ON A *P*-ADIC HILBERT-TYPE INTEGRAL OPERATOR AND ITS APPLICATIONS

Huabing Li^1 and Jianjun $Jin^{1,\dagger}$

Abstract In this note, we deal with a *p*-adic Hilbert-type integral operator induced by a symmetric homogeneous kernel of degree -1 and obtain the expression of the norm of this operator. As applications, we establish some new *p*-adic Hilbert-type inequalities with best constant factors.

Keywords *p*-adic field, *p*-adic Hilbert-type integral operator, *p*-adic Hilbert-type inequalities, norm of operator.

MSC(2010) 11F85, 26D15.

1. Introduction and main result

Let q > 1, $\mathbb{R}_+ = (0, +\infty)$, f be a real-valued function on \mathbb{R}_+ , then we have

$$\left[\int_0^\infty \left|\int_0^\infty \frac{f(y)}{x+y} dy\right|^q dx\right]^{\frac{1}{q}} \le \pi \csc\left(\frac{\pi}{q}\right) \left[\int_0^\infty |f(x)|^q dx\right]^{\frac{1}{q}},\tag{1.1}$$

for $f \in L^q(\mathbb{R}_+)$. Here $L^q(\mathbb{R}_+)$ is the usual Lebesgue space on \mathbb{R}_+ . Inequality (1.1) is well known as Hilbert's inequality and the constant factor $\pi \csc(\frac{\pi}{q})$ in (1.1) is the best possible, see [4]. Hilbert's inequality can be restated in the language of operator theory. For a measurable kernel K(x, y) on $\mathbb{R}^2_+ = \mathbb{R}_+ \times \mathbb{R}_+$, we define an operator T as: for $f \in L^q(\mathbb{R}_+)$,

$$(Tf)(x) := \int_0^\infty K(x, y) f(y) dy, \quad x \in \mathbb{R}_+.$$
(1.2)

Taking the Hilbert kernel $K(x, y) = \frac{1}{x+y}$ in (1.2), we get that T is bounded from $L^q(\mathbb{R}_+)$ to $L^q(\mathbb{R}_+)$ and $||T|| = \pi \csc(\frac{\pi}{q})$.

If we take $K(x, y) = \frac{1}{\max\{x, y\}}$ in (1.2), then we can show that T is bounded from $L^q(\mathbb{R}_+)$ to $L^q(\mathbb{R}_+)$ and $||T|| = \frac{q^2}{q-1}$. It follows that the following Hardy-Littlewood-Pólya inequality holds for all $f \in L^q(\mathbb{R}_+)$,

$$\left[\int_0^\infty \left|\int_0^\infty \frac{f(y)}{\max\{x,y\}} dy\right|^q dx\right]^{\frac{1}{q}} \le \frac{q^2}{q-1} \left[\int_0^\infty |f(x)|^q dx\right]^{\frac{1}{q}}.$$

We can obtain some other inequalities with best constant factors similar to Hilbert's inequality if we take other appropriate kernels, see [4]. We call these

[†]the corresponding author. Email address:jinjjhb@163.com(J. Jin)

¹School of Mathematics Sciences, Hefei University of Technology, Xuancheng

Campus, Xuancheng 242000, China

inequalities Hilbert-type inequalities. Hilbert's inequality and Hilbert-type inequalities are important in analysis and applications, see [4, 8] and [9]. In the past two decades, this type of inequalities had been generalized and studied in different directions by many mathematicians and a lot of interesting results had been obtained, see for example [1,3,5-7,12,16], and Yang's books [13-15] and the references cited therein for more details on this topic.

In this note, we introduce and study a p-adic Hilbert-type integral operator induced by a symmetric homogeneous kernel of degree -1. We obtain the expression of the norm of this operator. As applications, we establish some new p-adic Hilbert-type inequalities with best constant factors.

To state our results, we first recall some basic definitions and notations on *p*-adic analysis.

For a prime number p, let \mathbb{Q}_p be the field of p-adic numbers. It is defined as the completion of the field of rational numbers \mathbb{Q} with respect to the non-Archimedean p-adic norm $|\cdot|_p$. The p-adic norm is defined as follows: $|0|_p = 0$; If any non-zero rational number x is represented as $x = p^{\gamma} \frac{m}{n}$, where $\gamma \in \mathbb{Z}$, $m \in \mathbb{Z}$, $n \in \mathbb{Z}$, and m and n are not divisible by p, then $|x|_p = p^{-\gamma}$. Any non-zero p-adic number $x \in \mathbb{Q}_p$ can be uniquely represented in the following canonical form $x = p^{\gamma} \sum_{j=0}^{\infty} a_j p^j$, $\gamma = \gamma(x) \in \mathbb{Z}$, where a_j are integers with $0 \le a_j \le p - 1$, $a_0 \ne 0$.

Also, it is not hard to show that the norm satisfies the following properties:

$$|xy|_p = |x|_p |y|_p, \quad |x+y|_p \le \max\{|x|_p, |y|_p\}.$$

It follows that, if $|x|_p \neq |y|_p$, then $|x+y|_p = \max\{|x|_p, |y|_p\}$. In what follows, we set $\mathbb{Q}_p^* = \mathbb{Q}_p \setminus \{0\}$ and denote by

$$B_{\gamma}(a) = \{ x \in \mathbb{Q}_p : |x - a|_p \le p^{\gamma} \},\$$

the ball with center at $a \in \mathbb{Q}_p$ and radius p^{γ} , and

$$S_{\gamma}(a) = \{x \in \mathbb{Q}_p : |x - a|_p = p^{\gamma}\} = B_{\gamma}(a) \setminus B_{\gamma-1}(a).$$

For simplicity, we use B_{γ} and S_{γ} to denote $B_{\gamma}(0)$ and $S_{\gamma}(0)$, respectively.

Since \mathbb{Q}_p is a locally compact Hausdorff space, there exists a Haar measure dx on \mathbb{Q}_p , which is unique up to positive constant multiple and is translation invariant. We normalize the measure dx by the equality

$$\int_{B_0} dx = |B_0|_H = 1,$$

where $|E|_H$ denotes the Haar measure of a measurable subset E of \mathbb{Q}_p . A simple calculation yields that

$$\int_{B_{\gamma}} dx = |B_{\gamma}|_{H} = p^{\gamma}, \int_{S_{\gamma}} dx = |S_{\gamma}|_{H} = p^{\gamma}(1 - p^{-1}).$$

We refer the reader to [11] or [10] for a more detailed introduction to the *p*-adic analysis.

Let q > 1, w(x) be a non-negative measurable function on \mathbb{Q}_p^* , f be a real-valued measurable function on \mathbb{Q}_p^* , we define the weighted Lebesgue space $L_w^q(\mathbb{Q}_p^*)$ on \mathbb{Q}_p^* as

$$L_w^q(\mathbb{Q}_p^*) := \{ f(x) : ||f||_{q,w} = \left[\int_{\mathbb{Q}_p^*} |f(x)|^q w(x) dx \right]^{\frac{1}{q}} < \infty \}.$$

We write $L^q(\mathbb{Q}_p^*)$ and $||f||_q$ instead of $L^q_w(\mathbb{Q}_p^*)$ and $||f||_{q,w}$, respectively, if $w(x) \equiv 1$.

For r > 1, let r' be the conjugate of r, i.e., $\frac{1}{r} + \frac{1}{r'} = 1$. Let K(x, y) be nonnegative and continuous on \mathbb{R}^2_+ , and satisfy $K(tx, ty) = t^{-1}K(x, y)$, K(x, y) = K(y, x), for any t, x, y > 0. Here we say K(x, y) is a symmetric homogeneous function of degree -1. We assume that

$$0 < k_p(r) := (1 - p^{-1}) \sum_{-\infty < \gamma < \infty} K(1, p^{\gamma}) \cdot p^{\frac{\gamma}{r'}} < \infty.$$

Remark 1.1. Noting that K(x, y) is a symmetric homogeneous function of degree -1, we see that

$$k_p(r) = (1 - p^{-1}) \left[K(1, 1) + \sum_{\gamma=1}^{\infty} K(1, p^{\gamma}) (p^{\frac{\gamma}{r'}} + p^{\frac{\gamma}{r}}) \right] = k_p(r').$$

The following theorem is the main result of this paper.

Theorem 1.1. Let p a prime number, r > 1, q > 1, K(x, y) satisfy above conditions. Let $w(x) = |x|_p^{\frac{q}{2}-1}$, we define p-adic Hilbert-type integral operator T^p as: for $f \in L^q_w(\mathbb{Q}_p^*)$,

$$(T^p f)(y) := \int_{\mathbb{Q}_p^*} K(|x|_p, |y|_p) f(x) dx, \quad y \in \mathbb{Q}_p^*.$$

Then we have T^p is bounded from $L^q_w(\mathbb{Q}^*_p)$ to $L^q_w(\mathbb{Q}^*_p)$ and $||T^p|| = k_p(r)$, where

$$||T^p|| := \sup_{f \in L^q_w(\mathbb{Q}^*_p)} \frac{||T^p f||_{q,w}}{||f||_{q,w}}.$$

It follows that

Corollary 1.1. Under the assumptions of Theorem 1.1. Let $f \ge 0$, $f \in L^q_w(\mathbb{Q}_p^*)$. Then we have

$$\left[\int_{\mathbb{Q}_p^*} |y|_p^{\frac{q}{r}-1} \left(\int_{\mathbb{Q}_p^*} K(|x|_p, |y|_p) f(x) dx\right)^q dy\right]^{\frac{1}{q}} \le k_p(r) ||f||_{q,w}$$

where the constant factor $k_p(r)$ is the best possible.

2. Proof of main result

In this section, we prove Theorem 1.1. The following lemma is needed in our proof.

Lemma 2.1. Under the assumption of Theorem 1.1 and let r' and q' be the conjugates of r and q, respectively. Denote $W_1(r,q;x)$, $W_2(r',q';y)$ by

$$W_1(r,q;x) := \int_{\mathbb{Q}_p^*} K(|x|_p, |y|_p) \cdot \frac{|x|_p^{\frac{q-1}{r}}}{|y|_p^{\frac{1}{r'}}} \, dy, \quad x \in \mathbb{Q}_p^*;$$
(2.1)

$$W_2(r',q';y) := \int_{\mathbb{Q}_p^*} K(|y|_p,|x|_p) \cdot \frac{|y|_p^{\frac{q'-1}{p'}}}{|x|_p^{\frac{1}{r}}} dx, \quad y \in \mathbb{Q}_p^*.$$
(2.2)

Then we have

$$W_1(r,q;x) = k_p(r)|x|_p^{\frac{q}{r}-1}, \quad x \in \mathbb{Q}_p^*;$$
$$W_2(r',q';y) = k_p(r)|y|_p^{\frac{q'}{r'}-1}, \quad y \in \mathbb{Q}_p^*.$$

Proof. Let y = xt in (2.1), then, by $dy = |x|_p dt$, we have

$$\begin{split} W_{1}(r,q;x) &= \int_{\mathbb{Q}_{p}^{*}} K(|x|_{p},|xt|_{p}) \cdot \frac{|x|_{p}^{\frac{q-1}{r}}}{|xt|_{p}^{\frac{1}{r'}}} \cdot |x|_{p} dt \\ &= |x|_{p}^{\frac{q}{r}-1} \int_{\mathbb{Q}_{p}^{*}} K(1,|t|_{p}) \cdot \frac{1}{|t|_{p}^{\frac{1}{r'}}} dt \\ &= |x|_{p}^{\frac{q}{r}-1} \sum_{-\infty < \gamma < \infty} \int_{S_{\gamma}} K(1,|t|_{p})|t|_{p}^{-\frac{1}{r'}} dt \\ &= |x|_{p}^{\frac{q}{r}-1} (1-p^{-1}) \sum_{-\infty < \gamma < \infty} K(1,p^{\gamma})p^{-\frac{\gamma}{r'}} \cdot p^{\gamma} \\ &= |x|_{p}^{\frac{q}{r}-1} (1-p^{-1}) \sum_{-\infty < \gamma < \infty} K(1,p^{\gamma})p^{\frac{\gamma}{r}} \\ &= k_{p}(r)|x|_{p}^{\frac{q}{r}-1}. \end{split}$$

Similarly, we can obtain that $W_2(r',q';y) = k_p(r)|y|_p^{\frac{q'}{r'}-1}$. The lemma is proved. Now, we start to prove Theorem 1.1. For $f \in L^q_w(\mathbb{Q}^*_p)$, by using the Hölder's inequality and Lemma 2.1, we get that for $y \in \mathbb{Q}^*_p$,

$$\begin{split} & \left| \int_{\mathbb{Q}_{p}^{*}} K(|x|_{p}, |y|_{p}) f(x) dx \right| \\ \leq & \int_{\mathbb{Q}_{p}^{*}} \left\{ \left[K(|x|_{p}, |y|_{p}) \right]^{\frac{1}{q}} \frac{|x|_{p}^{\frac{1}{q'r}}}{|y|_{p}^{\frac{1}{q'r}}} |f(x)| \right\} \left\{ \left[K(|x|_{p}, |y|_{p}) \right]^{\frac{1}{q'}} \frac{|y|_{p}^{\frac{1}{q'r}}}{|x|_{p}^{\frac{1}{q'r}}} \right\} dx \\ \leq & W_{2}^{\frac{1}{q'}}(r', q'; y) \left\{ \int_{\mathbb{Q}_{p}^{*}} K(|x|_{p}, |y|_{p}) \frac{|x|_{p}^{\frac{q-1}{r}}}{|y|_{p}^{\frac{1}{r'}}} |f(x)|^{q} dx \right\}^{\frac{1}{q}} \\ = & [k_{p}(r)]^{\frac{1}{q'}} |y|_{p}^{\frac{1}{r'} - \frac{1}{q'}} \left\{ \int_{\mathbb{Q}_{p}^{*}} K(|x|_{p}, |y|_{p}) \frac{|x|_{p}^{\frac{q-1}{r}}}{|y|_{p}^{\frac{1}{r'}}} |f(x)|^{q} dx \right\}^{\frac{1}{q}}. \end{split}$$

Then

$$\begin{aligned} |||T^{p}f||_{q,w} &= \left\{ \int_{\mathbb{Q}_{p}^{*}} |y|_{p}^{\frac{q}{r}-1} \left| \int_{\mathbb{Q}_{p}^{*}} K(|x|_{p}, |y|_{p}) f(x) dx \right|^{q} dy \right\}^{\frac{1}{q}} \\ &\leq [k_{p}(r)]^{\frac{1}{q'}} \left\{ \int_{\mathbb{Q}_{p}^{*}} \int_{\mathbb{Q}_{p}^{*}} K(|x|_{p}, |y|_{p}) \frac{|x|_{p}^{\frac{q-1}{r}}}{|y|_{p}^{\frac{1}{r'}}} |f(x)|^{q} dx dy \right\}^{\frac{1}{q}} \end{aligned}$$

$$= [k_p(r)]^{\frac{1}{q'}} \left\{ \int_{\mathbb{Q}_p^*} W_1(r,q;x) |f(x)|^q \, dx \right\}^{\frac{1}{q}}$$
$$= k_p(r) ||f||_{q,w}.$$

This proves that T^p is bounded from $L^q_w(\mathbb{Q}^*_p)$ to $L^q_w(\mathbb{Q}^*_p)$ and $||T^p|| \le k_p(r)$. We next show that $||T^p|| = k_p(r)$. Let $\varepsilon = p^{-N}, N \in \mathbb{N}$, then $|\varepsilon|_p = p^N$. Set $f_{\varepsilon}(x) = 0$, when $0 < |x|_p < 1$ and $f_{\varepsilon}(x) = |x|_p^{-\frac{1}{r} - \frac{\varepsilon}{q}}$, when $|x|_p \ge 1$. Then we get that

$$\|f_{\varepsilon}\|_{q,w}^{q} = \int_{|x|_{p} \ge 1} |x|_{p}^{-1-\varepsilon} dx = (1-p^{-1}) \sum_{\gamma=0}^{\infty} p^{\gamma} p^{\gamma(-1-\varepsilon)} = \frac{1-p^{-1}}{1-p^{-\varepsilon}},$$

and

$$T^p f_{\varepsilon} = \int_{|x|_p \ge 1} K(|x|_p, |y|_p) |x|_p^{-\frac{1}{r} - \frac{\varepsilon}{q}} dx.$$

Then we have

$$\begin{split} \|T^p f_{\varepsilon}\|_{q.w}^q &= \int_{\mathbb{Q}_p^*} |y|_p^{\frac{q}{r}-1} \left(\int_{|x|_p \ge 1} K(|x|_p, |y|_p) |x|_p^{-\frac{1}{r}-\frac{\varepsilon}{q}} dx \right)^q dy \\ &= \int_{\mathbb{Q}_p^*} |y|_p^{-1-\varepsilon} \left(\int_{|t|_p \ge \frac{1}{|y|_p}} K(1, |t|_p) |t|_p^{-\frac{1}{r}-\frac{\varepsilon}{q}} dt \right)^q dy \\ &\ge \int_{|y|_p \ge |\varepsilon|_p} |y|_p^{-1-\varepsilon} \left(\int_{|t|_p \ge \frac{1}{|\varepsilon|_p}} K(1, |t|_p) |t|_p^{-\frac{1}{r}-\frac{\varepsilon}{q}} dt \right)^q dy \\ &= \frac{(1-p^{-1})p^{-N\varepsilon}}{1-p^{-\varepsilon}} \left(\int_{|t|_p \ge \frac{1}{|\varepsilon|_p}} K(1, |t|_p) |t|_p^{-\frac{1}{r}-\frac{\varepsilon}{q}} dt \right)^q. \end{split}$$

It follows that

$$\|T^p\| \ge \frac{\|T^p f_{\varepsilon}\|_{q,w}}{\|f_{\varepsilon}\|_{q,w}} \ge \sqrt[q]{\varepsilon^{\varepsilon}} \int_{|t|_p \ge \frac{1}{|\varepsilon|_p}} K(1,|t|_p) |t|_p^{-\frac{1}{r} - \frac{\varepsilon}{q}} dt.$$
(2.3)

Let $A_N = \{t \in \mathbb{Q}_p^* : |t|_p \ge \frac{1}{|\varepsilon|_p}\} = \{t \in \mathbb{Q}_p^* : |t|_p \ge \frac{1}{p^N}\}$, then

$$\int_{|t|_p \ge \frac{1}{|\varepsilon|_p}} K(1,|t|_p) |t|_p^{-\frac{1}{r} - \frac{\varepsilon}{q}} dt = \int_{\mathbb{Q}_p^*} K(1,|t|_p) \chi_{A_N}(t) |t|_p^{-\frac{1}{r} - \frac{1}{qp^N}} dt.$$

On the other hand, it is clean that for any $t \in \mathbb{Q}_p^*$,

$$K(1,|t|_p)\chi_{A_N}(t)|t|_p^{-\frac{1}{r}-\frac{1}{qp^N}} \to K(1,|t|_p)|t|_p^{-\frac{1}{r}}, \quad N \to \infty.$$

and $\sqrt[q]{\varepsilon^{\varepsilon}} \to 1$, $N \to \infty$.

Thus, by Fatou's lemma and (2.3), we obtain that

$$||T^p|| \ge \int_{\mathbb{Q}_p^*} K(1, |t|_p) |t|_p^{-\frac{1}{r}} dt = k_p(r).$$

Hence we have $||T^p|| = k_p(r)$. Theorem 1.1 is proved.

3. Some new *p*-adic Hilbert-type inequalities

In this section, we establish some *p*-adic Hilbert-type inequalities with the best constant factors. For r, q > 1, let r' and q' be the conjugates of r and q, respectively.

(1) Setting

$$K(x,y) = \frac{\left|\ln\frac{y}{x}\right|}{\max\{x,y\}}.$$

We have

$$k_p(r) = (1 - p^{-1}) \left[\sum_{\gamma=1}^{\infty} \frac{\gamma \ln p}{p^{\gamma}} p^{\frac{\gamma}{r'}} + \frac{\gamma \ln p}{p^{\gamma}} p^{\frac{\gamma}{r}} \right]$$
$$= \left[(1 - p^{-1}) \ln p \right] \cdot \left[\frac{p^{\frac{1}{r}}}{(p^{\frac{1}{r}} - 1)^2} + \frac{p^{\frac{1}{r'}}}{(p^{\frac{1}{r'}} - 1)^2} \right].$$

By Theorem 1.1, we have the following inequality holds for all $f \in L^q_w(\mathbb{Q}^*_p)$,

$$\left[\int_{\mathbb{Q}_p^*} |y|_p^{\frac{q}{r}-1} \left| \int_{\mathbb{Q}_p^*} \frac{\left| \ln \frac{|y|_p}{|x|_p} \right|}{\max\{|x|_p, |y|_p\}} f(x) dx \right|^q dy \right]^{\frac{1}{q}} \le k_p(r) ||f||_{q,w},$$

where the constant factor $k_p(r) = [(1 - p^{-1}) \ln p] \cdot \left[\frac{p^{\frac{1}{r}}}{(p^{\frac{1}{r}} - 1)^2} + \frac{p^{\frac{1}{r'}}}{(p^{\frac{1}{r'}} - 1)^2} \right]$ is the best possible.

(2) Setting

$$K(x,y) = \frac{\left|x^{\lambda} - y^{\lambda}\right|}{\max\{x, y\}^{\lambda+1}}, \quad 0 < \lambda < \infty.$$

We have

$$k_p(r) = (1 - p^{-1}) \left[\sum_{\gamma=1}^{\infty} \frac{p^{\gamma\lambda} - 1}{p^{\gamma(\lambda+1)}} p^{\frac{\gamma}{r'}} + \frac{p^{\gamma\lambda} - 1}{p^{\gamma(\lambda+1)}} p^{\frac{\gamma}{r}} \right]$$
$$= (1 - p^{-1}) \left[\frac{1}{p^{\frac{1}{r}} - 1} + \frac{1}{p^{\frac{1}{r'}} - 1} - \frac{1}{p^{\lambda + \frac{1}{r}} - 1} - \frac{1}{p^{\lambda + \frac{1}{r'}} - 1} \right].$$

By Theorem 1.1, we have the following inequality holds for all $f \in L^q_w(\mathbb{Q}^*_p)$,

$$\left[\int_{\mathbb{Q}_{p}^{*}} |y|_{p}^{\frac{q}{r}-1} \left| \int_{\mathbb{Q}_{p}^{*}} \frac{\left| |x|_{p}^{\lambda} - |y|_{p}^{\lambda} \right|}{\max\{|x|_{p}, |y|_{p}\}^{\lambda+1}} f(x) dx \right|^{q} dy \right]^{\frac{1}{q}} \le k_{p}(r) ||f||_{q,w}$$

where the constant factor $k_p(r) = (1 - p^{-1}) \left[\frac{1}{p^{\frac{1}{r}} - 1} + \frac{1}{p^{\frac{1}{r'}} - 1} - \frac{1}{p^{\lambda + \frac{1}{r}} - 1} - \frac{1}{p^{\lambda + \frac{1}{r'}} - 1} \right]$ is the best possible.

(3) Setting

$$K(x,y) = \frac{x^{\lambda} + y^{\lambda}}{\max\{x, y\}^{\lambda+1}}, \quad 0 \le \lambda < \infty.$$

We have

$$k_p(r) = (1 - p^{-1}) \left[2 + \sum_{\gamma=1}^{\infty} \frac{p^{\gamma\lambda} + 1}{p^{\gamma(\lambda+1)}} p^{\frac{\gamma}{r'}} + \frac{p^{\gamma\lambda} + 1}{p^{\gamma(\lambda+1)}} p^{\frac{\gamma}{r}} \right]$$
$$= (1 - p^{-1}) \left[2 + \frac{1}{p^{\frac{1}{r}} - 1} + \frac{1}{p^{\frac{1}{r'}} - 1} + \frac{1}{p^{\lambda + \frac{1}{r}} - 1} + \frac{1}{p^{\lambda + \frac{1}{r'}} - 1} \right]$$

By Theorem 1.1, we have the following inequality holds for all $f \in L^q_w(\mathbb{Q}^*_p)$,

$$\left[\int_{\mathbb{Q}_{p}^{*}}|y|_{p}^{\frac{q}{r}-1}\left|\int_{\mathbb{Q}_{p}^{*}}\frac{|x|_{p}^{\lambda}+|y|_{p}^{\lambda}}{\max\{|x|_{p},|y|_{p}\}^{\lambda+1}}f(x)dx\right|^{q}dy\right]^{\frac{1}{q}} \leq k_{p}(r)||f||_{q,w},$$

where the constant factor $k_p(r) = (1-p^{-1}) \left[2 + \frac{1}{p^{\frac{1}{r}} - 1} + \frac{1}{p^{\frac{1}{r'}} - 1} + \frac{1}{p^{\lambda + \frac{1}{r}} - 1} + \frac{1}{p^{\lambda + \frac{1}{r'}} - 1} \right]$ is the best possible.

(4) Setting

$$K(x,y) = \frac{(xy)^{\frac{2}{2}}}{\max\{x,y\}^{\lambda+1}}, \quad 0 \le \lambda < \infty.$$

We have

$$k_p(r) = (1 - p^{-1}) \left[1 + \sum_{\gamma=1}^{\infty} \frac{p^{\frac{\gamma\lambda}{2}}}{p^{\gamma(\lambda+1)}} p^{\frac{\gamma}{r'}} + \frac{p^{\frac{\gamma\lambda}{2}}}{p^{\gamma(\lambda+1)}} p^{\frac{\gamma}{r}} \right]$$
$$= (1 - p^{-1}) \left[1 + \frac{1}{p^{\frac{\lambda}{2} + \frac{1}{r}} - 1} + \frac{1}{p^{\frac{\lambda}{2} + \frac{1}{r'}} - 1} \right].$$

By Theorem 1.1, we have the following inequality holds for all $f \in L^q_w(\mathbb{Q}^*_p)$,

$$\left[\int_{\mathbb{Q}_p^*} |y|_p^{\frac{q}{r}-1} \left| \int_{\mathbb{Q}_p^*} \frac{|xy|_p^{\lambda}}{\max\{|x|_p, |y|_p\}^{\lambda+1}} f(x) dx \right|^q dy \right]^{\frac{1}{q}} \le k_p(r) ||f||_{q,w},$$

where the constant factor $k_p(r) = (1 - p^{-1}) \left[1 + \frac{1}{p^{\frac{\lambda}{2} + \frac{1}{r}} - 1} + \frac{1}{p^{\frac{\lambda}{2} + \frac{1}{r'}} - 1} \right]$ is the best possible.

(5) Setting

$$K(x,y) = \frac{\min\{\frac{x}{y}, \frac{y}{x}\}^{\lambda}}{\max\{x, y\}^{\lambda+1}}, \quad 0 \le \lambda < \infty.$$

We have

$$k_p(r) = (1 - p^{-1}) \left[1 + \sum_{\gamma=1}^{\infty} \frac{1}{p^{\gamma(\lambda+1)}} p^{\frac{\gamma}{r'}} + \frac{1}{p^{\gamma(\lambda+1)}} p^{\frac{\gamma}{r}} \right]$$
$$= (1 - p^{-1}) \left[1 + \frac{1}{p^{\lambda + \frac{1}{r}} - 1} + \frac{1}{p^{\lambda + \frac{1}{r'}} - 1} \right].$$

By Theorem 1.1, we have the following inequality holds for all $f \in L^q_w(\mathbb{Q}_p^*)$,

$$\left[\int_{\mathbb{Q}_{p}^{*}} |y|_{p}^{\frac{q}{r}-1} \left| \int_{\mathbb{Q}_{p}^{*}} \frac{\min\{\frac{|x|_{p}}{|y|_{p}}, \frac{|y|_{p}}{|x|_{p}}\}^{\lambda}}{\max\{|x|_{p}, |y|_{p}\}^{\lambda+1}} f(x) dx \right|^{q} dy \right]^{\frac{1}{q}} \leq k_{p}(r) ||f||_{q,w}$$

where the constant factor $k_p(r) = (1 - p^{-1}) \left[1 + \frac{1}{p^{\lambda + \frac{1}{r}} - 1} + \frac{1}{p^{\lambda + \frac{1}{r'}} - 1} \right]$ is the best possible.

Remark 3.1. Taking $\lambda = 0$ in kernel (4) or (5), we get the *p*-adic Hardy-Littlewood-Pólya inequality as follows:

$$\left[\int_{\mathbb{Q}_{p}^{*}}|y|_{p}^{\frac{q}{r}-1}\left|\int_{\mathbb{Q}_{p}^{*}}\frac{1}{\max\{|x|_{p},|y|_{p}\}}f(x)dx\right|^{q}dy\right]^{\frac{1}{q}} \leq k_{p}(r)||f||_{q,w},\qquad(3.1)$$

where the constant factor $k_p(r) = (1-p^{-1})\left[1 + \frac{1}{p^{\frac{1}{r}}-1} + \frac{1}{p^{\frac{1}{r'}}-1}\right]$ is the best possible.

Remark 3.2. Recently, the equivalent form of (3.1) has been obtained in [2].

In particular, (i) when r = q in (3.1), we get that

$$\begin{split} & \left[\int_{\mathbb{Q}_p^*} \left| \int_{\mathbb{Q}_p^*} \frac{1}{\max\{|x|_p, |y|_p\}} f(x) dx \right|^q dy \right]^{\frac{1}{q}} \\ & \leq (1 - p^{-1}) \left[1 + \frac{1}{p^{\frac{1}{q}} - 1} + \frac{1}{p^{\frac{1}{q'}} - 1} \right] ||f||_q, \end{split}$$

holds for all $f \in L^q(\mathbb{Q}_p^*)$.

(ii) When r = q' in (3.1), we get that

$$\left[\int_{\mathbb{Q}_p^*} |y|_p^{q-2} \left| \int_{\mathbb{Q}_p^*} \frac{1}{\max\{|x|_p, |y|_p\}} f(x) dx \right|^q dy \right]^{\frac{1}{q}} \\ \leq (1-p^{-1}) \left[1 + \frac{1}{p^{\frac{1}{q}} - 1} + \frac{1}{p^{\frac{1}{q'}} - 1} \right] ||f||_{q,w},$$

holds for all $f \in L^q_w(\mathbb{Q}_p^*)$, where $w(x) = |x|_p^{q-2}$.

References

- T. Batbold, Azar L., New half-discrete Hilbert inequalities for three variables, J. Inequal. Appl., 2018, 1, 15.
- [2] Z. Fu, Q. Wu and S. Lu, Sharp estimates of p-adic Hardy and Hardy-Littlewood-Plóya operators, Acta Mathematica Sinica, 2013, 29(1),137–150.
- [3] M. Gao and B. Yang, On the extended Hilbert's inequality, Proceedings of the American Mathematical Society, 1998, 126(3), 751–759.

- [4] G. H. Hardy, J. E. Littlewood and G. Pólya, *Inequalities*, Cambridge University Press, Cambridge, 1952.
- [5] Y. Hong, On the norm of a series operator with a symmetric and homogeneous kernel and its application, Acta Mathematica Sinica, Chinese Series, 2008, 51(2), 365–370.
- [6] M. Krnic and J. Pecaric, General Hilbert's and Hardy's inequalities, Mathematical Inequalities and Applications, 2005, 8(1), 29–51.
- [7] M. Krnic, On a strengthened multidimensional Hilbert-type inequality, Math. Slovaca, 2014, 64(5), 1165–1182.
- [8] J. C. Kuang, Applied Inequalities, Shandong Science and Technology Press, Jinan, 2004.
- [9] D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, *Inequalities involving functions* and their integrals and derivatives, Kluwer Academic Publishers, Boston, 1991.
- [10] M. H. Taibleson, Fourier Analysis on Local Fields, Princeton University Press, Princeton, 1975.
- [11] V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics, World Scientific, Singapore, 1994.
- [12] B. Yang, On the norm of a Hilbert's type linear operator and applications, Journal of Mathematical Analysis and Applications, 2007, 325(1), 529–541.
- [13] B. Yang, The norm of operator and Hilbert-type inequalities, Science Press, Beijing, 2009.
- [14] B. Yang, *Hilbert-Type Integral Inequalities*, Bentham Science, Sharjah, 2009.
- [15] B. Yang and L. Debnath, Half-discrete Hilbert-type inequalities, World Scientific, Singapore, 2014.
- [16] B. Yang and T. M. Rassias, On the way of weight coefficient and research for the Hilbert-type inequalities, Mathematical Inequalities and Applications, 2003, 6(4), 625–658.