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ROUGH CONVERGENCE OF DOUBLE
SEQUENCES OF FUZZY NUMBERS

Funda Babaarslan 1,† and A. Ni̇hal Tuncer2

Abstract In this paper, we define the concepts of rough convergence and
rough Cauchy sequence of double sequences of fuzzy numbers. Then, we in-
vestigate some relations between rough limit set and extreme limit points of
such sequences.
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1. Introduction
The convergence of double sequences was introduced by Pringsheim [10] as follows:
A double sequence x = (xnm) is said to be convergent in the Pringsheim’s sense if
for every ϵ > 0, there exists an N ∈ N such that |xnm −L| < ϵ whenever n,m ≥ N .
In here, L is called the Pringsheim limit of x. Also, a double sequence x = (xnm)
is said to be Cauchy sequence if for every ϵ > 0, there exists an N ∈ N such that
|xkl − xnm| < ϵ whenever k ≥ n ≥ N, l ≥ m ≥ N .

Phu [9] introduced the concept of rough convergence in normed linear space
as follows: Let x = (xn) be a sequence in some normed space (X, ∥.∥) and r be
a non-negative real number. Then, x = (xn) is said to be rough convergent to
x∗ ∈ X, if for every ϵ > 0, there exists an nϵ ∈ N such that n ≥ nϵ provided that
∥xn − x∗∥ < r + ϵ. In here, r ≥ 0 is called roughness degree of x. Also, Phu [9]
defined r − limit set as LIMrx := {L ∈ R : xn

r−→ L}. If LIMrx ̸= ∅, then
x = (xn) is said to be r-convergent.

The concepts of r−limit inferior, r−limit superior and the rough core of a real
sequence were studied by Aytar [2]. Then, Aytar [3] introduced rough statistical
convergence by using the natural density. Also, he defined the set of rough statistical
limit points of a sequence and he showed that this set is closed and convex.

Since double sequences have more application areas in summability theory, Dün-
dar and Çakan [6] extended the convergence in Pringsheim’s sense to rough conver-
gence. The concepts of rough statistical convergence and rough statistical Cauchy
of a real double sequence were given by Aytar [4]. More recent developments on
rough convergence and its statistical analogues can be found in [5, 7, 8, 11].

Moreover, Akçay and Aytar [1] studied the notion of rough convergence in the
metric space (L(R), d̄), where L(R) denotes the set of all fuzzy numbers and d̄
denotes the supremum metric on L(R). This work motivated us to study rough
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convergence of double sequences of fuzzy numbers. We define rough convergence in
Pringsheim’s sense, r − limit set and rough Cauchy of a double sequence of fuzzy
numbers. Also, we give some properties of the r− limit set and we examine relation
between the set of rough limit and the extreme limit points of such sequences by
using the similar tecniques that in [1].

2. Basic notions and some properties
Let A and B be compact and convex subsets of Rn. The Hausdorff distance between
them is defined as

δ∞(A,B) = max
{
sup inf
a∈Ab∈B

∥a− b∥, sup inf
b∈Ba∈A

∥a− b∥
}
.

A fuzzy number is a fuzzy subset of Rn which is normal, bounded and convex. Let
L(Rn) denotes the set of all n-dimensional fuzzy numbers which are upper semi
continuous and have a compact support. Then, the linear identity of L(Rn) is
defined as follows:

[X + Y ]γ = [X]γ + [Y ]γ , (X,Y ∈ L(Rn))

and

[λX]γ = λ[X]γ , (λ ∈ R),

where γ-level set Xγ := {x ∈ Rn : X(x) ≥ γ}, for 0 < γ ≤ 1. Also, the metric dq is
defined as

dq(X,Y ) = (

∫ 1

0

δ∞(Xγ , Y γ)qdq)
1
q ,

for each 1 ≤ q < ∞. Furthermore, d∞ = limq→∞ dq(X,Y ) with dq ≤ dr if q ≤ r.
In this paper, dq will be denoted by d for 1 ≤ q ≤ ∞.

Definition 2.1. A double sequence X = (Xnm) of fuzzy numbers is a function X
from N × N into L(Rn). Here, Xnm is the value of the function at a point (n,m).
By the convergence of double sequences, the convergence in Pringsheim’s sense is
understood, i.e. X = (Xnm) is said to be P -convergent to a finite number L, if
Xnm tends to L as both n and m tends to ∞, independently each other [12].

Definition 2.2. A double sequence X = (Xnm) is said to be bounded, if there
exists a positive number M such that d(Xnm, 0) < M for all n,m ∈ N [12].

Throughout the paper, let X = (Xnm) be a double sequence of fuzzy numbers
and let r be a nonnegative real number.

3. Main results
Definition 3.1. The sequence X = (Xnm) is said to be rough convergent in Pring-
sheim’s sense to a fuzzy number X∗, denoted by Xnm

r−→ X∗, if for every ϵ > 0,
there exists an integer iϵ such that

d(Xnm, X∗) < r + ϵ,

whenever n,m ≥ iϵ.
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Here, r is called roughness degree. The concept of rough convergence reduces
the classical convergence of double sequences of fuzzy numbers for r = 0. In case
r > 0, r-limit point of (Xnm) is usually no more unique, so we have defined so-called
r-limit set as

LIMrXnm := {X∗ ∈ L(Rn) : Xnm
r−→ X∗}.

X = (Xnm) is said to be r-convergent if this r-limit set is nonempty.
A double sequence of fuzzy numbers which is divergent can be convergent in

Pringsheim’s sense with a certain roughness degree. Now, we give the following
example.

Example 3.1. The sequence X = (Xnm) is defined as follows:

Xnm(x) =

 ℓ1(x) , if (n+m) is odd,

ℓ2(x) , if (n+m) is even,

where

ℓ1(x) =


x
2 , if x ∈ [0, 2],

−x+4
2 , if x ∈ [2, 4],

0, otherwise,

and

ℓ2(x) =


x−5
2 , if x ∈ [5, 7],

−x+9
2 , if x ∈ [7, 9],

0, otherwise.

The γ-level set of the sequence is

[ℓ1(x)]
γ = [2γ, 4− 2γ]

and

[ℓ2(x)]
γ = [2γ + 5, 9− 2γ].

Then, we have

LIMrXnm :=

∅, if r < 5
2 ,[

ℓ2 − ŕ, ℓ1 + ŕ
]
, otherwise,

which ŕ is nonnegative real number with {X ∈ L(Rn) : ℓ2 − ŕ ⪯ X ⪯ ℓ1 + ŕ}.

Definition 3.2. The sequence X = (Xnm) is said to be rough Cauchy sequence
with roughness degree ρ or ρ-Cauchy if for every ϵ > 0, there exists iϵ such that

d(Xnm, Xkl) < ρ+ ϵ

whenever k ≥ n ≥ iϵ and l ≥ m ≥ iϵ. Here, ρ is called Cauchy degree of (Xnm).
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Let Y = (Ynm) double convergent to X∗. Then, (Ynm) often cannot be deter-
mined exactly, so we have to do with an approximated sequence (Xnm) provided
that

d(Xnm, Ynm) ≤ ∆

for all n,m, where ∆ > 0 is an upper bound of approximation errors. This sequence
(Xnm) may not be classical convergent, but the equation

d(Xnm, X∗) ≤ d(Xnm, Ynm) + d(Ynm, X∗) ≤ ∆+ ϵ

implies that it is r-convergent for r = ∆. Similarly, a Cauchy sequence Y = (Ynm)
is approximated by X = (Xnm) with ∆ > 0, then, for all ϵ > 0 there exists iϵ such
that

d(Xnm, Xkl) ≤ d(Xnm, Ynm) + d(Ynm, Ykl) + d(Ykl, Xkl) ≤ 2∆ + ϵ,

i.e., (Xnm) is a ρ-Cauchy sequence for ρ = 2∆.

Theorem 3.1. If a sequence X = (Xnm) converges to X∗, then

LIMrXnm := Br(X∗).

Proof. Let ϵ > 0. Since Xnm converges to X∗, there is an integer iϵ provided that

d(Xnm, X∗) < ϵ,

whenever n,m ≥ iϵ. Assume that Y ∈ Br(X∗) = {Y ∈ L(R) : d(Y,X∗) ≤ r}. Then,
we have

d(Xnm, Y ) ≤ d(Xnm, X∗) + d(X∗, Y ) < r + ϵ,

for every n,m ≥ i
′

ϵ. It shows that Y ∈ LIMrXnm.
Let Y ∈ LIMrXnm. Then, there is an integer i

′′

ϵ provided that

d(Xnm, Y ) < r + ϵ,

for all n,m ≥ i
′′

ϵ . Let iϵ = max{i′′ϵ , i
′

ϵ}. For every i > iϵ, we get

d(Y,X∗) ≤ d(Y,Xnm) + d(Xnm, X∗) < r + 2ϵ.

Since ϵ is arbitrary, we have d(Y,X∗) ≤ r which shows that Y ∈ Br(X∗).

Theorem 3.2. For a sequence X = (Xnm), we have diam(LIMrXnm) ≤ 2r.

Proof. Assume that

diam(LIMrXnm) = sup{d(Y, Z) : Y, Z ∈ LIMrXnm} > 2r.

Then, there exists Y, Z ∈ LIMrXnm such that d(Y, Z) > 2r. For any ϵ ∈ (0, d(Y,Z)
2 −

r), we have

∃i
′

ϵ ∈ N : ∀n,m ≥ i
′

ϵ ⇒ d(Xnm, Y ) < r + ϵ
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and

∃i
′′

ϵ ∈ N : ∀n,m ≥ i
′′

ϵ ⇒ d(Xnm, Z) < r + ϵ.

Let iϵ := max{i′ϵ, i
′′

ϵ }. Then, we get

d(Y, Z) ≤ d(Xnm, Y ) + d(Xnm, Z) < 2(r + ϵ) < 2r + 2
d(Y, Z)

2
< d(Y, Z).

This is a contradiction. Thus, we have diam(LIMrXnm) ≤ 2r.
For a convergent sequence (Xnm) with limXnm = X∗, we have LIMrXnm =

Br(X∗). Since diam(Br(X∗)) = 2r, in general the upper bound 2r of the diameter
of an r − limitset cannot be decreased anymore.

Theorem 3.3. A sequence X = (Xnm) is r-convergent to X∗, if there exists a
double sequence Y = (Ynm) of fuzzy number such that Ynm → X∗ as n,m → ∞ and
d(Xnm, Ynm) ≤ r for every n,m ∈ N .

Proof. Let Ynm → X∗ and d(Xnm, Ynm) ≤ r for every n,m ∈ N . From assump-
tion, for every ϵ > 0, there exists an iϵ such that d(Ynm, X∗) < ϵ for every n,m ≥ iϵ.
Since d(Xnm, Ynm) ≤ r, we have

d(Xnm, X∗) ≤ d(Xnm, Ynm) + d(Ynm, X∗) < r + ϵ

for n,m ≥ iϵ. This implies that (Xnm) is r-convergent to X∗.

Theorem 3.4. If (Xnimi) is a subsequence (Xnm), then LIMrXnm ⊂ LIMrXnimi .

Theorem 3.5. The r-limit set of an arbitrary sequence X = (Xnm) is closed.

Proof. Let (Ynm) ⊂ LIMrXnm such that Ynm → Y∗ as n,m → ∞. We will show
that Y∗ ∈ LIMrXnm. We can write

d(Yn0m0 , Y∗) < r +
ϵ

2

for chosen n0,m0 ∈ N such that n0,m0 ≥ k. Since (Ynm) ⊂ LIMrXnm, we have
(Yn0m0

) ∈ LIMrXnm, i.e.

d(Yn0m0 , Y∗) < r +
ϵ

2
.

Therefore, we get

d(Xnm, Y∗) ≤ d(Xnm, Yn0m0) + d(Yn0m0 , Y∗) < r + ϵ

for n,m, n0,m0 ≥ kϵ. Thus, we have Y∗ ∈ LIMrXnm.

Definition 3.3. The Pringsheim’s limit inferior and the Pringsheim’s limit superior
of X are defined as follows:

lim infXnm := infMX

and

lim supXnm := supNX ,
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where

MX := {µ ∈ L(R) : {(n,m) ∈ N ×N : Xnm < µ} is infinite set}

and

NX := {µ ∈ L(R) : {(n,m) ∈ N ×N : Xnm > µ} is infinite set}.

Theorem 3.6. If X∗ ∈ LIMrXnm, then d(limsupXnm, X∗) ≤ r
and d(liminfXnm, X∗) ≤ r.

Proof. Suppose that d(liminfXnm, X∗) > r. Then, take ϵ := d(liminfXnm,X∗)−r
2 .

By definition of limit inferior, for given k
′

ϵ there exists (n,m) ∈ N×N with n,m ≥ k
′

ϵ

provided that

d(liminfXnm, Xnm) < ϵ.

On the other hand, since X∗ ∈ LIMrXnm, there is k
′′

ϵ such that

d(Xnm, X∗) < r + ϵ,

whenever n,m ≥ k
′′

ϵ . Let kϵ := max{k′

ϵ, k
′′

ϵ }. Hence, we get

d(liminfXnm, X∗) ≤ d(liminfXnm, Xnm) + d(Xnm, X∗)

<r + 2ϵ

=r + d(liminfXnm, X∗)− r

=d(liminfXnm, X∗)

which is a contradiction. Similarly, the theorem’s other part can be proved.

Theorem 3.7. If LIMrXnm ̸= ∅, then LIMrXnm ⊆ [(limsupXnm)− r,
(liminfXnm) + r].

Proof. Now, we will show that (limsupXnm) − r ⪯ X∗ ⪯ (liminfXnm) + r for
any X∗ ∈ LIMrXnm. Assume that X∗ ⪰ (liminfXnm) + r. Then, there exists an
α ∈ [0, 1] provided that

X∗
α > (liminfXnm

α) + r

or

X∗
α
> (liminfXnm

α
) + r.

Thus, we can write the inequalities below:

X∗
α − (liminfXnm

α) > r

or

X∗
α − (liminfXnm

α
) > r.

Also, from Theorem 3.6, we get

|(liminfXnm
α)−X∗

α| ≤ r

and

|(liminfXnm
α
)−X∗

α| ≤ r.

This is a contradiction.
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Lemma 3.1. Let ΓX be the set of cluster point of a sequence X = (Xnm). If any
C ∈ ΓX , we have

d(X∗, C) ≤ r

for all X∗ ∈ LIMrXnm.

Proof. Assume that C ∈ ΓX and X∗ ∈ LIMrXnm such that d(X∗, C) > r. Then,
we have

r < d(X∗, C) ≤ d(X∗, Xnm) + d(Xnm, C) < r + 2ϵ

Hence, we get d(X∗, C) < r, where ϵ = d(X∗,C)−r
3 . So, the proof is completed.

Theorem 3.8. If C is a cluster point of a sequence X = (Xnm), then

LIMrXnm ⊆ Br(C) (3.1)

Also,

LIMrXnm =
∩

C∈ΓX

Br(C) = {X∗ ∈ L(Rn) : ΓX ⊆ Br(X∗)}. (3.2)

Proof. Let C ∈ ΓX and X∗ ∈ LIMrXnm. Then, according to the Lemma 3.1,
we write

d(X∗, C) ≤ r

otherwise, there are infinite Xnm satisfying

d(Xnm, X∗) ≥ r + ϵ

for ϵ = d(X∗,C)−r
2 > 0. This contradicts with the fact that X∗ ∈ LIMrXnm.

Now, we will show that another equality. From (3.1), we can write

LIMrXnm ⊆
∩

C∈ΓX

Br(C). (3.3)

Let
Y ∈

∩
C∈ΓX

Br(C).

Then, we have

d(Y,C) ≤ r

for all C ∈ ΓX . Therefore,∩
C∈ΓX

Br(C) ⊆ {X∗ ∈ L(Rn) : ΓX ⊆ Br(X∗)}. (3.4)

Let Y ̸∈ LIMrXnm. Then, there exists infinite Xnm such that d(Xnm, Y ) ≥ r + ϵ,
for an ϵ > 0. This implies that there is a cluster point C of (Xnm) such as d(Y,C) ≤
r + ϵ, that is,

ΓX ⊈ Br(Y ) and Y ̸∈ {X∗ ∈ L(Rn) : ΓX ⊆ Br(X∗)}.

Hence, Y ∈ LIMrXnm follows from Y ∈ {X∗ ∈ L(Rn) : ΓX ⊆ Br(X∗)}, that is,

{X∗ ∈ L(Rn) : ΓX ⊆ Br(X∗)} ⊆ LIMrXnm. (3.5)

Thus, the inclusions (3.3)-(3.5) show that the equality in (3.2) is true.
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