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GLOBAL STABILITY OF AUTONOMOUS AND
NONAUTONOMOUS HEPATITIS B VIRUS

MODELS IN PATCHY ENVIRONMENT∗

Pengyan Liu1 and Hong-Xu Li1,†

Abstract Autonomous and nonautonomous hepatitis B virus infection mod-
els in patchy environment are investigated respectively to illustrate the influ-
ences of population migration and almost periodicity for infection rate on the
spread of hepatitis B virus. The basic reproduction number is determined and
asymptotic stabilities of disease-free and endemic equilibria are established in
case of autonomous system. Moreover, in the nonautonomous system case,
existence and global attractivity of almost periodic solution for this system
are studied. Finally, feasibility of main theoretical results is showed with the
aid of numerical examples for model with two patches.

Keywords HBV infection model, patchy environment, asymptotic stability,
almost periodic solution.

MSC(2010) 34D23, 34C60, 37B55, 39A24.

1. Introduction
As a contagious disease triggered by hepatitis B virus (HBV), hepatitis B acutely
threatens global public health. According to the latest hepatitis B research report,
HBV affects approximately 292 million individuals in 2016, which represents a global
prevalence of 3.9% [22]. It is clear that the treatment and prevention for hepatitis B
are effective in China and the infection rate is steadily declining by comparing data
on HBV infections from then and now. However, there are still nearly 89 million
HBV carriers in China, about one third of the world’s total, which are the world’s
largest [22]. It is thus important to monitor HBV infection patterns and predict
trends over time.

For the past few years, several mathematics models have been established to
analyse the dynamic behaviors of HBV transmission [4, 9, 16, 17, 27–29, 32, 36], es-
pecially for the global stabilities of their equilibria. Due to similar main routes
of transmission for HBV, HCV (hepatitis C virus) and HIV (human immunodefi-
ciency virus) which include sexual contact, blood transmission and mother-to-child
transmission, HBV transmission model is also suitable for describing the spread of
HCV and HIV. Dai etc [4] formulated an HBV transmission model to investigate
the spread of HBV in mainland China and kinetics of this system. Based on ther-
apy of chronic hepatitis B, Huan etc [9] included antivirus treatment in an HBV
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transmission model, studied the stability of its equilibria. Khan etc [16] considered
a transmission model of HBV by taking into account media coverage, analyzed the
stability results for the model and presented the optimal control treatment problem
with suggested controls. Khan etc [17] incorporated acute-infected and chronic-
infected classes into hepatitis B epidemic model and developed the optimal control
strategy of HBV transmission. Wang and Tian [32] introduced a CTLs immune
response in a time delay HBV infection model and showed that basic reproduction
number and basic immune reproduction number determine the asymptotic stabili-
ties of equilibria. Zhang and Zhang [36] formulated a model for HBV to describe
how newborn vaccination and treatment influence HBV prevention and got the re-
sult the basic reproduction number, as a critical value, determines the stability and
persistence of hepatitis B in this model.

Communicable diseases can easily spread between different countries (or re-
gions). For instance, the first case of SARS was found in Guangdong, China in
2002, however, the cumulative cases involved 32 countries and regions as of June
2003 due to the human mobility [23]. The higher interregional mobility may bring
about the faster regional and global spread of infectious diseases [14]. Dynamics
analysis of epidemic models in patchy environment can show how individual migra-
tion among patches affects the dynamic behaviors of epidemic disease transmission,
see [5, 21,33,35] and the references cited therein.

When modeling the dynamics of population, we usually assumed that coeffi-
cients of dynamical models are constant [10, 12]. However, the nonautonomous
phenomena are much universal in the real world and nonlinear differential equa-
tions can be used to model numerous dynamical problems [11, 13, 20], which could
make the model be more realistic than autonomous differential equations. In the
case of nonautonomous models, periodic and almost periodic coefficients are taken
into consideration in the relevant researches. Moreover, as indicated in [6], al-
most periodic effects are more approaching to reality in a variety of real world
applications than periodic effects. Some recent development on the transmission
dynamics of epidemic models with almost periodic coefficients have been discussed
in [19,26,31,34] and references therein.

Motivated by the above discussions, we construct the HBV transmission model
with almost periodic infection rate in patchy environment based on the model of
Kamyad etc [15] and study the stability for this model both in the autonomous and
nonautonomous cases. The remaining parts of this paper is organized as follows.
An HBV infection model with almost periodic infection rate and patch structure
is formulated and some basic properties are deduced in Section 2. In Section 3,
the stability analysis of corresponding autonomous system is presented. Section 4
is devoted to existence and global attractivity of almost periodic solution for this
system in nonautonomous case. In Section 5, we present numerical examples to
demonstrate the effectiveness of established results. Finally, in Section 6, conclusion
and discussion for this paper are provided.

2. The model
2.1. System description
Recently, Kamyad etc [15] constructed an HBV transmission model with two con-
trols: vaccination as well as treatment. In this model, two different forms of the
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infection for HBV, that is, HBV transmits directly from mother to offspring (vertical
transmission) and people are infected by contacting with infective individuals (hor-
izontal transmission) were considered. They also accounted for the relapse between
recovered people in their paper.

Based on the model of Kamyad etc, we propose a nonautonomous model for the
HBV infection which is an extended and improved version of the HBV transmission
model in [15] with the inclusion of population travel between n patches and almost
periodic infection rate. The total population is divided into five classes in each
patch i (i = 1, 2, ..., n): susceptible class Si; latent class Ei; acute infected class Ii;
chronic infected class Ci; and recovered class Ri. Thus, our model is formulated in
the following form

dSi

dt
=νi − ρi(t)(Ii + θiCi)Si − (νi + αi)Si − νiξiCi + (γi − νiηi)Ri

+
∑
j ̸=i

(aijSj − ajiSi),

dEi

dt
=ρi(t)(Ii + θiCi)Si − (νi + σi)Ei +

∑
j ̸=i

(bijEj − bjiEi),

dIi
dt

=σiEi − (νi + δi)Ii +
∑
j ̸=i

(cijIj − cjiIi),

dCi

dt
=ζiδiIi − (νi(1− ξi) + εi + λi)Ci +

∑
j ̸=i

(kijCj − kjiCi),

dRi

dt
=αiSi + (1− ζi)δiIi + (εi + λi)Ci − (νi(1− ηi) + γi)Ri

+
∑
j ̸=i

(lijRj − ljiRi),

(2.1)

where i, j = 1, 2, ..., n. aij , bij , cij , kij and lij represent the travel rates of sus-
ceptible individuals, latent individuals, acute infected people, chronic HBV carriers
and recovered (or immune) people from patch (or group) j to patch (or group) i,
respectively. The other parameters in patch i are described in Table 1. ρi(t) is
positive almost periodic with i = 1, 2, ..., n.

For the term νiξiCi, it denotes the vertical transmission in patch i. And νiηiRi

denotes immune newborns from recovered class in patch i. Accordingly, the birth
flow rate in the susceptible compartment in patch i is denoted by νi−νiξiCi−νiηiRi.
In this case we have νi − νiξiCi − νiηiRi > 0. For convenience, we denote

(Si, Ei, Ii, Ci, Ri)n

=(S1, E1, I1, C1, R1, S2, E2, I2, C2, R2, ..., Sn, En, In, Cn, Rn)

for a solution of system (2.1).

2.2. Basic properties
2.2.1. Biological feasibility

Lemma 2.1. The region ∆+ defined by

∆+ = {(Si, Ei, Ii, Ci, Ri)n | Si > 0, Ei, Ii, Ci, Ri ≥ 0, i = 1, 2, ..., n}
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Table 1. Biological meaning of parameters
Parameter Meaning
νi Birth (and death) rate
νiξi Rate of newborn from HBV carriers
νiηi Rate of newborn from recovered individuals
ρi Infection rate between susceptible and acute-infected individuals
ρiθi Infection rate between susceptible and chronic-infected individuals
αi Rate of vaccine-induced immunity
γi Rate of removing from recovered class due to loss of immunity
σi Rate of moving from latent to acute-infected class
δi Removal rate from acute-infected class
ζiδi Rate of moving from acute-infected to chronic-infected class
(1− ζi)δi Recovery rate of acute infection individuals
εi Spontaneous recovery rate of HBV carriers
λi Treatment rate of HBV carriers

is positive invariant for system (2.1).

Proof. From system (2.1), we obtain

dSi

dt
|Si=0 = νi − νiξiCi + (γi − νiηi)Ri +

∑
j ̸=i

aijSj > 0,

dEi

dt
|Ei=0 = ρi(t)(Ii + θiCi)Si +

∑
j ̸=i

bijEj ≥ 0,

dIi
dt

|Ii=0 = σiEi +
∑
j ̸=i

cijIj ≥ 0,

dCi

dt
|Ci=0 = ζiδiIi +

∑
j ̸=i

kijCj ≥ 0,

dRi

dt
|Ri=0 = αiSi + (1− ζi)δiIi + (εi + λi)Ci +

∑
j ̸=i

lijRj ≥ 0.

It is clearly that all the rates are nonnegative on the bounding planes of ∆+. Now
if (Si(0), Ei(0), Ii(0), Ci(0), Ri(0))n ∈ ∆+, the solution (Si, Ei, Ii, Ci, Ri)n cannot
escape from the hyperplane of Si = Ei = Ii = Ci = Ri = 0, and the interior of
region ∆+ attracts all solution orbits of (2.1). Thus, all solutions of (2.1) always
remain in ∆+.

2.2.2. Boundedness of solutions

Let N =
n∑

i=1

(Si + Ei + Ii + Ci + Ri) denotes the total population number in all

patches.

Lemma 2.2. The biologically feasible region ∆ given by

∆ =

{
(Si, Ei, Ii, Ci, Ri)n ∈ ∆+| N ≤

∑
νi
ν

}
,

where ν = min{ν1, ν2, ..., νn}, is positive invariant for system (2.1).
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Proof. Adding all equations of (2.1), together with the fact that∑
i

∑
j

(aijSj − ajiSi) =
∑
i

∑
j

(bijEj − bjiEi) =
∑
i

∑
j

(cijIj − cjiIi)

=
∑
i

∑
j

(kijCj − kjiCi) =
∑
i

∑
j

(lijRj − ljiRi) = 0,

we drive that
dN(t)

dt
≤

∑
i

νi − νN(t), (2.2)

where ν = min{ν1, ν2, ..., νn}.
Thus if N(t) >

∑
νi

ν , then dN(t)
dt < 0.

Moreover, we observe the ordinary differential equation
dN(t)

dt
=

∑
i

νi − νN(t),

with general solution

N(t) =

∑
νi
ν

+ (N(0)−
∑
νi
ν

)e−νt,

where N(0) means the initial value of total population. By applying the standard
comparison theorem, we have for all t ≥ 0,

N(t) ≤
∑
νi
ν

, if N(0) ≤
∑
νi
ν

.

Hence, ∆ is positive invariant for system (2.1).

3. Autonomous system case
In this section, the global stability are studied for autonomous system corresponding
to (2.1) by taking infection rate ρi as a constant for i = 1, 2, ..., n. Thus, system
(2.1) could be given in the following form

dSi

dt
=νi − ρi(Ii + θiCi)Si − (νi + αi)Si − νiξiCi

+ (γi − νiηi)Ri +
∑
j ̸=i

(aijSj − ajiSi),

dEi

dt
=ρi(Ii + θiCi)Si − (νi + σi)Ei +

∑
j ̸=i

(bijEj − bjiEi),

dIi
dt

=σiEi − (νi + δi)Ii +
∑
j ̸=i

(cijIj − cjiIi),

dCi

dt
=ζiδiIi − (νi(1− ξi) + εi + λi)Ci +

∑
j ̸=i

(kijCj − kjiCi),

dRi

dt
=αiSi + (1− ζi)δiIi + (εi + λi)Ci − (νi(1− ηi) + γi)Ri

+
∑
j ̸=i

(lijRj − ljiRi),

(3.1)
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where i, j = 1, 2, ..., n.

3.1. Global dynamics for disease-free equilibrium
Noting the fact that Ei = Ii = Ci = 0, i = 1, 2, · · · , n at disease-free equilibrium of
system (3.1), substituting it into (3.1), we drive

νi − (νi + αi)Si + (γi − νiηi)Ri +
∑
j ̸=i

(aijSj − ajiSi) = 0,

αiSi − (νi(1− ηi) + γi)Ri +
∑
j ̸=i

(lijRj − ljiRi) = 0,

which could be rewritten in form of matrix equation{
A1S +B1R = D,

A2S = B2R,
(3.2)

where

A1 =


ν1+α1+

∑
j ̸=1

aj1 −a12 ··· −a1n

−a21 ν2+α2+
∑
j ̸=2

aj2 ··· −a2n

...
...

...
−an1 −an2 ··· νn+αn+

∑
j ̸=n

ajn

 ,

B2 =


ν1(1−η1)+γ1+

∑
j ̸=1

lj1 −l12 ··· −l1n

−l21 ν2(1−η2)+γ2+
∑
j ̸=2

lj2 ··· −l2n

...
...

...
−ln1 −ln2 ··· νn(1−ηn)+γn+

∑
j ̸=n

ljn

 ,

B1 = diag(ν1η1 − γ1, ν2η2 − γ2, ..., νnηn − γn), A2 = diag(α1, α2, ..., αn),

S = (S1, S2, ..., Sn)
T , R = (R1, R2, ..., Rn)

T , D = (ν1, ν2, ..., νn)
T .

Assume that the following hypotheses hold:
(H1) νiηi > γi for all i = 1, 2, ..., n;
(H2) aij = aji and lij = lji for all i ̸= j;
(H3) (νiηi − γi)αj = (νjηj − γj)αi for all i ̸= j.

It is obvious that all off-diagonal elements of A1 and B2 are nonpositive, and
column sums of A1 and B2 are positive, respectively. Thus, A1 and B2 are nonsingu-
lar M-matrices (M35 in [1, p137]). From (H2), A1 and B2 are symmetric matrices,
then we have A1 and B2 are also positive definite matrices (E17 in [1, p135]).

It follows from the converse of positive definite matrix is still positive definite
and the converse of symmetric matrix is symmetric, we have B−1

2 is positive definite
and symmetric. Furthermore, (H1) shows all diagonal entries of B1 are positive. By
matrix operation, all leading principal minors of B1B

−1
2 A2 are positive. Moreover,

B1B
−1
2 A2 is symmetric according to (H3), which means B1B

−1
2 A2 is a positive

definite matrix. We have A1+B1B
−1
2 A2 is also positive definite according to the fact

that sum of positive definite matrixes is positive definite. Then, (A1+B1B
−1
2 A2)

−1

exists by another property of positive definite matrix: positive definite matrix is
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invertible. Hence, system (3.2) admits unique positive solution

{
S0 = (S0

1 , S
0
2 , ..., S

0
n)

T = (A1 +B1B
−1
2 A2)

−1D > 0,

R0 = (R0
1, R

0
2, ..., R

0
n)

T = B−1
2 A2S

0 > 0.

Accordingly, system (3.1) admits a unique disease-free equilibrium

P0 = (S0
i , 0, 0, 0, R

0
i )n

= (S0
1 , 0, 0, 0, R

0
1, S

0
2 , 0, 0, 0, R

0
2, ..., S

0
n, 0, 0, 0, R

0
n).

Naturally, we can draw the following conclusion.

Theorem 3.1. Suppose hypotheses (H1)-(H3) hold, then system (3.1) has a
unique disease-free equilibrium.

We utilize next generation matrix approach [30] as follows so as to derive the
basic reproduction number of system (3.1). For simplicity, we rearrange (3.1) as
following



dEi

dt
=ρi(Ii + θiCi)Si − (νi + σi)Ei +

∑
j ̸=i

(bijEj − bjiEi),

dIi
dt

=σiEi − (νi + δi)Ii +
∑
j ̸=i

(cijIj − cjiIi),

dCi

dt
=ζiδiIi − (νi(1− ξi) + εi + λi)Ci +

∑
j ̸=i

(kijCj − kjiCi),

dRi

dt
=αiSi + (1− ζi)δiIi + (εi + λi)Ci − (νi(1− ηi) + γi)Ri

+
∑
j ̸=i

(lijRj − ljiRi),

dSi

dt
=νi − ρi(Ii + θiCi)Si − (νi + αi)Si − νiξiCi + (γi − νiηi)Ri

+
∑
j ̸=i

(aijSj − ajiSi),

(3.3)

Let x̃ = (E1, ..., En, I1, ..., In, C1, ..., Cn, R1, ..., Rn, S1, ..., Sn)
T , then system (3.3)

could be rewritten in form of matrix equation

dx̃

dt
= F (x̃)− V (x̃),
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where

F (x̃) =



ρ1(I1+θ1C1)S1

...
ρn(In+θnCn)Sn

0
...
0
0
...
0
0
...
0
0
...
0



,

V (x̃) =



(ν1+σ1)E1−
∑
j ̸=1

(b1jEj−bj1E1)

...
(νn+σn)En−

∑
j ̸=n

(bnjEj−bjnEn)

−σ1E1+(ν1+δ1)I1−
∑
j ̸=1

(c1jIj−cj1I1)

...
−σnEn+(νn+δn)In−

∑
j ̸=n

(cnjIj−cjnIn)

−ζ1δ1I1+(ν1(1−ξ1)+ε1+λ1)C1−
∑
j ̸=1

(k1jCj−kj1C1)

...
−ζnδnIn+(νn(1−ξn)+εn+λn)Cn−

∑
j ̸=n

(knjCj−kjnCn)

−α1S1−(1−ζ1)δ1I1−(ε1+λ1)C1+(ν1(1−η1)+γ1)R1−
∑
j ̸=1

(l1jRj−lj1R1)

...
−αnSn−(1−ζn)δnIn−(εn+λn)Cn+(νn(1−ηn)+γn)Rn−

∑
j ̸=n

(lnjRj−ljnRn)

−ν1+ρ1(I1+θ1C1)S1+(ν1+α1)S1+ν1ξ1C1−(γ1−ν1η1)R1−
∑
j ̸=1

(a1jSj−aj1S1)

...
−νn+ρn(In+θnCn)Sn+(νn+αn)Sn+νnξnCn−(γn−νnηn)Rn−

∑
j ̸=n

(anjSj−ajnSn)



.

The Jacobian matrices of F (x̃) and V (x̃) at the disease-free equilibrium P0 are,
respectively,

DF (P0) =

F3n×3n 0

0 0

 , DV (P0) =

V3n×3n 0

A B

 ,

where

F3n×3n =


0 F12 F13

0 0 0

0 0 0

 , V3n×3n =


V11 0 0

V21 V22 0

0 V32 V33

 ,

F12 = diag(ρ1S
0
1 , ρ2S

0
2 , ..., ρnS

0
n),

F13 = diag(ρ1θ1S
0
1 , ρ2θ2S

0
2 , ..., ρnθnS

0
n),
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V11 =


ν1+σ1+

∑
j ̸=1

bj1 −b12 ··· −b1n

−b21 ν2+σ2+
∑
j ̸=2

bj2 ··· −b2n

...
...

...
−bn1 −bn2 ··· νn+σn+

∑
j ̸=n

bjn

 ,

V22 =


ν1+δ1+

∑
j ̸=1

cj1 −c12 ··· −c1n

−c21 ν2+δ2+
∑
j ̸=2

cj2 ··· −c2n

...
...

...
−cn1 −cn2 ··· νn+δn+

∑
j ̸=n

cjn

 ,

V33 =


ν1(1−ξ1)+ε1+λ1+

∑
j ̸=1

kj1 −k12 ··· −k1n

−k21 ν2(1−ξ2)+ε2+λ2+
∑
j ̸=2

kj2 ··· −k2n

...
...

...
−kn1 −kn2 ··· νn(1−ξn)+εn+λn+

∑
j ̸=n

kjn

 ,

V21 = diag(−σ1,−σ2, ..., σn),
V32 = diag(−ζ1δ1,−ζ2δ2, ...,−ζnδn).

Since column sums of V are positive and all off-diagonal elements of V are non-
positive, then V is a nonsingular M-matrix (M35 in [1, p137]). Furthermore, we get
V −1 ≥ 0 (N38 in [1, p137]). Consequently, FV −1 is non-negative. Applying the
approach in [30], the basic reproductive number is shown by

R0 = ρ̃(FV −1) = ρ̃(F13V
−1
33 V32V

−1
22 V21V

−1
11 − F12V

−1
22 V21V

−1
11 ),

where ρ̃(·) represents the spectral radius of matrix.
The following result follows by applying Theorem 2 of [30].

Theorem 3.2. The disease-free equilibrium, P0, is local asymptotical stable as
R0 < 1 and unstable as R0 > 1.

Theorem 3.3. Suppose the assumptions (H1)-(H3) hold, B = (bij), C = (cij)
and K = (kij) are irreducible and there exist i ̸= j satisfying νi ̸= νj, then no other
equilibrium exists except for P0 on ∂∆ (boundary of ∆).

Proof. Firstly, we show that Ei = 0 or Ii = 0 or Ci = 0 for certain i means
Ej = Ij = Cj = 0 for all j.

Let Ei = 0, invoking the second equation of (3.1), we have

ρi(Ii + θiCi)Si +
∑
j ̸=i

bijEj = 0.

From Lemma 2.1, it follows that Ii = 0, Ci = 0 and Ej = 0 if bij > 0. For
Ei = Ii = Ci = 0, according to the third and forth equations of (3.1), it holds that

∑
j ̸=i

cijIj = 0,

∑
j ̸=i

kijCj = 0.

Thus, for any i, j = 1, 2, ..., n,

Ei = 0, bij > 0, cij > 0 and kij > 0 ⇒ Ej = Ij = Cj = 0. (3.4)
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Since B = (bij), C = (cij) and K = (kij) are irreducible and directed graph
of irreducible matrix is strongly connected (Theorem 2.7 in [1, p30]), there exist
sequences of ordered pairs

{(i, s1), (s1, s2), · · · , (sn−2, j)},

{(i, q1), (q1, q2), · · · , (qn−2, j)},

{(i, r1), (r1, r2), · · · , (rn−2, j)}

such that
bis1 > 0, bs1s2 > 0, · · · , bsn−2j > 0,

ciq1 > 0, cq1q2 > 0, · · · , cqn−2j > 0,

kir1 > 0, kr1r2 > 0, · · · , krn−2j > 0,

where {i, s1, s2, ..., sn−2, j} = {i, q1, q2, ..., qn−2, j} = {i, r1, r2, ..., rn−2, j}
= {1, 2, ..., n}. Application of (3.4) to the above sequences, combining with Ei = 0,
yields

Es1 = 0, Es2 = 0, ..., Esn−2
= 0, Ej = 0,

Iq1 = 0, Iq2 = 0, ..., Iqn−2
= 0, Ij = 0,

Cr1 = 0, Cr2 = 0, ..., Crn−2
= 0, Cj = 0.

From {i, s1, s2, ..., sn−2, j} = {i, q1, q2, ..., qn−2, j} = {i, r1, r2, ..., rn−2, j}
= {1, 2, ..., n}, we have Ej = Ij = Cj = 0 for all j = 1, 2, ..., n. Similarly, Ii = 0
for certain i indicates Ej = Ij = Cj = 0 for all j and Ci = 0 for certain i indicates
Ej = Ij = Cj = 0 for all j.

We next show that there exist no equilibria on the boundary ∂∆ of non zero
elements. It is obvious that (2.2) takes the equal sign if and only if ν1 = ν2 = · · · =
νn. Thus if there exist i ̸= j such that νi ̸= νj , we have dN(t)

dt < −νN(t) +
n∑

i=1

νi.

To find the equilibrium of system (3.1), we set the right side of (3.1) equal to 0.
Thus, 0 = dN(t)

dt < −νN(t) +
n∑

i=1

νi, which means N(t) <
∑

νi

ν . Therefore, no non

zero equilibrium lies on the boundary ∂∆ when there exist i ̸= j such that νi ̸= νj .
Hence, owing to Theorem 3.1, P0 is the unique equilibrium lies on ∂∆.

Theorem 3.4. Suppose assumptions in Theorem 3.3 hold, αi = 0 for all i =
1, 2, ..., n and S(0) ≤ S0. If R0 < 1, then P0 is global asymptotical stable in ∆.

Proof. For convenience, we denote (y1, y2, ..., yn)
T > (z1, z2, ..., zn)

T as yi > zi
for all i = 1, 2, ..., n, and the same for (y1, y2, ..., yn)

T ≤ (z1, z2, ..., zn)
T . Suppose

that there is no vaccination in system (3.1), that is, αi = 0 for all i = 1, 2, ..., n,
then R0 = 0. Combining M35 and N38 in Theorem 2.3 of [1] gives that A1

−1 > 0.
Hence, S0 = A1

−1D > 0.
In views of (3.1), we get dS

dt ≤ D−A1S = A1S
0−A1S. Using Laplace transform

to this inequality, we drive

sL(S)− S(0) ≤ A1S
0s−1 −A1L(S),

which yields
L(S) ≤ s−1(sI +A1)

−1A1S
0 + (sI +A1)

−1S(0). (3.5)
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The Laplace transform of tl−1Em,l(±λtm) is

L[tl−1Em,l(±λtm)] =
sm−l

sm ∓ λ
,

where Em,l(s), m, l > 0 is the Mittag-Leffler function [8] defined as follows

Em,l(s) =

∞∑
i=0

si

Γ(mi+ l)
.

Using the property of Mittage-Leffler function given in [8]

Em,l(s) = sEm,m+l(s) +
1

Γ(l)
,

we infer that if S(0) ≤ S0, (3.5) implies

S ≤ tE1,2(−A1t)A1S
0 + E1,1(−A1t)S(0)

≤ [tE1,2(−A1t)A1 + E1,1(−A1t)]S
0

=
1

Γ(1)
S0

= S0.

Since Si ≤ S0
i , system (3.1) gives the inequality

dEi

dt
≤ ρi(Ii + θiCi)S

0
i − (νi + σi)Ei +

∑
j ̸=i

(bijEj − bjiEi). (3.6)

Thus, we define the following auxiliary linear system

dĒi

dt
=ρi(Ii + θiCi)S

0
i − (νi + σi)Ēi +

∑
j ̸=i

(bijĒj − bjiĒi),

dIi
dt

=σiEi − (νi + δi)Ii +
∑
j ̸=i

(cijIj − cjiIi),

dCi

dt
=ζiδiIi − (νi(1− ξi) + εi + λi)Ci +

∑
j ̸=i

(kijCj − kjiCi).

(3.7)

According to [30], we have

ρ̃(FV −1) < 1 ⇔ s(F − V ) < 0,

where s(F −V ) = max
i

{Re(zi)} denotes the spectral abscissa of F −V , z1, z2, ..., zs
are eigenvalues of F − V . Consequently, all eigenvalues of F − V possess negative
real parts if R0 = ρ̃(FV −1) < 1. It is evident the right side of (3.7) has efficient
matrix F − V , then all non-negative solutions of (3.7) satisfies that lim

t→∞
Ēi =

lim
t→∞

Ii = lim
t→∞

Ci = 0. From the basic comparison theorem (Theorem B.1 in [24]),
together with the fact that all the variables in system (3.1) are nonnegative, it
follows lim

t→∞
Ei = lim

t→∞
Ii = lim

t→∞
Ci = 0. This implies that

dS

dt
= D −A1S −B1R,

dR

dt
= −B2R,
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performs the limiting system of dS
dt , dR

dt terms of (3.1). From [25] and Theorem
2.3 in [3], we conclude that all the solutions to (3.1) satisfy that lim

t→∞
Si(t) = S0

i ,
lim
t→∞

Ri(t) = R0
i . By (3.3), P0 is the unique equilibrium lies on ∂∆. Hence, equilib-

rium P0 is global asymptotic stable whenever R0 < 1.

Theorem 3.5. Suppose assumptions in Theorem 3.3 hold. If R0 > 1, then system
(3.1) is uniform persistent and admits an endemic equilibrium in ∆̊ (interior of ∆).

Proof. If R0 > 1, according to Theorem 3.2, P0 is unstable. Choose X = R5n

and E = ∆ for Theorem 4.3 in [7]. When B, C and K are irreducible, by Theorem
3.3, singleton {P0} is isolated as the maximal invariant set on ∂∆. Accordingly,
hypothesis (H) in [7] is valid for system (3.1). Note that the instability of P0 is
equivalent to the necessary and sufficient condition of Theorem 4.3 in [7], which
indicates the uniformly persistence of system (3.1).

From the positive invariance of ∆, we get that solutions in ∆̊ are uniform
bounded. Then, by Theorem 2.8.6 in [2], and according to the uniform persis-
tence of system (3.1), we draw the conclusion that there exists an equilibrium in ∆̊.

3.2. Local dynamics for endemic equilibrium
Let R(i)

0 denotes the basic reproductive number in patch i.

Theorem 3.6. Suppose aij = bij = cij = kij = lij = 0 for all i, j = 1, 2, ..., n. If
R

(i)
0 > 1 for all i = 1, 2, ..., n, then the endemic equilibrium P ∗ for system (3.1) is

local asymptotical stable.

Proof. Suppose that there is no population movement among any patches (i.e.
each patch is isolated from others), then A1, B2, V11, V22 and V33 are diagonal
matrices. The basic reproductive number in patch i takes now the form

R
(i)
0 =

σiρiS
0
i (θiζiδi + (1− ξi)νi + εi + λi)

(νi + σi)(νi + δi)((1− ξi)νi + εi + λi)
, (3.8)

where S0
i = νi(1−ηi)+γi

νi(1−ηi)+γi+αi
.

To find the endemic equilibrium

P ∗ = (S∗
i , E

∗
i , I

∗
i , C

∗
i , R

∗
i )n

= (S∗
1 , E

∗
1 , I

∗
1 , C

∗
1 , R

∗
1, S

∗
2 , E

∗
2 , I

∗
2 , C

∗
2 , R

∗
2, ..., S

∗
n, E

∗
n, I

∗
n, C

∗
n, R

∗
n),

let the right side of system (3.1) with aij = bij = cij = kij = lij = 0 be equal to
zero. Then, we get

S∗
i =

(νi + σi)(νi + δi)[νi(1− ξi) + εi + λi]

σiρi[νi(1− ξi) + εi + λi + θiζiδi]
,

E∗
i =

νi + δi
σ

I∗i ,

I∗i =
{σi + νi + δi

σi
+
ζiδi + νiδi(1− ζi)(1− ξi) + δi(εi + λi)

[νi(1− ηi) + γi][νi(1− ξi) + εi + λi]

}
S∗
i

× (R
(i)
0 − 1), (3.9)
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C∗
i =

ζiδi
νi(1− ξi) + εi + λi

I∗i ,

R∗
i =

αi

νi(1− ηi) + γi
S∗
i +

νiδi(1− ζi)(1− ξi) + δi(εi + λi)

[νi(1− ηi) + γi][νi(1− ξi) + εi + λi]
I∗i .

Clearly P ∗ is feasible if I∗i > 0, that is, R(i)
0 > 1 for i = 1, 2, ..., n.

The Jacobian matrix of model (3.1) with aij = bij = cij = kij = lij = 0 around
the endemic equilibrium point P ∗ is

J5n×5n =



J1 0 · · · 0

0 J2 · · · 0

...
...

...

0 0 · · · Jn


,

where Ji for i = 1, 2, ..., n is 5× 5 matrix and takes the following form

Ji =


−ρi(I

∗
i +θiC

∗
i )−(νi+αi) 0 −ρiS

∗
i −ρiθiS

∗
i −νiξi −(νiηi−γi)

ρi(I
∗
i +θiC

∗
i ) −(νi+σi) ρiS

∗
i ρiθiS

∗
i 0

0 σi −(νi+δi) 0 0
0 0 ζiδi −[νi(1−ξi)+εi+λi] 0
αi 0 (1−ζi)δi (εi+λi) −[νi(1−ηi)+γi]

 .

The characteristic equation of Ji is given by

(λ+ νi)(λ
4
+ f1λ

3
+ f2λ

2
+ f3λ+ f4) = 0,

where

f1 = d0 + d1 + d2 + d4 + d5 + αi > 0,

f2 = d1d2+(d1+d2)(d0+d4+d5)+d4(d0+d5)+σi(d0−d6)+αi(d1+d4

+d5),

f3 = d1d2(d0 + d4 + d5) + (d1 + d2)[d4(d0 + d5) + σi(d0 − d6)] + σiδid0

−αiσid6 + αi(d1d4 + d1d5 + d4d5),

f4 = d1d2d4d0 + σid1d2d0 + σiζiδid2d0 − σiζiδid0d3 + σiδid0d1,

and

d0 = ρi(I
∗
i + θiC

∗
i ), d1 = νi(1− ξi) + εi + λi, d2 = νi(1− ηi) + γi,

d3 = νi(1− ξi), d4 = νi + δi, d5 = νi + σi, d6 = ρiS
∗
i .

It is obvious one of the eigenvalues for Ji, −νi, is negative. To proceed, we consider
the following equation

λ
4
+ f1λ

3
+ f2λ

2
+ f3λ+ f4 = 0. (3.10)

In view of the Routh-Hurwitz criteria [18], all roots of (3.10) possess negative real
parts iff fi > 0 for i = 1, 2, 3, 4 and f1f2f3 > f3

2 + f1
2f4.

From (3.9), we obtain

σid6 = σi(ρiS
∗
i ) =

(νi + σi)(νi + δi)[νi(1− ξi) + εi + λi]

νi(1− ξi) + εi + λi + θiζiδi
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=
d1d4d5

d1 + θiζiδi
< d4d5. (3.11)

Thus, we have

f2 > d1d2 + (d1 + d2)(d0 + d4 + d5) + d4d0 + σid0 + αi(d1 + d4 + d5) > 0,

and

f3 > d1d2(d4 + d5 + d0) + d0(d1 + d2)(σi + d4) + σiδid0 + αid1(d4 + d5)

> 0. (3.12)

Furthermore, by (3.8) and (3.9), we get

f4 = d1d2d4d0 + σid1d2d0 + σiζiδid2d0 − σiζiδid0d3 + σiδid0d1

= d1d4d5(αi + d2)(R
(i)
0 − 1).

Clearly, f4 > 0 if R(i)
0 > 1. Since

f4 = d1d2d4d0 + σid1d2d0 + σiζiδid2d0 − σiζiδid0d3 + σiδid0d1

< d1d2d4d0 + σid1d2d0 + σiδid0(d1 + d2),

and d4 > δi, d5 > σi, (3.11) and (3.12) imply that

f3(f1f2 − f3)− f1
2f4

> [d1d2h2 + h1(d4 + σi)d0 + σiδid0]{h1h2(h1 + h2 + αi) + d1d2(h1 + 2αi)

+αi[(d1 + d5)αi + (d4 + d5)d0 + d4h2]} − (h1 + h2 + αi)
2(d1d2d4d0

+σid1d2d0 + σiδid0h1)

> d0d4h2[(d1
2 + d2

2)h2 + d1
3 + d2

3] + d0d1αi
2[(d4 + σi)d1 + d4d5] + d0

2d4

×h1αi(d4 + d5) + d1d2h2[h1h2(h1 + h2) + d1d2(h1 + 2αi) + αi
2(d1 + d5)

+h2αi(h1 + d4)] + αiσid0(h1 + δi)[(d4 + d5)d0 + d5αi + d4h2]

> 0,

where h1 = d1+d2 and h2 = d4+d5+d0. Thus, Ji only has eigenvalues with negative
real part as R(i)

0 > 1 for all i = 1, 2, ..., n, and it is an immediate consequence the
endemic equilibrium P ∗ is locally asymptotically stable.

4. Nonautonomous system case
Since almost periodic functions are bounded, we define

ρ∗i = max
t∈R

ρi(t).

Theorem 4.1. Suppose that for all i = 1, 2, ..., n,
νi > 2ρ∗iM,

νi > 2νiξi + 2ρ∗i θiM,

νi > 2νiηi − 2γi,

(4.1)
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holds, where M =
∑

νi

ν , ν = min{ν1, ν2, ..., νn}. Then, two arbitrary solutions of
system (2.1)

X = (S1
i , E

1
i , I

1
i , C

1
i , R

1
i )n

and
Y = (S2

i , E
2
i , I

2
i , C

2
i , R

2
i )n

satisfies
lim

t→+∞
|X(t)− Y (t)| = 0.

Proof. From Lemma 2.2, we have

0 ≤ Sj
i , E

j
i , I

j
i , C

j
i , R

j
i ≤

∑
νi
ν

=M, (4.2)

for all t > 0 and j = 1, 2.
We consider the Lyapunov function

V (t) =

n∑
i=1

Vi(t), (4.3)

where

Vi(t) =

5∑
k=1

Vki(t),

and

V1i = |S1
i − S2

i |, V2i = |E1
i − E2

i |, V3i = |I1i − I2i |,
V4i = |C1

i − C2
i |, V5i = |R1

i −R2
i |.

Define

o(ψ(t)) =



1, if ψ(t) > 0,

−1, if ψ(t) < 0,

0, if ψ(t) = 0, ψ′(t) = 0,

1, if ψ(t) = 0, ψ′(t) > 0,

−1, if ψ(t) = 0, ψ′(t) < 0.

Thus, |ψ(t)| = o(ψ(t))ψ(t) and D+|ψ(t)| = o(ψ(t))ψ′(t). Combining this property
of upper right-hand Dini derivative with (4.2) gives that

D+(V1i(t))

= o(S1
i − S2

i )(Ṡ
1
i − Ṡ2

i )

= o(S1
i − S2

i )
{
− ρi(t)(I

1
i + θiC

1
i )S

1
i + ρi(t)(I

2
i + θiC

2
i )S

2
i − (νi + αi)

×(S1
i − S2

i )− νiξi(C
1
i − C2

i ) + (γi − νiηi)(R
1
i −R2

i ) +
∑
j ̸=i

{[aij(S1
j − S2

j )

−aji(S1
i − S2

i )]}
}

= o(S1
i − S2

i )
{
− ρi(t)(I

1
i S

1
i + θiC

1
i S

1
i − I2i S

2
i − θiC

2
i S

2
i )− (νi + αi)
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×(S1
i − S2

i )− νiξi(C
1
i − C2

i ) + (γi − νiηi)(R
1
i −R2

i ) +
∑
j ̸=i

{[aij(S1
j − S2

j )

−aji(S1
i − S2

i )]}
}

= o(S1
i − S2

i )
{
− ρi(t)[I

1
i (S

1
i − S2

i ) + S2
i (I

1
i − I2i ) + θiC

1
i (S

1
i − S2

i ) + θiS
2
i

(C1
i − C2

i )]− (νi + αi)(S
1
i − S2

i )− νiξi(C
1
i − C2

i ) + (γi − νiηi)(R
1
i −R2

i )

+
∑
j ̸=i

[aij(S
1
j − S2

j )− aji(S
1
i − S2

i )]
}

≤ −ρi(t)I1i |S1
i − S2

i |+ ρi(t)S
2
i |I1i − I2i | − ρi(t)θiC

1
i |S1

i − S2
i |+ ρi(t)θiS

2
i

×|C1
i − C2

i | − (νi + αi)|S1
i − S2

i |+ νiξi|C1
i − C2

i |+ (γi − νiηi)|R1
i −R2

i |
+
∑
j ̸=i

[aij |S1
j − S2

j | − aji|S1
i − S2

i |].

Similarly,

D+(V2i(t))

≤ ρi(t)I
1
i |S1

i − S2
i |+ ρi(t)S

2
i |I1i − I2i |+ ρi(t)θiC

1
i |S1

i − S2
i |+ ρi(t)θiS

2
i

×|C1
i − C2

i | − (νi + σi)|E1
i − E2

i |+
∑
j ̸=i

[bij |E1
j − E2

j | − bji|E1
i − E2

i |],

D+(V3i(t))

≤ σi|E1
i − E2

i | − (νi + δi)|I1i − I2i |+
∑
j ̸=i

[cij |I1j − I2j | − cji|I1i − I2i |],

D+(V4i(t))

≤ ζiδi|I1i − I2i | − (νi(1− ξi) + εi + λi)|C1
i − C2

i |+
∑
j ̸=i

{[kij |C1
j − C2

j | − kji

×|C1
i − C2

i |]},

D+(V5i(t))

≤ αi|S1
i − S2

i |+ (1− ζi)δi|I1i − I2i |+ (εi + λi)|C1
i − C2

i | − (νi(1− ηi) + γi)

×|R1
i −R2

i |+
∑
j ̸=i

[lij |R1
j −R2

j | − lji|R1
i −R2

i |].

For t > 0, we have

D+(Vi(t))

≤ −νi|S1
i − S2

i | − νi|E1
i − E2

i | − (νi − 2ρ∗iM)|I1i − I2i | − (νi − 2νiξi − 2ρ∗i θi

×M)|C1
i − C2

i | − (νi + 2γi − 2νiηi)|R1
i −R2

i |+
∑
j ̸=i

{[aij |S1
j − S2

j | − aji

×|S1
i − S2

i |]}+
∑
j ̸=i

[bij |E1
j − E2

j | − bji|E1
i − E2

i |] +
∑
j ̸=i

{[cij |I1j − I2j | − cji

×|I1i − I2i |]}+
∑
j ̸=i

[kij |C1
j − C2

j | − kji|C1
i − C2

i |] +
∑
j ̸=i

{[lij |R1
j −R2

j | − lji

×|R1
i −R2

i |]}.
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Let β1 = min
i
{νi − 2ρ∗iM}, β2 = min

i
{νi − 2νiξi − 2ρ∗i θiM} and β3 = min

i
{νi +

2γi − 2νiηi}. From condition (4.1), we have β1, β2, β3 > 0 which means β =
min{ν, β1, β2, β3} > 0. It follows that

D+(V (t))

≤− ν
∑
i

|S1
i − S2

i | − ν
∑
i

|E1
i − E2

i | − β1
∑
i

|I1i − I2i | − β2
∑
i

|C1
i − C2

i |

− β3
∑
i

|R1
i −R2

i |

≤ − βV (t). (4.4)

For t > 0, (4.4) gives

V (t) + β

∫ t

0

V (s)ds ≤ V (0). (4.5)

It follows from (2.1), (4.2) and (4.3) that V (t) is uniformly continuous on
(0,+∞). Consequently,

V (t) → 0,

as t→ +∞. Otherwise, β
∫ t

0
V (s)ds→ +∞ when t→ +∞ which contradicts (4.5).

Thus, we conclude that

lim
t→+∞

|S1
i − S2

i | = lim
t→+∞

|E1
i − E2

i | = lim
t→+∞

|I1i − I2i |

= lim
t→+∞

|C1
i − C2

i | = lim
t→+∞

|R1
i −R2

i | = 0,

for all i = 1, 2, ..., n.
Theorem 4.1 implies any solution of (2.1) converges to X, which reveals the

global attractivity of this system.

Theorem 4.2. Suppose condition (4.1) of Theorem 4.1 holds, then system (2.1)
admits a global attractive almost periodic solution.

Proof. We only need to verify the existence of almost periodic solution for (2.1).
The almost periodicity of function ρi(t), i = 1, 2, ..., n allows us to find sequence
{tm} satisfying

tm → +∞, ρi(t+ tm) → ρi(t), (4.6)

for i = 1, 2, ..., n as m → ∞, where the convergence of {ρi(t + tm)} is uniform.
Then, u(t+ tm) = (u1i(t+ tm), u2i(t+ tm), u3i(t+ tm), u4i(t+ tm), u5i(t+ tm))n is
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a solution of

dSi

dt
=νi − ρi(t+ tm)(Ii + θiCi)Si − (νi + αi)Si − νiξiCi + (γi − νiηi)Ri

+
∑
j ̸=i

(aijSj − ajiSi),

dEi

dt
=ρi(t+ tm)(Ii + θiCi)Si − (νi + σi)Ei +

∑
j ̸=i

(bijEj − bjiEi),

dIi
dt

=σiEi − (νi + δi)Ii +
∑
j ̸=i

(cijIj − cjiIi),

dCi

dt
=ζiδiIi − (νi(1− ξi) + εi + λi)Ci +

∑
j ̸=i

(kijCj − kjiCi),

dRi

dt
=αiSi + (1− ζi)δiIi + (εi + λi)Ci − (νi(1− ηi) + γi)Ri +

∑
j ̸=i

(lijRj

− ljiRi).

Since {uji(t + tm)} and also {u̇ji(t + tm)} for i = 1, 2, ..., n, j = 1, 2, ..., 5 are
uniformly bounded and equicontinuous, then {uji(t+ tm)} has a uniformly conver-
gent subsequence {uji(t+ tmk

)} for t ∈ [a, b] resulting from Arzelà-Ascoli theorem.
We assume

lim
k→∞

uji(t+ tmk
) = vji(t) (4.7)

uniformly. Then, from tm → +∞ as m→ ∞, we have vji ∈ C[t0,+∞]. Since ρi(t)
is uniformly continuous for i = 1, 2, ..., n (Corollary 1.15 in [6, p10]), from (4.6) and
(4.7), we conclude that v = (v1i, v2i, v3i, v4i, v5i)n is the solution of the system (2.1).

Next we demonstrate the almost periodicity of v(t). For any ε > 0, let

ε̃ =
β

8(1 + θ)M2
ε, (4.8)

where θ = max{θ1, θ2, ..., θn} , M =
∑

νi

ν , β = min{ν, β1, β2, β3}, and β1 = min
i
{νi−

2ρ∗iM}, β2 = min
i
{νi − 2νiξi − 2ρ∗i θiM}, β3 = min

i
{νi + 2γi − 2νiηi}. It is obvious

that ε̃ > 0 in view of condition (4.1). Furthermore, we let ϖ ∈
n⋂

i=1

T (ρi, ε̃), where

T (ρi, ε̃) = {κ | |ρi(t+ κ)− ρi(t)| < ε̃, for all t} (Definition 1.11 in [6, p7]). Thus,

|ρi(t+ϖ)− ρi(t)| < ε̃. (4.9)

Define function W (t) as follows

W (t) =

n∑
i=1

Wi(t), (4.10)

where

Wi(t) =

5∑
k=1

Wki(t),
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and
W1i(t) = |v1i(t+ϖ)− v1i(t)|, W2i(t) = |v2i(t+ϖ)− v2i(t)|,
W3i(t) = |v3i(t+ϖ)− v3i(t)|, W4i(t) = |v4i(t+ϖ)− v4i(t)|,
W5i(t) = |v5i(t+ϖ)− v5i(t)|.

Since v = (v1i, v2i, v3i, v4i, v5i)n is the solution of system (2.1), by using the method
similar to V (t) and (4.9), we arrive at

D+(W1i(t))

= o(v1i(t+ϖ)− v1i(t))

{
dv1i(t+ϖ)

dt
− dv1i(t)

dt

}
= o(v1i(t+ϖ)− v1i(t))

{
− ρi(t+ϖ)[v3i(t+ϖ) + θiv4i(t+ϖ)]v1i(t+ϖ)

+ρi(t)[v3i(t) + θiv4i(t)]v1i(t)− (νi + αi)(v1i(t+ϖ)− v1i(t))− νiξi

×(v4i(t+ϖ)− v4i(t)) + (γi − νiηi)(v5i(t+ϖ)− v5i(t)) +
∑
j ̸=i

aij

×(v1j(t+ϖ)− v1j(t))−
∑
j ̸=i

aji(v1i(t+ϖ)− v1i(t))
}

= o(v1i(t+ϖ)− v1i(t))
{
− ρi(t+ϖ)[v3i(t+ϖ) + θiv4i(t+ϖ)]v1i(t+ϖ)

+ρi(t+ϖ)[v3i(t) + θiv4i(t)]v1i(t)− (νi + αi)(v1i(t+ϖ)− v1i(t))− νiξi

×(v4i(t+ϖ)− v4i(t)) + (γi − νiηi)(v5i(t+ϖ)− v5i(t)) +
∑
j ̸=i

{[aij

(v1j(t+ϖ)− v1j(t))− aji(v1i(t+ϖ)− v1i(t))]}
}
+ o(v1i(t+ϖ)− v1i(t))

×(ρi(t)− ρi(t+ϖ))[v3i(t) + θiv4i(t)]v1i(t)

≤ o(v1i(t+ϖ)− v1i(t))
{
− ρi(t+ϖ)[v3i(t+ϖ) + θiv4i(t+ϖ)]v1i(t+ϖ)

+ρi(t+ϖ)[v3i(t) + θiv4i(t)]v1i(t)− (νi + αi)(v1i(t+ϖ)− v1i(t))− νiξi

×(v4i(t+ϖ)− v4i(t)) + (γi − νiηi)(v5i(t+ϖ)− v5i(t)) +
∑
j ̸=i

{[aij

×(v1j(t+ϖ)− v1j(t))− aji(v1i(t+ϖ)− v1i(t))]}
}
+ |ρi(t+ϖ)− ρi(t)|

×[v3i(t) + θiv4i(t)]v1i(t)

< o(v1i(t+ϖ)− v1i(t))
{
− ρi(t+ϖ)[v3i(t+ϖ) + θiv4i(t+ϖ)]v1i(t+ϖ)

+ρi(t+ϖ)[v3i(t) + θiv4i(t)]v1i(t)− (νi + αi)(v1i(t+ϖ)− v1i(t))− νiξi

×(v4i(t+ϖ)− v4i(t)) + (γi − νiηi)(v5i(t+ϖ)− v5i(t)) +
∑
j ̸=i

{[aij

×(v1j(t+ϖ)− v1j(t))− aji(v1i(t+ϖ)− v1i(t))]}
}

+ε̃[v3i(t) + θiv4i(t)]v1i(t)

= o(v1i(t+ϖ)− v1i(t))
{
− ρi(t+ϖ)[v3i(t+ϖ)(v1i(t+ϖ)− v1i(t)) + v1i(t)

×(v3i(t+ϖ)− v3i(t)) + θiv4i(t+ϖ)(v1i(t+ϖ)− v1i(t)) + θiv1i(t)

×(v4i(t+ϖ)− v4i(t))]− (νi + αi)(v1i(t+ϖ)− v1i(t))− νiξi(v4i(t+ϖ)

×− v4i(t)) + (γi − νiηi)(v5i(t+ϖ)− v5i(t)) +
∑
j ̸=i

{[aij(v1j(t+ϖ)

−v1j(t))− aji(v1i(t+ϖ)− v1i(t))]}
}
+ ε̃[v3i(t) + θiv4i(t)]v1i(t)

≤ −ρi(t+ϖ)v3i(t+ϖ)|v1i(t+ϖ)− v1i(t)|+ ρi(t+ϖ)v1i(t)|v3i(t+ϖ)
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−v3i(t)| − ρi(t+ϖ)θiv4i(t+ϖ)|v1i(t+ϖ)− v1i(t)|+ ρi(t+ϖ)θiv1i(t)|
×v4i(t+ϖ)− v4i(t)| − (νi + αi)|v1i(t+ϖ)− v1i(t)|+ νiξi|v4i(t+ϖ)

−v4i(t)|+ (γi − νiηi)|v5i(t+ϖ)− v5i(t)|+
∑
j ̸=i

{[aij |v1j(t+ϖ)− v1j(t)|

−aji|v1i(t+ϖ)− v1i(t)|]}+ ε̃[v3i(t) + θiv4i(t)]v1i(t).

Similarly, combining with (4.9), the upper right-hand derivative of W2i(t) satisfies

D+(W2i(t))

< ρi(t)v3i(t+ϖ)|v1i(t+ϖ)− v1i(t)|+ ρi(t)v1i(t)|v3i(t+ϖ)− v3i(t)|+ ρi(t)

×θiv4i(t+ϖ)|v1i(t+ϖ)− v1i(t)|+ ρi(t)θiv1i(t)|v4i(t+ϖ)− v4i(t)|
−(νi + σi)|v2i(t+ϖ)− v2i(t)|+

∑
j ̸=i

{[bij |v2j(t+ϖ)− v2j(t)| − bji

×|v2i(t+ϖ)− v2i(t)|]}+ ε̃[v3i(t+ϖ) + θiv4i(t+ϖ)]v1i(t+ϖ),

Similarly,

D+(W3i(t))

≤ σi|v2i(t+ϖ)− v2i(t)| − (νi + δi)|v3i(t+ϖ)− v3i(t)|
+
∑
j ̸=i

{[cij |v3j(t+ϖ)− v3j(t)| − cji|v3i(t+ϖ)− v3i(t)|]},

D+(W4i(t))

≤ ζiδi|v3i(t+ϖ)− v3i(t)| − [νi(1− ξi) + ε̃i + λi]|v4i(t+ϖ)− v4i(t)|
+
∑
j ̸=i

{[kij |v4j(t+ϖ)− v4j(t)| − kji|v4i(t+ϖ)− v4i(t)|]},

D+(W5i(t))

≤ αi|v1i(t+ϖ)− v1i(t)|+ (1− ζi)δi|v3i(t+ϖ)− v3i(t)|
+(ε̃i + λi)|v4i(t+ϖ)− v4i(t)| − [νi(1− ηi) + γi]|v5i(t+ϖ)− v5i(t)|
+
∑
j ̸=i

{[lij |v5j(t+ϖ)− v5j(t)| − lji|v5i(t+ϖ)− v5i(t)|]}.

Making use of (4.9), we have

D+(Wi(t))

< −νi|v1i(t+ϖ)− v1i(t)| − νi|v2i(t+ϖ)− v2i(t)| − (νi − 2ρ∗iM)|v3i(t+ϖ)

−v3i(t)| − (νi − 2νiξi − 2ρ∗i θiM)|v4i(t+ϖ)− v4i(t)| − (νi + 2γi − 2νiηi)

×|v5i(t+ϖ)− v5i(t)|+ ε̃v3i(t+ϖ)|v1i(t+ϖ)− v1i(t)|+ ε̃θiv4i(t+ϖ)|
v1i(t+ϖ)− v1i(t)|+ ε̃[v3i(t) + θiv4i(t)]v1i(t) + ε̃[v3i(t+ϖ) + θi

×v4i(t+ϖ)]v1i(t+ϖ) +
∑
j ̸=i

{[aij |v1j(t+ϖ)− v1j(t)| − aji|v1i(t+ϖ)

−v1i(t)|]}+
∑
j ̸=i

[bij |v2j(t+ϖ)− v2j(t)| − bji|v2i(t+ϖ)− v2i(t)|]

+
∑
j ̸=i

[cij |v3j(t+ϖ)− v3j(t)| − cji|v3i(t+ϖ)− v3i(t)|]
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+
∑
j ̸=i

[kij |v4j(t+ϖ)− v4j(t)| − kji|v4i(t+ϖ)− v4i(t)|]

+
∑
j ̸=i

[lij |v5j(t+ϖ)− v5j(t)| − lji|v5i(t+ϖ)− v5i(t)|].

Then,

D+(W (t))

<− ν
∑
i

|v1i(t+ϖ)− v1i(t)| − ν
∑
i

|v2i(t+ϖ)− v2i(t)| − β1

×
∑
i

|v3i(t+ϖ)− v3i(t)| − β2
∑
i

|v4i(t+ϖ)− v4i(t)| − β3

×
∑
i

|v5i(t+ϖ)− v5i(t)|+ ε̃
∑
i

[v3i(t+ϖ) + θiv4i(t+ϖ)]

× |v1i(t+ϖ)− v1i(t)|+ ε̃
∑
i

[(v3i(t) + θiv4i(t))v1i(t)

+ (v3i(t+ϖ) + θiv4i(t+ϖ))v1i(t+ϖ)]

≤− βW (t) + 4ε̃(1 + θ)M2. (4.11)

Now integrating both sides of (4.11), together with (4.8), we obtain

W (t) <
4ε̃(1 + θ)M2

β
+ (W (0)− 4ε̃(1 + θ)M2

β
)e−βt

=
1

2
ε+ (W (0)− 4ε̃(1 + θ)M2

β
)e−βt.

Clearly, (W (0) − 4ε̃(1+θ)M2

β )e−βt → 0 as t → +∞. Then there exists t̃ > 0 such
that for all t > t̃, ∣∣∣∣(W (0)− 4ε̃(1 + θ)M2

β
)e−βt

∣∣∣∣ < 1

2
ε.

Thus, we conclude that
W (t) < ε.

Then, in views of (4.10), for all t > t̃,

|vji(t+ϖ)− vji(t)| < ε, j = 1, 2, 3, 4, 5, i = 1, 2, ..., n,

that is, |v(t+ϖ)− v(t)| < ε. Therefore, ϖ ∈ T (v, ε) which means

n⋂
i=1

T (ρi, ε̃) ⊂ T (v, ε).

Thus, T (v, ε) is relatively dense and v(t) is the almost periodic solution of (2.1).
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5. Numerical simulations
To proceed, several numerical examples are provided to validate the theoretical
findings derived in previous sections. We focus on the following HBV transmission
model with two patches which is a special case of system (2.1)

dS1

dt
=ν1 − ρ1(t)(I1 + θ1C1)S1 − (ν1 + α1)S1 − ν1ξ1C1 + (γ1 − ν1η1)R1

+ a12S2 − a21S1,

dE1

dt
=ρ1(t)(I1 + θ1C1)S1 − (ν1 + σ1)E1 + b12E2 − b21E1,

dI1
dt

=σ1E1 − (ν1 + δ1)I1 + c12I2 − c21I1,

dC1

dt
=ζ1δ1I1 − (ν1(1− ξ1) + ε1 + λ1)C1 + k12C2 − k21C1,

dR1

dt
=α1S1 + (1− ζ1)δ1I1 + (ε1 + λ1)C1 − (ν1(1− η1) + γ1)R1 + l12R2

− l21R1,

dS2

dt
=ν2 − ρ2(t)(I2 + θ2C2)S2 − (ν2 + α2)S2 − ν2ξ2C2 + (γ2 − ν2η2)R2

+ a21S1 − a12S2,

dE2

dt
=ρ2(t)(I2 + θ2C2)S2 − (ν2 + σ2)E2 + b21E1 − b12E2,

dI2
dt

=σ2E2 − (ν2 + δ2)I2 + c21I1 − c12I2,

dC2

dt
=ζ2δ2I2 − (ν2(1− ξ2) + ε2 + λ2)C2 + k21C1 − k12C2,

dR2

dt
=α2S2 + (1− ζ2)δ2I2 + (ε2 + λ2)C2 − (ν2(1− η2) + γ2)R2 + l21R1

− l12R2,

(5.1)

Example 5.1. We take parameter values as follows

ν1 = 0.4, ρ1(t) = 0.03, θ1 = 5, σ1 = 0.2, δ1 = 0.05, ε1 = 0.0025,

γ1 = 0.06, ξ1 = 0.11, η1 = 0.4, ζ1 = 0.2, α1 = 0.3, λ1 = 0.1,

ν2 = 0.5, ρ2(t) = 0.04, θ2 = 4, σ2 = 0.3, δ2 = 0.07, ε2 = 0.002,

γ2 = 0.05, ξ2 = 0.15, η2 = 0.3, ζ2 = 0.3, α2 = 0.3, λ2 = 0.2,

a12 = 0.2, b12 = 0.2, c12 = 0.09, k12 = 0.02, l12 = 0.2,

a21 = 0.2, b21 = 0.1, c21 = 0.08, k21 = 0.01, l21 = 0.2.

For the model system (5.1), the assumptions (H1)-(H3) hold and 2-order square
matrices B = (bij), C = (cij) and K = (kij) are irreducible. We also have
R0 ≈ 0.0124 < 1. Hence, system (5.1) has a disease-free equilibrium which is
local asymptotic stable from Theorem 3.2, see Fig. 1.
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Figure 1. State trajectories for populations with R0 < 1. (a) State trajectories for populations in patch
1. (b) State trajectories for populations in patch 2

Example 5.2. We suppose that α1 = α2 = 0 and take the other parameter values
as follows

ν1 = 0.4, ρ1(t) = 0.03, θ1 = 5, σ1 = 0.2, δ1 = 0.05, ε1 = 0.0025,

γ1 = 0.06, ξ1 = 0.11, η1 = 0.4, ζ1 = 0.2, λ1 = 0.1,

ν2 = 0.5, ρ2(t) = 0.04, θ2 = 4, σ2 = 0.3, δ2 = 0.07, ε2 = 0.002,

γ2 = 0.05, ξ2 = 0.15, η2 = 0.3, ζ2 = 0.3, λ2 = 0.2,

a12 = 0.1, b12 = 0.2, c12 = 0.09, k12 = 0.02, l12 = 0.2,

a21 = 0.2, b21 = 0.1, c21 = 0.08, k21 = 0.01, l21 = 0.1.

For the model system (5.1), the dispersal matrices B = (bij), C = (cij) and K = (kij)
are irreducible. We also have R0 ≈ 0.0135 < 1. And we let S1(0) = 0.3 < S0

1 = 1,
S2(0) = 0.2 < S0

2 = 1. Hence, system (5.1) has a global asymptotic stable disease-
free equilibrium P0 from Theorem 3.4, see Fig. 2.

Example 5.3. We take parameter values as follows

ν1 = 0.1, ρ1(t) = 0.3, θ1 = 3, σ1 = 0.9, δ1 = 0.1, ε1 = 0.0025,

γ1 = 0.5, ξ1 = 0.11, η1 = 0.3, ζ1 = 0.7, α1 = 0.3, λ1 = 0.1,

ν2 = 0.1, ρ2(t) = 0.4, θ2 = 2, σ2 = 0.9, δ2 = 0.3, ε2 = 0.002,

γ2 = 0.5, ξ2 = 0.15, η2 = 0.3, ζ2 = 0.6, α2 = 0.3, λ2 = 0.2,

a12 = a21 = b21 = b12 = c21 = c12 = k21 = k12 = l12 = l21 = 0.

For the model system (5.1), we have R(1)
0 ≈ 1.8544 > 1, R(2)

0 ≈ 1.3293 > 1. Hence,
system (5.1) admits unique endemic equilibrium which is local asymptotic stable
from Theorem 3.6, see Fig. 3.
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Figure 2. State trajectories for populations with R0 < 1. (a) State trajectories for populations in patch
1. (b) State trajectories for populations in patch 2
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Figure 3. State trajectories for populations with R0 > 1. (a) State trajectories for populations in patch
1. (b) State trajectories for populations in patch 2

Example 5.4. Let

ρ1(t) =
3

100
× (cos

√
3t+ sin t)2, ρ2(t) =

1

40
× (cos

√
2t+ sin t)2.

Then, we take other parameter values as follows

ν1 = 0.5, θ1 = 0.7, σ1 = 0.9, δ1 = 0.1, ε1 = 0.0025,

γ1 = 0.1, ξ1 = 0.15, η1 = 0.1, ζ1 = 0.7, α1 = 0.3, λ1 = 0.1,

ν2 = 0.5, θ2 = 0.8, σ2 = 0.9, δ2 = 0.3, ε2 = 0.002,

γ2 = 0.1, ξ2 = 0.17, η2 = 0.1, ζ2 = 0.6, α2 = 0.3, λ2 = 0.2,

a12 = 0.5, b12 = 0.02, c12 = 0.01, k12 = 0.02, l21 = 0.1,

a21 = 0.5, b21 = 0.01, c21 = 0.02, k21 = 0.01, l12 = 0.1.



HBV model in patchy environment 1795

All the sufficient conditions given in Theorems 4.1 and 4.2 for system (5.1) are well
satisfied as

ν1 − 2ρ∗1M = 0.02 > 0, ν1 − 2ν1ξ1 + 2ρ∗1θ1M = 0.014 > 0,

ν1 − 2ν1η1 − 2γ1 = 0.2 > 0,

ν2 − 2ρ∗2M = 0.1 > 0, ν2 − 2ν2ξ2 + 2ρ∗2θ2M = 0.01 > 0,

ν2 − 2ν2η2 − 2γ2 = 0.2 > 0.

The model system admits a globally attractive positive almost periodic solution,
see Fig. 4.
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Figure 4. Almost periodic solution of nonautonomous epidemic system (5.1). (a) State trajectories for
populations in patch 1. (b) State trajectories for populations in patch 2

Example 5.5. Let

ρ1(t) =
1
4 × (cos

√
3t+ sin t)2, ρ2(t) =

1
8 × (cos

√
2t+ sin t)2,

ν1 = 0.1, θ1 = 1, σ1 = 0.8, δ1 = 0.1, ε1 = 0.0025,

γ1 = 0.5, ξ1 = 0.11, η1 = 0.2, ζ1 = 0.7, α1 = 0.3, λ1 = 0.1,

ν2 = 0.2, θ2 = 2, σ2 = 0.9, δ2 = 0.3, ε2 = 0.002,

γ2 = 0.5, ξ2 = 0.15, η2 = 0.1, ζ2 = 0.6, α2 = 0.3, λ2 = 0.2,

a12 = 0.5, b12 = 0.02, c12 = 0.01, k12 = 0.02, l12 = 0.1,

a21 = 0.5, b21 = 0.01, c21 = 0.02, k21 = 0.01, l21 = 0.1.

Then 
ν1 − 2ρ∗1M = −5.9 < 0, ν1 − 2ν1ξ1 + 2ρ∗1θ1M = 6.078 > 0,

ν1 − 2ν1η1 − 2γ1 = −0.94 < 0,

ν2 − 2ρ∗2M = −2.8 < 0, ν2 − 2ν2ξ2 + 2ρ∗2θ2M = 6.14 > 0,

ν2 − 2ν2η2 − 2γ2 = −0.84 < 0.

The model system admits a global attractive positive almost periodic solution, see
Fig. 5.
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Figure 5. Almost periodic solution of nonautonomous epidemic system (5.1). (a) State trajectories for
populations in patch 1. (b) State trajectories for populations in patch 2

Remark 5.1. From Theorem 4.1 and Theorem 4.2, almost periodic solution of
system (2.1) exists when condition (4.1) holds. But through the simulation of
Example 5.5, it seems that the existence of almost periodic solution are ensured
whenever parameters of model satisfy condition (4.1), which means condition (4.1)
is not necessary for Theorem 4.1 and Theorem 4.2.

6. Conclusion
A nonautonomous model for HBV infection in a patchy environment has been con-
structed to reveal the influences of population migration and almost periodicity
for infection rate on the spread of HBV in this paper. Compared with the HBV
transmission model presented by Kamyad etc [15], we have taken into account the
population travel between n patches and almost periodic infection rate.

Firstly, the qualitative behaviour of autonomous model (3.1) associated with
model system (2.1) has been carried out. The basic reproduction number has been
determined and sufficient conditions guaranteeing the global stability for disease-
free equilibrium have been derived by combining the stability theory of asymptoti-
cally autonomous systems with basic comparison theorem of differential equations.
Furthermore, conditions under which system admits unique and locally asymptot-
ically stable endemic equilibrium have been obtained, respectively. Secondly, we
have studied the existence and global attractivity for almost periodic solution of
system in nonautonomous case. Moreover, we have deduced that the almost peri-
odicity of time evolution for all the populations is ensured when model parameters
satisfy the conditions of Theorem 4.2. Finally, to illustrate the analytical findings,
numerical simulations of the model with two patches has been done in cases of
autonomous and nonautonomous system.

There yet have many challenging and interesting issues remain to be investigated
in future work. From Example 5.5, we find the existence of almost periodic solution
are ensured though condition (4.1) of Theorem 4.1 is dissatisfied. Nevertheless, we
are unable to prove it at present. In addition, it is known that there may exist time-
lag when susceptible individual to be immune after vaccination and to be infected
after contacting with HBV carriers. We leave these issues for future research.
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