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Abstract In this paper, we will investigate some qualitative behavior of
solutions of the following fourth order difference equation xn+1 = axn−1 +

bxn−1

cxn−1−dxn−3
, n = 0, 1, ..., where the initial conditions x−3,x−2, x−1 and

x0 are arbitrary real numbers and the values a, b, c and d are defined as
positive real numbers.
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1. Introduction
Our main objective in this paper is to obtain the qualitative behavior of the solutions
of the following recursive equation:

xn+1 = axn−1 +
bxn−1

cxn−1 − dxn−3
, n = 0, 1, ..., (1.1)

where the initial conditions x−3, x−2, x−1 and x0 are arbitrary nonzero real numbers
and a, b, c,and d are positive constants.

In recent years, the theory of difference equations has been studied by a large
number of researchers due to the importance of this field in modeling a large number
of real- life problems. Difference equations are used in modeling some natural
phenomena that appear in biology, physics, economy, engineering, etc. Difference
equations become apparent in the study of discretization methods for differential
equations. Some results in the theory of difference equations have been obtained in
the corresponding results of differential equations as more or less natural discrete
analogues. Some recent studies of the dynamics of difference equations are given
as follows. Agarwal and Elsayed [3] studied the periodicity character and global
stability and provided a solution form for several special cases of the recursive
sequence

xn+1 = axn +
bxnx3

cxn−2 + dxn−3
.
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Cinar [7] investigated the solution of the difference equation

xn+1 =
axn−1

1 + bxnxn−1
.

Ibrahim [25] presented some relevant results of the difference equation

xn+1 =
xnxn−2

xn−1(a+ bxnxn−2)
.

Elsayed [16] analyzed the global stability and examined the periodic solution of the
following difference equation:

xn+1 = axn−l +
bxn−l

cxn−l − dxn−k
.

Elabbasy et al. [9] investigated the global stability and periodicity character and
gave the solution of the special case of the difference equation

xn+1 = axn − bxn

cxn − dxn−1
.

Additionally, Yalçınkaya [39] addressed the difference equation

xn+1 = α+
xn−m

xk
n

.

Yang et al. [40] examined the global and local stability of the equilibrium points of
the following recursive equation:

xn+1 =
axn−1 + bxn−2

c+ dxn−1xn−2
.

Other results of the qualitative behavior of difference equations can be obtained in
refs. [1]- [42].

2. Some Basic Properties and Definitions
Here, we recall some basic definitions and some theorems that we need in the sequel.

Let I be some interval of real numbers, and the function f have continuous
partial derivatives on Ik+1 ,where Ik+1 = I × I × · · · × I (k+1− times). Then, for
initial conditions x−k, x−k+1, ..., x0 ∈ I, the difference equation

xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, ... (2.1)

has a unique solution {xn}∞n=−k.
A point x ∈ I is called an equilibrium point of Eq.(2.1) if

x = f(x, x, ..., x).

That is, xn = x for n ≥ 0 is a solution of Eq.(2.1), or equivalently, x is a fixed point
of f .
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Definition 2.1 (Stability).
(i) The equilibrium point x of Eq.(2.1) is locally stable if for every ϵ > 0, there
exists δ > 0 such that for all x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < δ,

we have
|xn − x| < ϵ for all n ≥ −k.

(ii) The equilibrium point x of Eq.(2.1) is locally asymptotically stable if x is a lo-
cally stable solution of Eq.(2.1) and there exists γ > 0 such that for all x−k, x−k+1, ...,
x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < γ,

we have
lim
n→∞

xn = x.

(iii) The equilibrium point x of Eq.(2.1) is a global attractor if for all x−k, x−k+1,...,
x−1, x0 ∈ I, we have

lim
n→∞

xn = x.

(iv) The equilibrium point x of Eq.(2.1) is globally asymptotically stable if x is
locally stable, and x is also a global attractor of Eq.(2.1).
(v) The equilibrium point x of Eq.(2.1) is unstable if x is not locally stable.

The linearized equation of Eq.(2.1) about the equilibrium x is the linear differ-
ence equation

yn+1 =

k∑
i=0

∂f(x, x..., x)

∂xn−i
yn−i. (2.2)

Now, assume that the characteristic equation associated with Eq.(2.2) is

p(λ) = p0λ
k + p1λ

k−1 + ...+ pk−1λ+ pk = 0, (2.3)

where pi =
∂f(x, x..., x)

∂xn−i
.

Theorem A ( [30]). Assume that pi ∈ R , i = 1, 2, ... and k ∈ {0, 1, 2, ...}.
Then,

k∑
i=1

|pi| < 1

is a sufficient condition for the asymptotic stability of the difference equation

yn+k + p1yn+k−1 + ...+ pkyn = 0, n = 0, 1 . . . .

Next, we introduce a fundamental theorem to prove the global attractor of the
fixed points.
Theorem B ( [30]). Let g : [a, b]k+1 → [a, b] be a continuous function, where k is
a positive integer and [a, b] is an interval of real numbers. Consider the difference
equation

xn+1 = g(xn, xn−1, ..., xn−k), n = 0, 1, . . . . (2.4)
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Suppose that g satisfies the following conditions.
(1) For each integer i with 1 ≤ i ≤ k+1, the function g(z1, z2, ..., zk+1) is weakly

monotonic in zi for fixed z1, z2, ..., zi−1, zi+1, ..., zk+1.
(2) If m,M is a solution of the system

m = g(m1,m2, ...,mk+1), M = g(M1,M2, ...,Mk+1),

then m = M , where for each i = 1, 2, ..., k + 1, we set

mi=

{
m, if g is non-decreasing in zi,

M, if g is non-increasing in zi,

}
, Mi=

{
M, if g is non-decreasing in zi,

m, if g is non-increasing in zi.

}
.

Then, there exists exactly one equilibrium point x̄ of Eq. (2.4), and every solution
of Eq. (2.4) converges to x̄.

3. Local Stability of the Equilibrium Point of Eq.(1.1)
This section studies the local stability character of the equilibrium point of Eq.(1.1).
Eq.(1.1) has an equilibrium point given by

x = ax+
bx

cx− dx
.

If (c − d)(1 − a) > 0, then the only positive equilibrium point of Eq.(1.1) is given
by

x =
b

(c− d)(1− a)
.

Let f : (0,∞)2 −→ (0,∞) be a continuous function defined by

f(u, v) = au+
du

cu− dv
. (3.1)

Therefore, it follows that

∂f(u, v)

∂u
= a− bdv

(cu− dv)2
,

∂f(u, v)

∂v
=

bdu

(cu− dv)2
.

Then, we see that

∂f(x, x)

∂u
= a− d(1− a)

(c− d)
= p0,

∂f(x, x)

∂v
=

d(1− a)

(c− d)
= p1.

Then, the linearized equation of Eq.(1.1) about x is

yn+1 − p0yn−1 − p1yn−3 = 0.
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Theorem 3.1. Assume that

|ac− d|+ d |1− a| < |c− d| .

Then, the positive fixed point of Eq.(1.1) is locally asymptotically stable.

Proof. It follows by Theorem A that Eq.(1.1) is asymptotically stable if

|p1|+ |p0| < 1.

That is, ∣∣∣∣a− d(1− a)

(c− d)

∣∣∣∣+ ∣∣∣∣d(1− a)

(c− d)

∣∣∣∣ < 1,

then,
|a(c− d)− d(1− a)|+ |d(1− a)| < |c− d| .

Thus
|ac− d|+ d |1− a| < |c− d| .

According to Theorem A, the fixed point of Eq.(1.1) is asymptotically stable. Hence,
the proof is complete.

4. Global Attractivity of the Equilibrium Point of
Eq.(1.1)

In this section, we investigate the global attractivity character of the solutions of
Eq.(1.1).

Theorem 4.1. The fixed point x of Eq.(1.1) is a global attractor if ac > d.

Proof. Let α and β be real numbers and assume that g : [α, β]2 −→ [α, β] is a
function defined by Eq.(3.1).Then,

∂g(u, v)

∂u
= a− bdv

(cu− dv)2
,

∂g(u, v)

∂v
=

bdu

(cu− dv)2
.

Case (1) If a− bdv
(cu−dv)2 > 0, then we can easily see that the function g(u, v) is

increasing in u, v. Suppose that (m,M) is a solution of the system

m = g(m,m) and M = g(M,M).

Then from, Eq.(1.1), we see that

m = am+
bm

cm− dm
,

M = aM +
bM

cM − dM
.

This result gives
(M −m) = a(M −m), a ̸= 1.
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Thus,
M = m.

It follows by Theorem B that x is a global attractor of Eq.(1.1). Therefore, the
proof is complete.

Case (2) If a − bdv
(cu−dv)2 < 0, let α and β be a real numbers and assume

that g : [α, β]2 −→ [α, β] is a function defined by

g(u, v) = au+
bu

cu− dv
.

Then, we can easily see that the function g(u, v) is decreasing in u and increasing
in v. Suppose that (m,M) is a solution of the system

M = g(m,M) and m = g(M,m).

Then, from Eq.(1), we see that

m = aM +
bM

cM − dm
,

M = am+
bm

cm− dM
,

cMm− acM2 − dm2 + adMm = bM,

cMm− acm2 − dM2 + adMm = bm,

then
(M2 −m2)(d− ac) = b(M −m), ac > d.

Thus,
M = m.

It follows by Theorem B that x is a global attractor of Eq.(1.1). Hence, the proof
is complete.

5. Existence of Periodic Solutions
In this section, we study the existence of periodic solutions of Eq.(1.1). The follow-
ing theorem states the necessary and sufficient condition that this equation does
not have periodic solutions of prime period two.

Theorem 5.1. Eq.(1.1) has no positive solutions of prime period two.

Proof. First suppose that there exist prime period two solutions

..., p, q, p, q...,

of Eq.(1.1). Then,

p = ap+
bp

cp− dp
,

q = aq +
bq

cq − dq
.
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Then,

p(1− a) =
b

c− d
,

q(1− a) =
b

c− d
.

This result contradicts the fact that p ̸= q. Hence, this completes the proof.

6. Special case of Eq.(1.1)
In this section, we study the following special case of Eq.(1.1)

xn+1 = xn−1 +
xn−1

xn−1 − xn−3
, (6.1)

where the initial conditions x−3, x−2, x−1 and x0 are arbitrary real numbers
with x−3 ̸= x−1 and x−2 ̸= x0.

Theorem 6.1. Let {xn}∞n=−3 be the solution of Eq.(6.1) satisfying x−3 = t, x−2 =
s, x−1 = k, x0 = h. Then, for n = 0, 1, 2...

x4n−3 =

[
nk2 + k(n2 − t(2n− 1)) + (n− 1)t(t− n)

]
k − t

,

x4n−2 =

[
nh2 + h(n2 − s(2n− 1)) + (n− 1)s(s− n)

]
h− s

,

x4n−1 =

[
(n+ 1)k2 + k(n(n+ 1)− t(2n+ 1)) + nt(t− n)

]
k − t

,

x4n =

[
(n+ 1)h2 + h(n(n+ 1)− s(2n+ 1)) + ns(s− n)

]
h− s

.

Proof. For n = 0, the result holds. Now suppose that n > o and that our
assumption holds for n− 1. That is ,

x4n−7 =

[
(n− 1)k2 + ((n− 1)2 − t(2n− 3)) + (n− 2)t(t− (n− 1))

]
k − t

,

x4n−6 =

[
(n− 1)h2 + ((n− 1)2 − s(2n− 3)) + (n− 2)s(s− (n− 1))

]
h− s

,

x4n−5 =

[
nk2 + k(n(n− 1)− t(2n− 1)) + (n− 1)t(t− (n− 1))

]
k − t

,

x4n−4 =

[
nh2 + h(n(n− 1)− s(2n− 1)) + (n− 1)s(s− (n− 1))

]
k − t

.

Now, it follows from Eq.(6.1) that

x4n−3

=x4n−5 +
x4n−5

x4n−5 − x4n−7

=

[
nk2 + k(n(n− 1)− t(2n− 1)) + (n− 1)t(t− (n− 1))

]
k − t
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+

[nk2+k(n(n−1)−t(2n−1))+(n−1)t(t−(n−1))]
k−t

[nk2+k(n(n−1)−t(2n−1))+(n−1)t(t−(n−1))]
k−t − [(n−1)k2+((n−1)2−t(2n−3))+(n−2)t(t−(n−1))]

k−t

=

[
nk2 + k(n(n− 1)− t(2n− 1)) + (n− 1)t(t− (n− 1))

]
k − t

+
[nk2+k(n(n−1)−t(2n−1))+(n−1)t(t−(n−1))]

[nk2+k(n(n−1)−t(2n−1))+(n−1)t(t−(n−1))]−[(n−1)k2+((n−1)2−t(2n−3))+(n−2)t(t−(n−1))]

=

[
nk2 + k(n(n− 1)− t(2n− 1)) + (n− 1)t(t− (n− 1))

]
k − t

+

[
nk2 + k(n(n− 1)− t(2n− 1)) + (n− 1)t(t− (n− 1))

]
[k2 + k(n(n− 1)− t(2n− 1)) + t(t− (n− 1))− ((n− 1)2 − t(2n− 3))]

=
[
nk2 + k(n(n− 1)− t(2n− 1)) + (n− 1)t(t− (n− 1))

][
1

k−t
+

1

[k2+k(n(n−1)−t(2n− 1)) + t(t− (n− 1))− ((n− 1)2 − t(2n− 3))]

]
=
[
nk2 + k(n(n− 1)− t(2n− 1)) + (n− 1)t(t− (n− 1))

][
k2 + t(t− (n− 1)) + k(n(n− 1)− t(2n− 1))− ((n− 1)2 − t(2n− 3)) + k − t

]
(k − t) [k2 + k(n(n− 1)− t(2n− 1)) + t(t− (n− 1))− ((n− 1)2 − t(2n− 3))]

=

[
nk2 + k(n2 − t(2n− 1)) + (n− 1)t(t− n)

]
k − t

.

Additionally, according to Eq.(6.1) ,

x4n−1

=x4n−3 +
x4n−3

x4n−3 − x4n−5

=

[
nk2 + k(n2 − t(2n− 1)) + (n− 1)t(t− n)

]
k − t

+

[nk2+k(n2−t(2n−1))+(n−1)t(t−n)]
k−t

[nk2+k(n2−t(2n−1))+(n−1)t(t−n)]
k−t − [nk2+k(n(n−1)−t(2n−1))+(n−1)t(t−(n−1))]

k−t

=

[
nk2 + k(n2 − t(2n− 1)) + (n− 1)t(t− n)

]
k − t

+

[
nk2 + k(n2 − t(2n− 1)) + (n− 1)t(t− n)

]
k(n2 − t(2n− 1))− k(n(n− 1)− t(2n− 1))

=

[
nk2 + k(n2 − t(2n− 1)) + (n− 1)t(t− n)

]
k − t

+

[
nk2 + k(n2 − t(2n− 1)) + (n− 1)t(t− n)

]
nk

=
[
nk2 + k(n2 − t(2n− 1)) + (n− 1)t(t− n)

]
(

1

k − t
+

1

nk
)

=
[
nk2 + k(n2 − t(2n− 1)) + (n− 1)t(t− n)

] [ k(n− t)

nk(k − t)

]
=

[
(n+ 1)k2 + k(n(n+ 1)− t(2n+ 1)) + nt(t− n)

]
k − t

.

Also the other relations can be proofed similarly.
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7. Numerical examples
We now present some numerical examples to confirm the theoretical work.

Example 7.1. We plot the stability of our equation under the values a = 0.2, b =
1, c = 5, d = 0.5, x−3 = 5, x−2 = 0.3, x−1 = 2 and x0 = −1. See Figure 1.

Example 7.2. This example shows the global stability of our equation under the
values a = 0.5, b = 2, c = 6, d = 0.1, x−3 = 6, x−2 = −5, x−1 = 4 and x0 = −3.
See Figure 2.

Example 7.3. An unstable solution of Eq.(6.1) is shown in Figure 3 under the
values a = 0.2, b = 1, c = 5, d = 0.5, x−3 = 5, x−2 = 0.3, x−1 = 2 and x0 = −1.
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