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1. Introduction and main results
The objective of this paper is to study the nonlinear elliptic boundary value system−div(a(x)|∇ui|p−2∇ui) = λf(x)ui|ui|p−2 + Fui

(x, u1, · · · , un), x ∈ Ω,

a(x)|∇ui|p−2 ∂ui

∂n + b(x)ui|ui|p−2 = h(x, ui), x ∈ ∂Ω,
(1.1)

where Ω ⊆ RN is an unbounded domain with noncompact smooth boundary ∂Ω,
the outward unit normal to which is denoted by n with p > 1 and i = 1, ..., n.

The growing attention for the study of the p-Laplacian operator in the last
few decades is motivated by the fact that it arises in various applications. The
p-Laplacian operator in (1.1) is a special case of the divergence form operator
−div(a(x,∇u)), which appears in many nonlinear diffusion problems, in partic-
ular in the mathematical modeling of non-Newtonian fluids, for a discussion of
some physical background, see [9]. We also refer to Aronsson-Janfalk [1] for the
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mathematical treatment of the Hele-Shaw flow of “power-law fluids”. The concept
of Hele-Shaw flow refers to the flow between two closely-spaced parallel plates, close
in the sense that the gap between the plates is small compared to the dimension
of the plates. Quasilinear problems with a variable coefficient also appear in the
mathematical model of the torsional creep. This study is based on the observa-
tion that a prismatic material rod object to a torsional moment, at sufficiently high
temperature and for on extended period of time, exhibits a permanent deformation,
called creep. The corresponding equations are derived under the assumptions that
the components of strain and stress are linked by a power law referred to as the
creep-law [12,15,16].

The boundary condition of the system (1.1) describes a flux through the bound-
ary which depends in a nonlinear manner on the solution itself, for some physical
motivation of such boundary conditions, for example see [11, 19]. Some related
the elliptic type equations and p-Laplacian equations results, we refer the reader
to [2, 4–8,10,13,14,17,22,25–40] and the references therein.

Let Ω ⊆ RN be an unbounded domain with smooth boundary ∂Ω. We assume
throughout that 1 < p < N , a0 < a ∈ L∞(Ω), for some positive constant a0 and
b : ∂Ω → R is continuous function satisfying

(B1)
c

(1+|x|)p−1 ≤ b(x) ≤ C
(1+|x|)p−1 , for some constants 0 < c < C.

Let C∞
δ (Ω) be the space of C∞

0 (RN )- functions restricted on Ω. We define the
weighted Sobolev space E as the completion of C∞

δ (Ω) in the norm

||u||E =

[∫
Ω

(|∇u|p + w(x)|u|p)dx
]1/p

where w(x) = 1
(1+|x|)p , and we denote n times product of this space by X = En

with respect to the norm

||(u1, ...un)||X =

(
n∑

i=1

||ui||pE

)1/p

.

Denote by Lp(Ω, w1), Lq(Ω, w2) and Lm(∂Ω, w3) the weighted Lebesgue spaces with
weight functions wi(x) = (1 + |x|)αi for i = 1, 2, 3 and the norms defined by

||u||pp,w1
=

∫
Ω

w1(x)|u|pdx, ||u||qq,w2
=

∫
Ω

w2(x)|u|qdx

and
||u||mm,w3

=

∫
∂Ω

w3(x)|u|mdσ,

where

−N < α1 ≤ −p if p < N, (α1 < −p when p ≥ N),

(H1) −N < α2 ≤ q
N − p

p
−N if p < N, (−N < α2 < 0 when p ≥ N),

−N < α3 ≤ m
N−p
p

−N+1 if p<N, (−N<α3<0 when p ≥ N).

Then we have the following embedding and trace theorem.
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Lemma 1.1 ( [20])). If p ≤ q ≤ pN
N−p = p∗ and −N < α2 ≤ qN−p

p − N , then the
embedding operator En ↪→ (Lq(Ω, w2))

n is continuous. If the upper bound for q be
strict, then the embedding is compact.

If p ≤ m ≤ p(N−1)
N−p and −N < α3 ≤ mN−p

p − N + 1, then the trace operator
En ↪→ (Lm(∂Ω, w3))

n is continuous. If the upper bound for m be strict, then the
trace operator is compact.

Furthermore, one can show

Lemma 1.2 ( [21]). The quantity

||u||b =
[∫

Ω

a(x)|∇u|pdx+

∫
∂Ω

b(x)|u|pdσ
]1/p

defines an equivalent norm on E. Moreover

||(u1, ...un)||B =

(
n∑

i=1

||ui||pb

)1/p

defines an equivalent norm on X.

Because the lack of separability for the functions F and h, we need to restrict
the problem (1.1) to the following assumptions on f , F and h:

The function f is nontrivial measurable satisfying
(f1) 0 ≤ f(x) ≤ C(1 + |x|)α1 for a.e. x ∈ Ω.
The mapping h : ∂Ω → R is a Caratheodory function which fulfills the assump-

tions
(f2) |h(x, u)| ≤ h0(x) + h1(x)|s|m−1, where hi : ∂Ω → R, (i = 0, 1) are

measurable functions satisfying h0 ∈ L
m

m−1 (∂Ω, w
1

1−m

3 ), 0 ≤ hi ≤ Chw3 (i = 0, 1).
We also assume
(H2) lims→0

h(x,s)
b(x)|s|p−1 = 0, uniformly in x.

(H3) There exists µ ∈ (p, p∗] s.t. µH(x, t) ≤ th(x, t) a.e. x ∈ Ω,∀t ∈ R, where
H(x, t) =

∫ t

0
h(x, s)ds.

(H4) There is a nonempty open set O ⊂ ∂Ω with H(x, t) > 0 for (x, t) ∈
O × (0,∞).

Also we need the following assumptions on F :
(F1) F : Ω × (R+)n → R+ is a C1-function such that F (x, tu1, ..., tun) =

tp
∗
F (x, u1, ..., un)(t > 0) holds for all (x, u1, ..., un) ∈ Ω× (R+)n.
(F2) F (x, u1, ..., un) = 0 if uj = 0 for some j = 1, ..., n and ui ∈ R+ for

i = 1, ..., n, i ̸= j.

(F3) Fui
(x, u1, ..., un) are strictly increasing functions about (u1, ..., un) for all

ui > 0, i = 1, ..., n.

Moreover, using Homogeneity property in (F1), we have the so-called Euler
identity 

(u1, ..., un) · ∇F (x, u1, ..., un) = p∗F (x, u1, ..., un),

F (x, u1, ..., un) ≤ K

(
n∑

i=1

|ui|p
) p∗

p

for some K > 0.
(1.2)
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We say that u = (u1, ..., un) is a weak solution to the system (1.1) if u =
(u1, ..., un) ∈ X and

n∑
i=1

{∫
Ω

a(x)|∇ui|p−2∇ui∇vidx+

∫
∂Ω

b(x)|ui|p−2uividσ −
∫
∂Ω

h(x, ui)vidσ

− λ

∫
Ω

f(x)|ui|p−2uividx−
∫
Ω

Fui
(x, u1, ..., un)vidx

}
= 0,

for any (v1, ..., vn) ∈ X.
The corresponding energy functional of the problem (1.1) is defined by

Jλ(u1, ..., un) =
1

p

[∫
Ω

(
a(x)

n∑
i=1

|∇ui|p
)
dx+

∫
∂Ω

(
b(x)

n∑
i=1

|ui|p
)
dσ

]

− λ

p

∫
Ω

(
f(x)

n∑
i=1

|ui|p
)
dx−

∫
∂Ω

n∑
i=1

H(x, ui)dσ

−
∫
Ω

F (x, u1, ..., un)dx.

Note that using Lemmas 1.1 and 1.2 we deduce that Jλ is well-defined on X.
Now we state our main results:

Theorem 1.1. Assume that the conditions (f1), (f2), (H1)−(H4) and (F1)−(F3)
hold. Then the problem (1.1) has a nontrivial weak solution for every

0<λ<Λ= inf
(0,...,0)̸=(u1,...,un)∈X

∫
Ω
(a(x)

∑n
i=1 |∇ui|p)dx+

∫
∂Ω

(b(x)
∑n

i=1 |ui|p)dσ∫
Ω
(f(x)

∑n
i=1 |ui|p)dx

.

Theorem 1.2. Assume that h(x, s) ≡ 0. Then the problem (1.1) has infinity many
solutions for 0 < λ < Λ.

2. Proof of Theorem 1.1
Let us consider (H0). We need the following proposition

Proposition 2.1 ( [20]). The corresponding Nemytskii operators

Nh : Lm(∂Ω, w3) → L
m

m−1 (∂Ω, w
1

1−m

3 ), NH : Lm(∂Ω, w3) → L1(∂Ω)

are bounded and continuous. Also if we set ϕ(u) = f(x)u|u|p−2, then the operators

Nφ : Lp(Ω, w1) → L
p

p−1 (Ω, w
1

1−p

1 ), Nϕ : Lp(∂Ω, w1) → L1(Ω)

are bounded and continuous, where φ denotes the primitive function of ϕ.

Remark 2.1. Note that λ < Λ implies the existence of some C0 > 0 such that

||(u1, ...un)||pB − λ

∫
Ω

(
f(x)

n∑
i=1

|ui|p
)
dx ≥ C0||(u1, ...un)||pB .
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Lemma 2.1. Under assumptions (H1) − (H4) and (F1) − (F3), Jλ is Ferechet
differentiable on X and satisfies the Palais-Smale condition.

Proof. We use the notations

I(u1, ...un) =
1

p
||(u1, ...un)||pB , Kf (u1, ...un) =

1

p

∫
Ω

(
f(x)

n∑
i=1

|ui|p
)
dx,

KH(u1, ...un) =

∫
∂Ω

n∑
i=1

H(x, ui)dσ, KF (u1, ...un) =

∫
Ω

F (x, u1, ..., un)dx.

Then the directional derivative of Jλ is

⟨J ′
λ(u1, ...un), (v1, ..., vn)⟩=⟨I ′(u1, ...un), (v1, ..., vn)⟩ − λ⟨K ′

f (u1, ...un), (v1, ..., vn)⟩
−⟨K ′

H(u1, ...un), (v1, ..., vn)⟩−⟨K ′
F (u1, ...un), (v1, ..., vn)⟩,

where

⟨I ′(u1, ...un), (v1, ..., vn)⟩

=

∫
Ω

(
a(x)

n∑
i=1

|∇ui|p−2∇ui∇vi

)
dx+

∫
∂Ω

(
b(x)

n∑
i=1

|ui|p−2uivi

)
dσ,

⟨K ′
f (u1, ...un), (v1, ..., vn)⟩ =

∫
Ω

(
f(x)

n∑
i=1

|ui|p−2uivi

)
dx,

⟨K ′
H(u1, ...un), (v1, ..., vn)⟩ =

∫
∂Ω

n∑
i=1

h(x, ui)vidσ,

⟨K ′
F (u1, ...un), (v1, ..., vn)⟩ =

∫
Ω

n∑
i=1

Fui
(x, u1, ..., un)vidx,

for all (v1, ..., vn) ∈ X.
Clearly I ′λ : X → X∗ is continuous. The operator K ′

H is a composition of the
operators

K ′
H : X → (Lm(∂Ω, w3))

n −→N1:=(NH ,....,NH) (L
m

m−1 (∂Ω, w
1

1−m

3 ))n −→l X
∗

where

⟨l(u1, ..., un), (v1, ..., vn)⟩ =
∫
∂Ω

n∑
i=1

uividσ.

Since

n∑
i=1

∫
∂Ω

|uivi|dσ ≤
n∑

i=1

(∫
∂Ω

|ui|
m

m−1w
1

1−m

3 dσ

)m−1
m
(∫

∂Ω

|vi|mw3dσ

) 1
m

,

l is continuous by Lemma 1.1.
As a composition of continuous operators, K ′

H is also continuous. Moreover
using (H1), n product of trace operator X → (Lm(∂Ω, w3))

n is compact and K ′
H is

also compact.
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In a similar way we obtain that the operator K ′
F is a composition of the operators

K ′
f : X → (Lp(Ω, w1))

n −→N2:=(Nϕ,....,Nϕ) (L
p

p−1 (Ω, w
1

1−p

1 ))n −→l′ X
∗

where

⟨l′(u1, ..., un), (v1, ..., vn)⟩ =
∫
Ω

n∑
i=1

uividx.

Since
n∑

i=1

∫
Ω

|uivi|dx ≤
n∑

i=1

(∫
Ω

|ui|
p

p−1w
1

1−p

1 dx

) p−1
p
(∫

Ω

|vi|pw1dx

) 1
p

,

l′ is continuous by Lemma 1.1. Again K ′
ϕ is also continuous. In a similar way K ′

ϕ

is also compact.
Since the assumptions (F1) and (F3) hold, we get Fui

∈ C(Ω× (R+)n, R+) are
positively homogeneous of degree p∗− 1. Moreover using the above fact, we get the
existence of a positive constant M such that

Fui
(x, u1, ..., un) ≤M

n∑
i=1

|ui|p
∗−1, ∀x ∈ Ω,∀(u1, ..., un) ∈ (R+)n. (2.1)

By the Sobolev embedding theorem, we derive that K ′
F is continuous and compact

and the continuous differentiability of Jλ follows.
Now let Um = (u1m , ..., unm

) ∈ X be a Palais-Smale sequence for the functional
Jλ, i.e.,

|J ′
λ(Um)| ≤ C, for all m (2.2)

and
||J ′

λ(Um)||X∗ → 0 as m→ ∞. (2.3)

For m large enough we have

|⟨J ′
λ(Um), Um⟩| ≤ µ||Um||B .

This implies
C + ||Um||B ≥ Jλ(Um)− 1

µ
⟨J ′

λ(Um), Um⟩. (2.4)

Using a direct calculation we have

Jλ(Um)− 1

µ
⟨J ′

λ(Um), Um⟩ =
(
1

p
− 1

µ

)(
||Um||pB − λ

∫
Ω

f(x)(

n∑
i=1

|uim |p)dx

)

−
∫
∂Ω

n∑
i=1

(
H(x, uim)− 1

µ
h(x, uim)uim

)
dσ

−
∫
Ω

(F (x, u1m , ..., unm
)

− 1

µ

n∑
i=1

Fui(x, u1m , ..., unm)uim)dx.
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By (H3) we deduce that
n∑

i=1

∫
∂Ω

H(x, uim)dσ ≤ 1

µ

n∑
i=1

∫
∂Ω

h(x, uim)uimdσ.

Also using the property (F4), we have∫
Ω

[
F (x, u1m , ..., unm)− 1

µ

n∑
i=1

(u1m , ..., unm) · ∇F (x, u1m , ..., unm)dx

]

=

∫
Ω

[
(1− p∗

µ
)F (x, u1m , ..., unm

)dx

]
< 0,

since µ ∈ (p, p∗]. So we deduce that

Jλ(Um)− 1

µ
⟨J ′

λ(Um), Um⟩ ≥
(
1

p
− 1

µ

)
C0||Um||pB . (2.5)

Relations (2.4) and (2.5) yield C + ||Um||B ≥
(

1
p − 1

µ

)
C0||Um||pB , and hence Um is

bounded.
To show that Um contains a Cauchy sequence we use the following inequalities

for ξ ∈ RN (see Diaz [9, Lemma 4.10]):

|ε− ξ|p ≤ C(|ε|p−2ε− |ξ|p−2ξ)(ε− ξ), for p ≥ 2, (2.6)
|ε− ξ|2(|ε|+ |ξ|)2−p ≤ C(|ε|p−2ε− |ξ|p−2ξ)(ε− ξ), for 1 < p < 2. (2.7)

In the case p ≥ 2:

||Um − Uk||pB
=||(u1m − u1k , ..., unm

− unk
)||pB

=

n∑
i=1

||uim − uik ||
p
b

n∑
i=1

[∫
Ω

a(x)|∇uim −∇uik |pdx+

∫
∂Ω

b(x)|uim − uik |pdσ
]

≤C
n∑

i=1

[∫
Ω

a(x)(|∇uim |p−2∇uim∇(uim−uik)−|∇uik |p−2∇uik∇(uim − uik))dx

+

∫
∂Ω

b(x)(|uim |p−2uim(uim − uik)− |uik |p−2uik(uim − uik))dσ

]
=C⟨I ′(Um), (Um − Uk)⟩ − ⟨I ′(Uk), (Um − Uk)⟩

=C[⟨J ′
λ(Um), (Um − Uk)⟩ − ⟨J ′

λ(Uk), (Um − Uk)⟩

+ λ⟨K ′
f (Um), (Um − Uk)⟩ − λ⟨K ′

f (Uk), (Um − Uk)⟩

+ ⟨K ′
H(Um), (Um − Uk)⟩ − ⟨K ′

H(Uk), (Um − Uk)⟩

+ ⟨K ′
F (Um), (Um − Uk)⟩ − ⟨K ′

F (Uk), (Um − Uk)⟩]

≤C(||J ′
λ(Um)− J ′

λ(Uk)||X∗ + |λ|||K ′
f (Um)−K ′

f (Uk)||X∗

+ ||K ′
H(Um)−K ′

H(Uk)||X∗ + ||K ′
F (Um)−K ′

F (Uk)||X∗)||Um − Uk||B
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≤C(||J ′
λ(Um)||X∗ + ||J ′

λ(Uk)||X∗ + |λ|(||K ′
f (Um)−K ′

f (Uk)||X∗)

+ ||K ′
H(Um)−K ′

H(Uk)||X∗ + ||K ′
F (Um)−K ′

F (Uk)||X∗)||Um − Uk||B .

This concludes that there exists a subsequence of Um which converges in X because
of J ′

λ(Um) → 0 and K ′
γ is compact for γ ∈ {f,H, F}.

If 1 < p < 2, modifying the proof of [18, Lemma 3], we can easily deduce that

||Um−Uk||2B ≤ C|⟨I ′(Um), (Um−Uk)⟩−⟨I ′(Uk), (Um−Uk)⟩|(||Um||2−p
B + ||Uk||2−p

B ).

Since ||Um||B is bounded, the same arguments as the case p ≥ 2, lead to a convergent
subsequence.
Proof of Theorem 1.1. We shall use the mountain pass lemma to obtain a so-
lution. In what follows, we notice two points to verify the geometric assumptions
of the mountain pass theorem. From assumptions (f2) and (H2), for every εi > 0
there is a Cϵi > 0 such that

|H(x, ui)| ≤ εib(x)|ui|p + Cϵiw3(x)|ui|m.

Thus using (B1) and Lemma 1.1, we have
n∑

i=1

∫
∂Ω

H(x, ui)dσ ≤
n∑

i=1

εi

∫
∂Ω

b(x)|ui|pdσ +

n∑
i=1

Cϵi

∫
∂Ω

w3(x)|ui|mdσ

≤ εC1||(u1, ...un)||pB + CϵC2||(u1, ...un)||mB ,

where ε = max{εi; i = 1, ..., n} and Cϵ = max{Cϵi ; i = 1, ..., n}.
Additionally, we recall the following result:
For all s ∈ (0,∞) there is a constant Cs > 0 such that

(x+ y)s ≤ Cs(x
s + ys) for all x, y ∈ (0,∞).

Now using the estimate (1.2) and Lemma 1.1 we get∫
Ω

F (x, u1, ..., un)dx ≤ K

∫
Ω

(

n∑
i=1

|ui|p)
p∗
p dx

= K

∫
Ω

(|u1|p + ...+ |un|p)
p∗
p dx

≤ KCp

∫
Ω

(|u1|p(p
∗/p) + ...+ |un|p(p

∗/p))dx

≤ KCpC3||(u1, ...un)||p
∗

B .

Consequently this two facts and Remark 2.1 imply that

Jλ(u1, ...un) =
1

p
||(u1, ..., un)||pB − λ

p

n∑
i=1

∫
Ω

f(x)|ui|pdx

−
n∑

i=1

∫
∂Ω

H(x, ui)dσ −
∫
Ω

F (x, u1, ..., un)dx

≥ 1

p
C0||(u1, ..., un)||pB − λεC1||(u1, ..., un)||pB

−CϵC2||(u1, ..., un)||mB −KCpC3||(u1, ...un)||p
∗

B .
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For ε > 0 and R > 0 small enough, we deduce that for every (u1, ..., un) ∈ X with
||(u1, ...un)||B = R, the righthand side is strictly greater than 0.

It remains to show that there exists V = (v1, ..., vn) ∈ X with ||(v1, ...vn)||B > R
such that Jλ(v1, ...vn) ≤ 0. Choose ψ ∈ C∞

δ (Ω), ψ ≥ 0 such that Suppψ ∩ ∂Ω ⊂ O.
From (H3) we see that H(x, t) ≥ C4t

µ − C5 on O × (0,∞). Then using (F2), for
t > 0, we have

Jλ(tψ, 0, ..., 0) =
tp

p
(||(tψ, 0, ..., 0)||pB − λ

∫
Ω

f(x)ψpdx)

−
∫
∂Ω

H(x, tψ)dσ −
∫
Ω

F (x, tψ, 0, ..., 0)dx

≥ tp

p
||(ψ, 0, ..., 0)||pB − C4t

µ

∫
O

ψµdσ + C5|O|.

Since µ > p the righthand side tends to −∞ as t→ ∞ and for sufficiently large t0,
V = (tψ, 0, ..., 0) has the desired property.

Since Jλ satisfies the Palais-Smale condition and Jλ(0, ..., 0) = 0, the mountain
pass lemma shows that there is a nontrivial critical point of Jλ in X with critical
value

c = inf
g∈G

max
t∈[0,1]

Jλ(g(t)) > 0

where G = {g ∈ C([0, 1], X); g(0) = (0, ..., 0), g(1) = V }.

3. Proof of Theorem 1.2
We recall here a version of the Ljusternik-Schnirelman principle in Banach spaces
which was discussed by Browder [3], Zeidler [41], Rabinowitz [23] and Szulkin [24].
We then shall apply the principle to establish the existence of a sequence of solutions
for the problem (1.1).

Let Y be a real reflexive Banach space and Σ the collection of all symmetric
subsets of Y −{0} which are closed in X ( A is symmetric if A = −A). A nonempty
set A ∈ Σ is said to be of genus k (denoted by γ(A) = k) if k is the smallest integer
with the property that there exists an odd continuous mapping from A to Rk−{0}.
If there is no such k, γ(A) = ∞, and if A = ∅, γ(A) = 0.

In order to continue the proof we shall need the following proposition.

Proposition 3.1 ( [23, Corollary 4.1]). Suppose that M is a closed symmetric C1-
submanifold of a real Banach space Y and 0 ̸∈M . Suppose also that J ∈ C1(M,R)
is even and bounded below. Define

cj = inf
A∈Γj

sup
x∈A

J (x),

where Γj = {A ⊂ M : A ∈ Σ, γ(A) ≥ j and A is compact}. If Γk ̸= ∅ for some
k ≥ 1 and if J satisfies (PS)c for all c = cj , j = 1, ..., k, then J has at least k
distinct pairs of critical points.

Define on X the even functional

J̃λ(u1, ...un) =
1

p

(
||(u1, ..., un)||pB − λ

n∑
i=1

∫
Ω

f(x)|ui|pdx

)
,
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on the closed symmetric C1-manifold

SF = {(u1, ...un) ∈ X;KF (u1, ..., un) = 1}.

By our hypotheses of f , F and h, Lemma 2.2 and Proposition 3.1, we claim
that J̃λ|SF

possesses at least γ(SF ) pairs of distinct critical points. Since F :

Ω × (R+)n → R+ is a C1-function, there exists a nonempty open set Õ ⊂ Ω such
that F (x, t1, ..., tn) > 0 for all (x, t1, ..., tn) ∈ Õ × (R+)n. Using the properties of
the genus it follows that γ(Õ) ≥ γ(BÕ), where BÕ is the unit ball of W 1,p

0 (Õ) ⊂ X.
On the other hand it is well known that the genus of the unit ball of an infinite
dimensional Banach space is infinity, so γ(SF ) = ∞. Therefore we conclude that
there exists a sequence {(u1m , ..., unm)} ⊂ X such that any (u1m , ..., unm) is a
constrained critical point of J̃λ on SF .

By the Lagrange multipliers rule, there exists a sequence {λm} ⊂ R such that

||(u1m , ..., unm
)||pB − λ

n∑
i=1

∫
Ω

f(x)|uim |pdx = λmKF (u1m , ..., unm
). (3.1)

Since (u1m , ..., unm) ∈ SF and 0 < λ < Λ, so the right hand side of (3.1) is positive
and so λm > 0. Setting

vim = λ
1

p∗−p
m uim ,

we have the following equation

λ
p

p−p∗
m ||(v1m , ..., vnm)||pB − λλ

p
p−p∗
m

n∑
i=1

∫
Ω

f(x)|vim |pdx = λmλ
p∗

p−p∗
m KF (v1m , ..., vnm).

Since λm ̸= 0, we derive

||(v1m , ..., vnm)||pB − λ

n∑
i=1

∫
Ω

f(x)|vim |pdx = KF (v1m , ..., vnm).

This proves the theorem.
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