(
(1− 2m)

(
−2 a1η (−2 a2ζ − a1) + (−ζ a1 − 2 a2η)

2
)

+ 2ma0
(
4λ2a2 + 3 ζ a1 + 8 a2η

)
+ 2ma1

(
6 a2ζ η + 2 a1η + λ2a1

)
+ 2ma2

(
ζ η a1 + 2 a2η

2
) )

= 0,

4m2λ
(
a0
(
2 a0a2+a1

2
)
+2 a1

2a0+a2a0
2
)
+4m2

(
v+2 aκ+3 γ κ2

) (
2 a0a2 + a1

2
)

+ γ
(
(1− 2m)

(
−2 a1η (−2 a2ζ − a1) + (−ζ a1 − 2 a2η)

2
)

+ 2ma0
(
4λ2a2 + 3 ζ a1 + 8 a2η

)
+ 2ma1

(
6 a2ζ η + 2 a1η + λ2a1

)
+ 2ma2

(
ζ η a1 + 2 a2η

2
) )

= 0.

exp(−3 φ(q)) coeff:

8m2
(
ω + aκ2 + γ κ3

)
a1a2 − 4m2 (b− λκ)

(
4 a0a1a2 + a1

(
2 a0a2 + a1

2
))

− (a+ 3 γ κ)
(
2ma0 (10 ζ a2 + 2 a1) + 2ma1

(
4λ2a2 + 3 ζ a1 + 8 a2η

)
+ 2ma2

(
6 ζ a2η + 2 a1η + λ2a1

)
+ (1− 2m)

(
4 a1η a2

+ 2 (−ζ a1 − 2 a2η) (−2 ζ a2 − a1)
))

= 0,

8m2
(
v + 2 aκ+ 3 γ κ2

)
a1a2 + 4m2λ

(
4 a0a1a2 + a1

(
2 a0a2 + a1

2
))

+ γ
(
2ma0 (10 ζ a2 + 2 a1) + 2ma1

(
4λ2a2 + 3 ζ a1 + 8 a2η

)
+ 2ma2

(
6 ζ a2η + 2 a1η + λ2a1

)
+ (1− 2m)

(
4 a1η a2

+ 2 (−ζ a1 − 2 a2η) (−2 ζ a2 − a1)
))

= 0.

exp(−4 φ(q)) coeff:

4m2
(
ω + aκ2 + γ κ3

)
a2

2 − 4m2 (b− λκ)
(
a0a2

2 + 2 a1
2a2 + a2

(
2 a0a2 + a1

2
))

− (a+ 3 γ κ)
(
(1− 2m)

(
−4 (−ζ a1 − 2 a2η) a2 + (−2 ζ a2 − a1)

2
)

+ 12ma0a2 + 2ma1 (10 ζ a2 + 2 a1) + 2ma2
(
4λ2a2 + 3 ζ a1 + 8 a2η

) )
= 0,

4m2
(
v + 2 aκ+ 3 γ κ2

)
a2

2 + 4m2λ
(
a0a2

2 + 2 a1
2a2 + a2

(
2 a0a2 + a1

2
))

+ γ
(
(1− 2m)

(
− 4 (−ζ a1 − 2 a2η) a2 + (−2 ζ a2 − a1)

2 )
+ 12ma0a2

+ 2ma1 (10 ζ a2 + 2 a1) + 2ma2
(
4λ2a2 + 3 ζ a1 + 8 a2η

) )
= 0.

exp(−5 φ(q)) coeff:

− 12m2 (b− λκ) a1a2
2 − (a+ 3 γ κ)

(
− 4 (1− 2m) (−2 ζ a2 − a1) a2 + 12ma1a2
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+ 2ma2 (10 ζ a2 + 2 a1)
)
= 0,

12m2λa1a2
2 + γ

(
− 4 (1− 2m) (−2 ζ a2 − a1) a2 + 12ma1a2

+ 2ma2 (10 ζ a2 + 2 a1)
)
= 0.

exp(−6 φ(q)) coeff:

−4m2 (b− λκ) a2
3 − (a+ 3 γ κ)

(
4 (1− 2m) a2

2 + 12ma2
2
)
= 0,

4m2λa2
3 + γ

(
4 (1− 2m) a2

2 + 12ma2
2
)
= 0.

Solving this algebraic system of equations gives

v = − 1

16

2m2aλ bγ + 3m2b2γ2 − 5m2a2λ2 − 16 γ2ζ η λ2

γ λ2m2

ω=− 1

64

3m2a3λ3−5m2a2λ2bγ+m2aλ b2γ2+m2b3γ3+16 γ2aζ η λ3+48 γ3ζ η λ2b

λ3m2γ2

κ =
1

4

−aλ+ bγ

γ λ
, a0 = −γ ζ η (m+ 1)

m2λ
,

a1 = 0, a2 = −γ η
2 (m+ 1)

m2λ
,

Hence, Periodic, dark, singular and plain wave solutions along with their validity
conditions are given below respectively as

p1,2(x, t) =− γζη(m+ 1)

m2λ
− γη2(m+ 1)

m2λ

[√
ζ

η
tan(

√
ζη(q + q0))

]2
× ei(−κx+ωt+γ), where ζη > 0.

(2.45)

p3,4(x, t) =− γζη(m+ 1)

m2λ
− γη2(m+ 1)

m2λ

[
−

√
ζ

η
cot(

√
ζη(q + q0))

]2
× ei(−κx+ωt+γ), where ζη > 0.

(2.46)

p5,6(x, t) =− γζη(m+ 1)

m2λ
− γη2(m+ 1)

m2λ

[
−

√
ζ

−η
tanh(

√
−ζη(q + q0))

]2
× ei(−κx+ωt+γ), where ζη < 0.

(2.47)

p7,8(x, t) =− γζη(m+ 1)

m2λ
− γη2(m+ 1)

m2λ

[√
ζ

−η
coth(

√
−ζη(q + q0))

]2
× ei(−κx+ωt+γ), where ζη < 0.

(2.48)
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(a) γ = −5, b = 0.5, λ = 0.19, η =
0.5, m = 0.1

(b) γ = −5, b = 0.5, λ = 0.19, η =
0.5, m = 0.2

(c) γ = −5, b = 0.5, λ = 0.19, η =
0.5, m = 0.3

Figure 3. Dark soliton given in Eqs. (2.47).

Figure 4. 2-D plot of solution given in Eq. (2.47) for different value of index m.
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3. Modulation Instability
Modulation instability based on linear stability analysis [2] is carried out for Eq.
(1.2) with m = 1 which has the subsequent steady-state solution [2]

p(x, t) = [
√
I0 + q(x, t)]× eibI0t, (3.1)

where I0 is the incident power. To study the evolution of the perturbation q(x, t),
Eq. (3.1) is substituted into Eq. (1.2) and is linearized in q has the following form

iqt + aqxx + bI0 (q + q∗) = iλI0 (2qx + q∗x)− iγqxxx (3.2)

where q∗ is complex conjugate of q. Due to the presentation q∗, we assume

q(x, t) = q1e
i(Kx−Ωt) + q2e

−i(Kx−Ωt), (3.3)

where K is the wave number and Ω is the frequency. Substituting Eq. (3.3) in Eq.
(3.2), a system of two homogeneous equations in q1 and q2 is retrieved which gives
the following dispersion relation

Ω =

(
γK2 − 2λI0 ±

√
λ2I0

2 +K2a2 − 2 abI0

)
K. (3.4)

It is evident from the dispersion relation (3.4) that the steady-state stability depends
on self-steepening, GVD as well as the incident power. The steady state is stable
whenever λ2I02+K2a2− 2 abI0 > 0 but the modulation instability comes into play
when λ2I0

2 + K2a2 − 2 abI0 < 0 because in such a case the perturbation grows
exponentially. Modulation instability gain is given by

G = |ImΩ| = |Im
(
γK2 − 2λI0 ±

√
λ2I0

2 +K2a2 − 2 abI0

)
K|. (3.5)

Figure 5. Modulation instability gain in terms of wave number for different values of nonlinear coeffi-
cient.
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Figure 6. Modulation instability gain in terms of wave number for different incident powers I0 with
λ = 0.4, a = 1, b = 1 and γ = 1.

Figure 7. Modulation instability gain in terms of wave number for different values of λ with I0 =
0.2, a = 1, b = 10 and γ = 1.

4. Results and Discussion
The results retrieved here are bright, dark, singular, periodic and plane wave solu-
tions. Solutions in (2.10) retrieved through modified simple equation method are
visualized through 3-D and 2-D graphical depictions portrayed in Figure 1 and Fig-
ure 2 respectively. As we know that the power law nonlinearity induces the same
shape profile as given in Eq. (2.10). Also the width and height of the soliton de-
pends on the index of nonlinearity m [27, 28]. It can easily be observed that for
the infinitesimal value of index requires a gigantic width. So, if m → 0 the soliton
becomes a plane wave as shown in Figure 1(a). It is also observed that the soliton
concentration is highly sensitive to the value of nonlinearity near m = 2 and the
soliton width decreases drastically for 1 < m < 2. So for m ≥ 2, the soliton pro-
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file becomes unstable and portrays a self focusing singularity which is highlighted
through Figure 1 and 2.

Similarly, the 3-D and 2-D graphs of soliton solution given in Eq.(2.47) are por-
trayed in Figure 3 and Figure 4 respectively which are obtained through exp(−φ(q)).
From Eq. (2.47) the soliton solution represents a self focusing singularity near
m → 0. Unlike the bright soliton given in Eq. (2.10), the width of the soliton
profile given in Eq. (2.47) increases as the index of nonlinearity increases and rep-
resents a plane wave near m → ∞. The argument is supported by the graphs in
Figure 3 and Figure 4.

In section 3, the modulation instability analysis of Eq. (1.2) is carried out. A
dispersion relation (3.4) is obtained for the frequency in terms of wave number.
The role of different parameters on the gain spectrum G(K) is studied in Fig 5, 6
and 7. In Fig 5, it is clearly observed that the gain spectrum G(K) is symmetric
with K = 0. It is deduced that the gain spectrum increases with increase in b for
given fixed values of λ = 1 (self-steepening) and I0 = 1 (Incident power). From Fig
6, we can conclude that the instability gain spectrum increases with an increase in
incident power I0 by fixing λ = 0.4 and b = 1. On the other hand, we see that the
modulation instability gain spectrum decreases with an increase in self-steepening
λ. It is noticed that the third order dispersion plays no role in modulation instability
which is quite obvious from Eq. (3.5) and [29,32].

5. Conclusion
In this work, we have extracted soliton solutions of RKL model incorporating the
power law nonlinearity. The extraction process is aided through reliable integration
tools namely, the modified simple equation method and the exp(−φ(q)) method.
The bright, dark, singular, periodic, plane wave and other solutions are retrieved.
The solutions extracted through modified simple equation method are catagorized
in four different cases on the basis of values of nonlinearity index m. The bright
soliton profile in Eq. (2.10) is highlighted through 2 and 3-dimensional graphs.
It is observed graphically that the soliton profile is stable only for 0 < m < 2
and the case 4 assists this argument. Similarly the solutions retrieved through
exp(−φ(q)) method are given. The physical aspects of the stability of the dark
soliton profile given in Eq. (2.47) are highlighted through 2 and 3-dimensional
graphs. The modulation instability analysis for the RKL model is carried out to
extract a dispersion relation between K and Ω. The effect of different parameters
on the Modulation instability gain spectrum is also studied. Therefore, the research
provides an excellent additive to the existing literature and gives a valuable insight
towards the spatio-temporal solitons of the power law nonlinearity.
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