
Journal of Applied Analysis and Computation Website:http://jaac-online.com
Volume 10, Number 4, August 2020, 1326–1334 DOI:10.11948/20190194
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OPERATOR AND ITS APPLICATIONS
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Abstract In this note, we deal with a p-adic Hilbert-type integral operator
induced by a symmetric homogeneous kernel of degree −1 and obtain the
expression of the norm of this operator. As applications, we establish some
new p-adic Hilbert-type inequalities with best constant factors.
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1. Introduction and main result
Let q > 1, R+ = (0,+∞), f be a real-valued function on R+, then we have[∫ ∞

0

∣∣∣∣∫ ∞

0

f(y)

x+ y
dy

∣∣∣∣q dx]
1
q

≤ π csc(
π

q
)

[∫ ∞

0

|f(x)|qdx
] 1

q

, (1.1)

for f ∈ Lq(R+). Here Lq(R+) is the usual Lebesgue space on R+. Inequality (1.1)
is well known as Hilbert’ s inequality and the constant factor π csc(πq ) in (1.1) is
the best possible, see [4]. Hilbert’s inequality can be restated in the language of
operator theory. For a measurable kernel K(x, y) on R2

+ = R+ × R+, we define an
operator T as: for f ∈ Lq(R+),

(Tf)(x) :=

∫ ∞

0

K(x, y)f(y)dy, x ∈ R+. (1.2)

Taking the Hilbert kernel K(x, y) = 1
x+y in (1.2), we get that T is bounded from

Lq(R+) to Lq(R+) and ∥T∥ = π csc(πq ).
If we take K(x, y) = 1

max{x,y} in (1.2), then we can show that T is bounded from
Lq(R+) to Lq(R+) and ∥T∥ = q2

q−1 . It follows that the following Hardy-Littlewood-
Pólya inequality holds for all f ∈ Lq(R+),[∫ ∞

0

∣∣∣∣∫ ∞

0

f(y)

max{x, y}
dy

∣∣∣∣q dx]
1
q

≤ q2

q − 1

[∫ ∞

0

|f(x)|qdx
] 1

q

.

We can obtain some other inequalities with best constant factors similar to
Hilbert’s inequality if we take other appropriate kernels, see [4]. We call these
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inequalities Hilbert-type inequalities. Hilbert’s inequality and Hilbert-type inequal-
ities are important in analysis and applications, see [4, 8] and [9]. In the past two
decades, this type of inequalities had been generalized and studied in different di-
rections by many mathematicians and a lot of interesting results had been obtained,
see for example [1, 3, 5–7,12,16], and Yang’s books [13–15] and the references cited
therein for more details on this topic.

In this note, we introduce and study a p-adic Hilbert-type integral operator
induced by a symmetric homogeneous kernel of degree −1. We obtain the expression
of the norm of this operator. As applications, we establish some new p-adic Hilbert-
type inequalities with best constant factors.

To state our results, we first recall some basic definitions and notations on p-adic
analysis.

For a prime number p, let Qp be the field of p-adic numbers. It is defined as the
completion of the field of rational numbers Q with respect to the non-Archimedean
p-adic norm | · |p. The p-adic norm is defined as follows: |0|p = 0; If any non-zero
rational number x is represented as x = pγ m

n , where γ ∈ Z, m ∈ Z, n ∈ Z, and m
and n are not divisible by p, then |x|p = p−γ . Any non-zero p-adic number x ∈ Qp

can be uniquely represented in the following canonical form x = pγ
∑∞

j=0 ajp
j , γ =

γ(x) ∈ Z, where aj are integers with 0 ≤ aj ≤ p− 1, a0 ̸= 0.
Also, it is not hard to show that the norm satisfies the following properties:

|xy|p = |x|p|y|p, |x+ y|p ≤ max{|x|p, |y|p}.

It follows that, if |x|p ̸= |y|p, then |x + y|p = max{|x|p, |y|p}. In what follows, we
set Q∗

p = Qp\{0} and denote by

Bγ(a) = {x ∈ Qp : |x− a|p ≤ pγ},

the ball with center at a ∈ Qp and radius pγ , and

Sγ(a) = {x ∈ Qp : |x− a|p = pγ} = Bγ(a)\Bγ−1(a).

For simplicity, we use Bγ and Sγ to denote Bγ(0) and Sγ(0), respectively.
Since Qp is a locally compact Hausdorff space, there exists a Haar measure dx

on Qp, which is unique up to positive constant multiple and is translation invariant.
We normalize the measure dx by the equality∫

B0

dx = |B0|H = 1,

where |E|H denotes the Haar measure of a measurable subset E of Qp. A simple
calculation yields that∫

Bγ

dx = |Bγ |H = pγ ,

∫
Sγ

dx = |Sγ |H = pγ(1− p−1).

We refer the reader to [11] or [10] for a more detailed introduction to the p-adic
analysis.

Let q > 1, w(x) be a non-negative measurable function on Q∗
p, f be a real-valued

measurable function on Q∗
p, we define the weighted Lebesgue space Lq

w(Q∗
p) on Q∗

p

as

Lq
w(Q∗

p) := {f(x) : ||f ||q,w =

[∫
Q∗

p

|f(x)|qw(x)dx

] 1
q

< ∞}.
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We write Lq(Q∗
p) and ∥f∥q instead of Lq

w(Q∗
p) and ∥f∥q,w, respectively, if w(x) ≡ 1.

For r > 1, let r′ be the conjugate of r, i.e., 1
r + 1

r′ = 1. Let K(x, y) be non-
negative and continuous on R2

+, and satisfy K(tx, ty) = t−1K(x, y), K(x, y) =
K(y, x), for any t, x, y > 0. Here we say K(x, y) is a symmetric homogeneous
function of degree −1. We assume that

0 < kp(r) := (1− p−1)
∑

−∞<γ<∞
K(1, pγ) · p

γ
r′ < ∞.

Remark 1.1. Noting that K(x, y) is a symmetric homogeneous function of degree
−1, we see that

kp(r) = (1− p−1)

[
K(1, 1) +

∞∑
γ=1

K(1, pγ)(p
γ
r′ + p

γ
r )

]
= kp(r

′).

The following theorem is the main result of this paper.

Theorem 1.1. Let p a prime number, r > 1, q > 1, K(x, y) satisfy above conditions.
Let w(x) = |x|

q
r−1
p , we define p-adic Hilbert-type integral operator T p as: for f ∈

Lq
w(Q∗

p),

(T pf)(y) :=

∫
Q∗

p

K(|x|p, |y|p)f(x)dx, y ∈ Q∗
p.

Then we have T p is bounded from Lq
w(Q∗

p) to Lq
w(Q∗

p) and ||T p|| = kp(r), where

||T p|| := sup
f∈Lq

w(Q∗
p)

||T pf ||q,w
||f ||q,w

.

It follows that

Corollary 1.1. Under the assumptions of Theorem 1.1. Let f ≥ 0, f ∈ Lq
w(Q∗

p).
Then we have[∫

Q∗
p

|y|
q
r−1
p

(∫
Q∗

p

K(|x|p, |y|p)f(x)dx

)q

dy

] 1
q

≤ kp(r)||f ||q,w,

where the constant factor kp(r) is the best possible.

2. Proof of main result
In this section, we prove Theorem 1.1. The following lemma is needed in our proof.

Lemma 2.1. Under the assumption of Theorem 1.1 and let r′ and q′ be the conju-
gates of r and q, respectively. Denote W1(r, q;x), W2(r

′, q′; y) by

W1(r, q;x) :=

∫
Q∗

p

K(|x|p, |y|p) ·
|x|

q−1
r

p

|y|
1
r′
p

dy, x ∈ Q∗
p; (2.1)

W2(r
′, q′; y) :=

∫
Q∗

p

K(|y|p, |x|p) ·
|y|

q′−1
r′

p

|x|
1
r
p

dx, y ∈ Q∗
p. (2.2)
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Then we have
W1(r, q;x) = kp(r)|x|

q
r−1
p , x ∈ Q∗

p;

W2(r
′, q′; y) = kp(r)|y|

q′
r′ −1
p , y ∈ Q∗

p.

Proof. Let y = xt in (2.1), then, by dy = |x|pdt, we have

W1(r, q;x) =

∫
Q∗

p

K(|x|p, |xt|p) ·
|x|

q−1
r

p

|xt|
1
r′
p

· |x|pdt

= |x|
q
r−1
p

∫
Q∗

p

K(1, |t|p) ·
1

|t|
1
r′
p

dt

= |x|
q
r−1
p

∑
−∞<γ<∞

∫
Sγ

K(1, |t|p)|t|
− 1

r′
p dt

= |x|
q
r−1
p (1− p−1)

∑
−∞<γ<∞

K(1, pγ)p−
γ
r′ · pγ

= |x|
q
r−1
p (1− p−1)

∑
−∞<γ<∞

K(1, pγ)p
γ
r

= kp(r)|x|
q
r−1
p .

Similarly, we can obtain that W2(r
′, q′; y) = kp(r)|y|

q′
r′ −1
p . The lemma is proved.

Now, we start to prove Theorem 1.1. For f ∈ Lq
w(Q∗

p), by using the Hölder’s
inequality and Lemma 2.1, we get that for y ∈ Q∗

p,∣∣∣∣∣
∫
Q∗

p

K(|x|p, |y|p)f(x)dx

∣∣∣∣∣
≤
∫
Q∗

p

[K(|x|p, |y|p)]
1
q
|x|

1
q′r
p

|y|
1

qr′
p

|f(x)|


[K(|x|p, |y|p)]

1
q′
|y|

1
qr′
p

|x|
1

q′r
p

 dx

≤ W
1
q′

2 (r′, q′; y)


∫
Q∗

p

K(|x|p, |y|p)
|x|

q−1
r

p

|y|
1
r′
p

|f(x)|q dx


1
q

= [kp(r)]
1
q′ |y|

1
r′ −

1
q′

p


∫
Q∗

p

K(|x|p, |y|p)
|x|

q−1
r

p

|y|
1
r′
p

|f(x)|q dx


1
q

.

Then

∥|T pf ||q,w =

{∫
Q∗

p

|y|
q
r−1
p

∣∣∣∣∣
∫
Q∗

p

K(|x|p, |y|p)f(x)dx

∣∣∣∣∣
q

dy

} 1
q

≤ [kp(r)]
1
q′


∫
Q∗

p

∫
Q∗

p

K(|x|p, |y|p)
|x|

q−1
r

p

|y|
1
r′
p

|f(x)|q dxdy


1
q
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= [kp(r)]
1
q′

{∫
Q∗

p

W1(r, q;x)|f(x)|q dx

} 1
q

= kp(r)||f ||q,w.

This proves that T p is bounded from Lq
w(Q∗

p) to Lq
w(Q∗

p) and ||T p|| ≤ kp(r).
We next show that ||T p|| = kp(r). Let ε = p−N , N ∈ N, then |ε|p = pN . Set

fε(x) = 0, when 0 < |x|p < 1 and fε(x) = |x|−
1
r−

ε
q

p , when |x|p ≥ 1. Then we get
that

∥fε∥qq,w =

∫
|x|p≥1

|x|−1−ε
p dx = (1− p−1)

∞∑
γ=0

pγpγ(−1−ε) =
1− p−1

1− p−ε
,

and
T pfε =

∫
|x|p≥1

K(|x|p, |y|p)|x|
− 1

r−
ε
q

p dx.

Then we have

∥T pfε∥qq.w =

∫
Q∗

p

|y|
q
r−1
p

(∫
|x|p≥1

K(|x|p, |y|p)|x|
− 1

r−
ε
q

p dx

)q

dy

=

∫
Q∗

p

|y|−1−ε
p

(∫
|t|p≥ 1

|y|p

K(1, |t|p)|t|
− 1

r−
ε
q

p dt

)q

dy

≥
∫
|y|p≥|ε|p

|y|−1−ε
p

(∫
|t|p≥ 1

|ε|p

K(1, |t|p)|t|
− 1

r−
ε
q

p dt

)q

dy

=
(1− p−1)p−Nε

1− p−ε

(∫
|t|p≥ 1

|ε|p

K(1, |t|p)|t|
− 1

r−
ε
q

p dt

)q

.

It follows that

∥T p∥ ≥ ||T pfε||q,w
∥fε∥q,w

≥ q
√
εε
∫
|t|p≥ 1

|ε|p

K(1, |t|p)|t|
− 1

r−
ε
q

p dt. (2.3)

Let AN = {t ∈ Q∗
p : |t|p ≥ 1

|ε|p } = {t ∈ Q∗
p : |t|p ≥ 1

pN }, then∫
|t|p≥ 1

|ε|p

K(1, |t|p)|t|
− 1

r−
ε
q

p dt =

∫
Q∗

p

K(1, |t|p)χAN
(t)|t|

− 1
r−

1

qpN

p dt.

On the other hand, it is clean that for any t ∈ Q∗
p,

K(1, |t|p)χAN
(t)|t|

− 1
r−

1

qpN

p → K(1, |t|p)|t|
− 1

r
p , N → ∞.

and q
√
εε → 1, N → ∞.

Thus, by Fatou’s lemma and (2.3), we obtain that

∥T p∥ ≥
∫
Q∗

p

K(1, |t|p)|t|
− 1

r
p dt = kp(r).

Hence we have ||T p|| = kp(r). Theorem 1.1 is proved.
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3. Some new p-adic Hilbert-type inequalities
In this section, we establish some p-adic Hilbert-type inequalities with the best
constant factors. For r, q > 1, let r′ and q′ be the conjugates of r and q, respectively.

(1) Setting

K(x, y) =

∣∣ln y
x

∣∣
max{x, y}

.

We have

kp(r) = (1− p−1)

[ ∞∑
γ=1

γ ln p

pγ
p

γ
r′ +

γ ln p

pγ
p

γ
r

]

= [(1− p−1) ln p] ·

[
p

1
r

(p
1
r − 1)2

+
p

1
r′

(p
1
r′ − 1)2

]
.

By Theorem 1.1, we have the following inequality holds for all f ∈ Lq
w(Q∗

p),

∫
Q∗

p

|y|
q
r−1
p

∣∣∣∣∣∣
∫
Q∗

p

∣∣∣ln |y|p
|x|p

∣∣∣
max{|x|p, |y|p}

f(x)dx

∣∣∣∣∣∣
q

dy


1
q

≤ kp(r)||f ||q,w,

where the constant factor kp(r) = [(1− p−1) ln p] ·
[

p
1
r

(p
1
r −1)2

+ p
1
r′

(p
1
r′ −1)2

]
is the best

possible.
(2) Setting

K(x, y) =

∣∣xλ − yλ
∣∣

max{x, y}λ+1
, 0 < λ < ∞.

We have

kp(r) = (1− p−1)

[ ∞∑
γ=1

pγλ − 1

pγ(λ+1)
p

γ
r′ +

pγλ − 1

pγ(λ+1)
p

γ
r

]

= (1− p−1)

[
1

p
1
r − 1

+
1

p
1
r′ − 1

− 1

pλ+
1
r − 1

− 1

pλ+
1
r′ − 1

]
.

By Theorem 1.1, we have the following inequality holds for all f ∈ Lq
w(Q∗

p),[∫
Q∗

p

|y|
q
r−1
p

∣∣∣∣∣
∫
Q∗

p

∣∣|x|λp − |y|λp
∣∣

max{|x|p, |y|p}λ+1
f(x)dx

∣∣∣∣∣
q

dy

] 1
q

≤ kp(r)||f ||q,w,

where the constant factor kp(r) = (1 − p−1)

[
1

p
1
r −1

+ 1

p
1
r′ −1

− 1

pλ+ 1
r −1

− 1

p
λ+ 1

r′ −1

]
is the best possible.

(3) Setting

K(x, y) =
xλ + yλ

max{x, y}λ+1
, 0 ≤ λ < ∞.
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We have

kp(r) = (1− p−1)

[
2 +

∞∑
γ=1

pγλ + 1

pγ(λ+1)
p

γ
r′ +

pγλ + 1

pγ(λ+1)
p

γ
r

]

= (1− p−1)

[
2 +

1

p
1
r − 1

+
1

p
1
r′ − 1

+
1

pλ+
1
r − 1

+
1

pλ+
1
r′ − 1

]
.

By Theorem 1.1, we have the following inequality holds for all f ∈ Lq
w(Q∗

p),[∫
Q∗

p

|y|
q
r−1
p

∣∣∣∣∣
∫
Q∗

p

|x|λp + |y|λp
max{|x|p, |y|p}λ+1

f(x)dx

∣∣∣∣∣
q

dy

] 1
q

≤ kp(r)||f ||q,w,

where the constant factor kp(r)=(1−p−1)

[
2+ 1

p
1
r−1

+ 1

p
1
r′−1

+ 1

pλ+1
r−1

+! 1

p
λ+ 1

r′−1

]
is the

best possible.
(4) Setting

K(x, y) =
(xy)

λ
2

max{x, y}λ+1
, 0 ≤ λ < ∞.

We have

kp(r) = (1− p−1)

[
1 +

∞∑
γ=1

p
γλ
2

pγ(λ+1)
p

γ
r′ +

p
γλ
2

pγ(λ+1)
p

γ
r

]

= (1− p−1)

[
1 +

1

p
λ
2 + 1

r − 1
+

1

p
λ
2 + 1

r′ − 1

]
.

By Theorem 1.1, we have the following inequality holds for all f ∈ Lq
w(Q∗

p),[∫
Q∗

p

|y|
q
r−1
p

∣∣∣∣∣
∫
Q∗

p

|xy|λp
max{|x|p, |y|p}λ+1

f(x)dx

∣∣∣∣∣
q

dy

] 1
q

≤ kp(r)||f ||q,w,

where the constant factor kp(r) = (1 − p−1)

[
1 + 1

p
λ
2

+ 1
r −1

+ 1

p
λ
2

+ 1
r′ −1

]
is the best

possible.
(5) Setting

K(x, y) =
min{x

y ,
y
x}

λ

max{x, y}λ+1
, 0 ≤ λ < ∞.

We have

kp(r) = (1− p−1)

[
1 +

∞∑
γ=1

1

pγ(λ+1)
p

γ
r′ +

1

pγ(λ+1)
p

γ
r

]

= (1− p−1)

[
1 +

1

pλ+
1
r − 1

+
1

pλ+
1
r′ − 1

]
.
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By Theorem 1.1, we have the following inequality holds for all f ∈ Lq
w(Q∗

p),∫
Q∗

p

|y|
q
r−1
p

∣∣∣∣∣∣
∫
Q∗

p

min{ |x|p
|y|p ,

|y|p
|x|p }

λ

max{|x|p, |y|p}λ+1
f(x)dx

∣∣∣∣∣∣
q

dy


1
q

≤ kp(r)||f ||q,w,

where the constant factor kp(r) = (1 − p−1)

[
1 + 1

pλ+ 1
r −1

+ 1

p
λ+ 1

r′ −1

]
is the best

possible.

Remark 3.1. Taking λ = 0 in kernel (4) or (5), we get the p-adic Hardy-Littlewood-
Pólya inequality as follows:[∫

Q∗
p

|y|
q
r−1
p

∣∣∣∣∣
∫
Q∗

p

1

max{|x|p, |y|p}
f(x)dx

∣∣∣∣∣
q

dy

] 1
q

≤ kp(r)||f ||q,w, (3.1)

where the constant factor kp(r) = (1−p−1)

[
1 + 1

p
1
r −1

+ 1

p
1
r′ −1

]
is the best possible.

Remark 3.2. Recently, the equivalent form of (3.1) has been obtained in [2].

In particular, (i) when r = q in (3.1), we get that[∫
Q∗

p

∣∣∣∣∣
∫
Q∗

p

1

max{|x|p, |y|p}
f(x)dx

∣∣∣∣∣
q

dy

] 1
q

≤ (1− p−1)

[
1 +

1

p
1
q − 1

+
1

p
1
q′ − 1

]
||f ||q,

holds for all f ∈ Lq(Q∗
p).

(ii) When r = q′ in (3.1), we get that[∫
Q∗

p

|y|q−2
p

∣∣∣∣∣
∫
Q∗

p

1

max{|x|p, |y|p}
f(x)dx

∣∣∣∣∣
q

dy

] 1
q

≤ (1− p−1)

[
1 +

1

p
1
q − 1

+
1

p
1
q′ − 1

]
||f ||q,w,

holds for all f ∈ Lq
w(Q∗

p), where w(x) = |x|q−2
p .

References
[1] T. Batbold, Azar L., New half-discrete Hilbert inequalities for three variables,

J. Inequal. Appl., 2018, 1, 15.
[2] Z. Fu, Q. Wu and S. Lu, Sharp estimates of p-adic Hardy and Hardy-Littlewood-

Plóya operators, Acta Mathematica Sinica, 2013, 29(1),137–150.
[3] M. Gao and B. Yang, On the extended Hilbert’s inequality, Proceedings of the

American Mathematical Society, 1998, 126(3), 751–759.



1334 H. Li & J. Jin

[4] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University
Press, Cambridge, 1952.

[5] Y. Hong, On the norm of a series operator with a symmetric and homogeneous
kernel and its application, Acta Mathematica Sinica, Chinese Series, 2008,
51(2), 365–370.

[6] M. Krnic and J. Pecaric, General Hilbert’s and Hardy’s inequalities, Mathe-
matical Inequalities and Applications, 2005, 8(1), 29–51.

[7] M. Krnic, On a strengthened multidimensional Hilbert-type inequality, Math.
Slovaca, 2014, 64(5), 1165–1182.

[8] J. C. Kuang, Applied Inequalities, Shandong Science and Technology Press,
Jinan, 2004.

[9] D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Inequalities involving functions
and their integrals and derivatives, Kluwer Academic Publishers, Boston, 1991.

[10] M. H. Taibleson, Fourier Analysis on Local Fields, Princeton University Press,
Princeton, 1975.

[11] V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Math-
ematical Physics, World Scientific, Singapore, 1994.

[12] B. Yang, On the norm of a Hilbert’s type linear operator and applications,
Journal of Mathematical Analysis and Applications, 2007, 325(1), 529–541.

[13] B. Yang, The norm of operator and Hilbert-type inequalities, Science Press,
Beijing, 2009.

[14] B. Yang, Hilbert-Type Integral Inequalities, Bentham Science, Sharjah, 2009.
[15] B. Yang and L. Debnath, Half-discrete Hilbert-type inequalities, World Scien-

tific, Singapore, 2014.
[16] B. Yang and T. M. Rassias, On the way of weight coefficient and research for

the Hilbert-type inequalities, Mathematical Inequalities and Applications, 2003,
6(4), 625–658.


	Introduction and main result
	Proof of main result
	Some new p-adic Hilbert-type inequalities

