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the boundary value problem for a high order fractional differential equation
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itive solutions are obtained, respectively.
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1. Introduction
In this paper, we investigate the existence result of positive solutions for the follow-
ing high order fractional differential equation with delay and singularities including
changing sign nonlinearity:

Dα
0+x(t) + f(t, x(t− τ)) = 0, t ∈ (0, 1)\{τ},

x(t) = η(t), t ∈ [−τ, 0],

x′(0) = x′′(0) = · · · = x(n−2)(0) = 0, n ≥ 3,

x(n−2)(1) = 0,

(1.1)

where n−1 < α ≤ n, n = [α]+1, Dα
0+ is the standard Riemann-Liouville fractional

derivative, τ ∈ (0, 1), f(t, x) ∈ C((0, 1) × R+, R), f(t, x) may change sign and be
singular at t = 0, t = 1 in Theorem 3.1, and be singular at t = 0, t = 1 and
x = 0 in Theorem 3.2, and f(t, x) may have negative values, where R+ = (0,+∞).
η(t) ∈ C[−τ, 0], and η(t) > 0 for t ∈ [−τ, 0), η(t) = 0 for t = 0. By the Guo-
krasnosel’skii fixed point theorem and the Leray-Schauder’s nonlinear alternative
theorem, we can obtain the existence of the positive solutions.
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When 2 < α ≤ 3, problem (1.1) is reduced to the BV P of fractional differential
equation under the special conditions and has been studied by Mu et al. [7]. To
the best of our knowledge, very few people have studied the existence of positive
solutions for singular boundary value problem (1.1). Key tools used in this paper are
the properties of the given Green function, Guo-krasnosel’skii fixed point theorem,
and Leray-Schauder’s nonlinear alternative theorem, therefore this paper is the
extension and supplement of documents [7, 9].

Recently, more and more fractional differential equations with all kinds of bound-
ary value conditions have been valued by many people in diverse fields such as
science and education. This is because we can use such mathematical models ac-
curately to solve many complex problems in a wide variety of the fields such as
chemistry, system physics, economics, aerodynamics, mechanics, polymer rheology,
electrodynamic, engineering, and so forth, for the details, see [2, 8, 16, 17]. And it’s
more difficult to research the fractional differential equations with changing sign
nonlinearities and changing sign solutions, the relevant knowledge can be obtained
in the references [10,13,14]. Then, the outcomes about singularity problems of frac-
tional differential equations were studied in [1,5,12,15]. From the literature, recent
years, there have been more and more papers dealing with the boundary value prob-
lems of fractional differential equations with delay, see [3, 6, 7, 9] and the references
therein.

In [5], He et al. discussed the existence of positive solutions for a high order
fractional differential equation with integral boundary condition and changing sign
nonlinearity: 

Dα
0+u(t) + λf(t, u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n−2)(0) = 0,

Dβ
0+u(1) =

∫ 1

0

Dβ
0+u(t)dA(t),

where Dα
0+ is the standard Riemann-Liouville fractional derivative, n− 1 < α ≤ n,

n ≥ 3, 0 < β ≤ 1, λ > 0, and
∫ 1

0
Dβ

0+u(t)dA(t) denotes the Riemann-Stieltjes
integral with respect to A, in which A(t) is a monotone increasing function and
f : [0, 1] × R+ → R may change sign, R+ = (0,+∞). By the Guo-krasnosel’skii
fixed point theorem, some positive solutions can be acquired.

In [15], Zhang et al. considered the following fractional differential equation
Dα

0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, Dβ
0+u(1) = λ

∫ η

0

h(t)Dβ
0+u(t)dt,

where Dα
0+ is the standard Riemann-Liouville fractional derivative, h ∈ L1[0, 1] is

nonnegative and may be singular at t = 0 and t = 1, n − 1 < α ≤ n, n ≥ 3, β ≥
1, α − β − 1 > 0, 0 < η ≤ 1, 0 ≤ λ

∫ η

0
h(t)tα−β−1dt < 1. The nonlinearity f(t, u)

permits singularities both on t = 0, 1 and u = 0. By using the Guo-krasnosel’skii
fixed theorem, at least three positive solutions can be obtained.

In [9], the author Su studied the following boundary value problem for a singular
fractional differential equation with delay:

Dαx(t) + f(t, x(t− τ)) = 0, t ∈ (0, 1)\{τ},
x(t) = η(t), t ∈ [−τ, 0],

x(1) = 0,
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where 1 < α ≤ 2, Dα is a Riemann-Liouville fractional derivative, τ ∈ (0, 1),
f(t, x) ∈ C((0, 1)×R+, R) and may be singular at t = 0, t = 1, and x = 0 and may
have negative values, where R+ = (0,+∞). By the Guo-krasnosel’skii fixed point
theorem, the authors got the existence of positive solutions.

In [7], Mu et al. investigated the existence of positive solutions for the singular
fractional differential equation with delay:

Dαx(t) + λf(t, x(t− τ)) = 0, t ∈ (0, 1)\{τ},
x(t) = η(t), t ∈ [−τ, 0],

x′(1) = x′(0) = 0,

where 2 < α ≤ 3, Dα is Riemann-Liouville fractional derivative, λ is a positive
parameter, f(t, x) ∈ C((0, 1) × R+, R) and may be singular at t = 0, t = 1, and
x = 0. By the Guo-krasnosel’skii fixed point theorem, the eigenvalue intervals of
the boundary value problem to this nonlinear fractional differential equation were
considered, and some positive solutions were obtained, respectively.

To prove our conclusions, we will put forward some necessary definitions and
lemmas in Section 2, and give some new properties of the corresponding Green
function. In Section 3, by using the Guo-krasnosel’skii fixed point theorems and the
Leray-Schauder’s nonlinear alternative theorem, the existence of positive solutions
to BV P (1.1) will be established finally.

2. Preliminaries and correlative lemmas
In order to expound the main idea of this thesis easily, we first give some essential
definitions and lemmas that are significant and used through out this paper. The
definitions can also be found in some references such as [1, 3, 5, 6, 9].

Definition 2.1. The Riemann-Liouville fractional integral of order α (α > 0) of a
function f : (0,+∞) → R is given by:

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

provided that the right-hand side is pointwise defined on (0,+∞), where Γ(α) is
the Gamma function defined by:

Γ(α) =

∫ +∞

0

e−ttα−1dt, α > 0.

Definition 2.2. The Riemann-Liouville fractional derivative of order α (n − 1 <
α < n) of a function f : (0,+∞) → R is given by:

Dα
0+f(t) = DnIn−α

0+ f(t) =
1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α−1f(s)ds,

provided that the right-hand side is pointwise defined on (0,+∞), where n is the
smallest integer than or equal to α and Γ(·) is as same as the Gamma function
mentioned in the definition above.
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Using the definition of the Riemann-Liouville derivative, we can get the following
content.

Let α > 0. If we assume u ∈ C(0, 1) ∩ L(0, 1), then the fractional differential
equation

Dα
0+u(t) = 0

has the unique solution u(t) = c1t
α−1+c2t

α−2+· · ·+cnt
α−n, ci ∈ R, i = 1, 2, · · · , n.

Assume f ∈ C(0, 1) ∩ L(0, 1) has the fractional derivative of order α > 0. Then

Iα0+D
α
0+f(t) = f(t) + c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n

for some ci ∈ R, i = 1, 2, · · · , n.
Next we induce the Green function to solve the boundary value problem of

fractional differential equation.

Lemma 2.1. Let n − 1 < α ≤ n, and h ∈ L1[0, 1]. The unique solution of the
boundary value problem{

Dα
0+u(t) + h(t) = 0, t ∈ [0, 1],

u(0) = u′(0) = u′′(0) = · · · = u(n−2)(0) = u(n−2)(1) = 0
(2.1)

is given by

u(t) =

∫ 1

0

G(t, s)h(s)ds, t ∈ [0, 1],

where

G(t, s) =
1

Γ(α)

{
tα−1(1− s)α−n+1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−1(1− s)α−n+1, 0 ≤ t ≤ s ≤ 1.
(2.2)

Proof. By Definition 2.1, 2.2, we get that

u(t) = −Iα0+h(t) + c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n

= − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds+ c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n,

where ci ∈ R, i = 1, 2, · · · , n.
From the boundary condition

u(0) = u′(0) = u′′(0) = · · · = u(n−2)(0),

we get

cn = cn−1 = cn−2 = · · · = c2 = 0.

Thus,

u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds+ c1t
α−1.

From the boundary condition u(n−2)(1) = 0, and

D
(n−2)
0+ u(t)=− 1

Γ(α−n+2)

∫ t

0

(t−s)α−n+1h(s)ds+c1
Γ(α)

Γ(α−n+2)
tα−n+1,
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we can obtain that

u(n−2)(1) = − 1

Γ(α− n+ 2)

∫ 1

0

(1− s)α−n+1h(s)ds+ c1
Γ(α)

Γ(α− n+ 2)
= 0,

therefore,

c1 =
1

Γ(α− n+ 2)
·
∫ 1

0

(1− s)α−n+1h(s)ds · Γ(α− n+ 2)

Γ(α)

=
1

Γ(α)

∫ 1

0

(1− s)α−n+1h(s)ds,

finally,

u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds

+
tα−1

Γ(α)
(

∫ t

0

(1− s)α−n+1h(s)ds+

∫ 1

t

(1− s)α−n+1h(s)ds)

=
1

Γ(α)
(

∫ t

0

[tα−1(1− s)α−n+1 − (t− s)α−1]h(s)ds

+

∫ 1

t

tα−1(1− s)α−n+1h(s)ds)

=

∫ 1

0

G(t, s)h(s)ds, t ∈ [0, 1].

The following properties of the Green function play important roles in the whole
thesis.

Lemma 2.2. The Green function G(t, s) given by (2.2) has the following properties:

(1) 0 ≤ G(t, s) ≤ 1
Γ(α) (α− 1)s(1− s)α−n+1, ∀ t, s ∈ [0, 1];

(2) 1
Γ(α) t

α−1s(1−s)α−n+1 ≤ G(t, s) ≤ 1
Γ(α) (α−1)tα−1(1−s)α−n+1, ∀ t, s ∈ [0, 1].

Proof. (1) By the definition of the G(t, s), we can get that G(t, s) ≥ 0 easily.
For 0 ≤ s ≤ t ≤ 1, noticing that α− n+ 1 > 0, we have

G(t, s) =
1

Γ(α)
(tα−1(1− s)α−n+1 − (t− s)α−1)

=
1

Γ(α)
(1− s)2−n[(t(1− s))α−1 − (1− s)n−2(t− s)α−1]

≤ 1

Γ(α)
(1− s)2−n[(t(1− s))α−1 − (1− s)α−1(t− s)α−1]

=
1

Γ(α)
(1− s)2−n(α− 1)

∫ t(1−s)

(1−s)(t−s)

xα−2dx

≤ 1

Γ(α)
(1− s)2−n(α− 1)tα−2(1− s)α−2[t(1− s)− (1− s)(t− s)]
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=
1

Γ(α)
(α− 1)(1− s)2−ntα−2(1− s)α−2s(1− s)

≤ 1

Γ(α)
(α− 1)s(1− s)α−n+1.

For 0 ≤ t ≤ s ≤ 1, noticing that α > 2, we have

G(t, s) =
1

Γ(α)
tα−1(1− s)α−n+1

≤ 1

Γ(α)
sα−1(1− s)α−n+1

≤ 1

Γ(α)
(α− 1)s(1− s)α−n+1.

The prove of (1) is completed.
(2) On the one hand, we proof the relationship “≥” holds, ∀ t, s ∈ [0, 1].
For 0 ≤ s ≤ t ≤ 1, noticing that n ≥ 3, we have (1− s)n−2 ≤ (1− s), therefore,

G(t, s) =
1

Γ(α)
[tα−1(1− s)α−n+1 − (t− s)α−1]

=
1

Γ(α)
[tα−1(1− s)α−n+1 − tα−1(1− s

t
)α−1]

≥ 1

Γ(α)
tα−1[(1− s)α−n+1 − (1− s)α−(n−2)−1+(n−2)]

=
1

Γ(α)
tα−1(1− s)α−n+1[1− (1− s)n−2]

≥ 1

Γ(α)
tα−1(1− s)α−n+1[1− (1− s)]

=
1

Γ(α)
tα−1s(1− s)α−n+1.

For 0 ≤ t ≤ s ≤ 1, we have

G(t, s) =
1

Γ(α)
tα−1(1− s)α−n+1 ≥ 1

Γ(α)
tα−1s(1− s)α−n+1.

On the other hand, we prove the relationship “≤” holds, ∀ t, s ∈ [0, 1], by (1),
for 0 ≤ s ≤ t ≤ 1, we have

G(t, s) =
1

Γ(α)
(tα−1(1− s)α−n+1 − (t− s)α−1)

≤ 1

Γ(α)
(α− 1)(1− s)2−ntα−2(1− s)α−2s(1− s)

≤ 1

Γ(α)
(α− 1)(1− s)2−ntα−2(1− s)α−2t(1− s)

=
1

Γ(α)
(α− 1)tα−1(1− s)α−n+1.

For 0 ≤ t ≤ s ≤ 1, we have

G(t, s) =
1

Γ(α)
tα−1(1− s)α−n+1 ≤ 1

Γ(α)
(α− 1)tα−1(1− s)α−n+1.

The proof of (2) is completed.
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Remark 2.1. The function G∗(t, s) = t2n−1−αG(t, s) satisfies the following condi-
tion:

1

Γ(α)
t2n−2s(1− s)α−n+1 ≤ G∗(t, s) ≤ α− 1

Γ(α)
t2n−2(1− s)α−n+1 for t, s ∈ [0, 1].

Lemma 2.3 ( [4]). Let E be a Banach space, and P ⊂ E be a cone. Assume Ω is a
bounded open set in E such that θ ∈ Ω. Let operator T : P ∩ Ω → P be completely
continuous. Then the following two conclusions are established:

(1) If ∥Tu∥ < ∥u∥, ∀ u ∈ P ∩ ∂Ω, then i(T, P ∩ Ω, P ) = 1;
(2) If ∥Tu∥ > ∥u∥, ∀ u ∈ P ∩ ∂Ω, then i(T, P ∩ Ω, P ) = 0.

Lemma 2.4 (Leray-Schauder’s nonlinear alternative theorem). Let F : E → E be
a completely continuous operator. Let

σ(F ) = {x ∈ E : x = κF (x), 0 < κ < 1},

then either the set σ(F ) is unbounded, or F has least one fixed point.

3. Main results
In the section 3, we will try our best to discuss the existence of positive solutions for
boundary value problem (1.1). For convenience, we list some preconditions which
are significant in this paper.

Throughout this paper, we always suppose that the following condition holds:
(H1) There exists a nonnegative function ρ ∈ C(0, 1) ∩ L(0, 1), ρ(t) ̸≡ 0, such

that

f(t, x) > −ρ(t),

and

φ2(t)h2(x) ≤ f(t, v(t)x) + ρ(t) ≤ φ1(t)(g(x) + h1(x)),

for ∀ (t, x) ∈ (0, 1)×R+, where φ1, φ2 ∈ L(0, 1) are positive, h1, h2 ∈ C(R+
0 , R

+)
are nondecreasing, g ∈ C(R+

0 , R
+) is nonincreasing, R+

0 = [0,+∞), and

v(t) =

{
1, t ∈ (0, τ ],

(t− τ)α−2n+1, t ∈ (τ, 1).

When s ∈ [0, τ ], we have −τ ≤ s − τ ≤ 0, suppose there is a positive number
S > 0, such taht max

−τ≤s−τ≤0
η(s − τ) = S, therefore η(s − τ) ≤ S and 0 < g(S) ≤

g(η(s− τ)) ≤ g(0).
Let X = {x|x ∈ C[−τ, 1]}, then (X, ∥ · ∥) is a Banach space with the maximum

norm

∥x∥[−τ,1] = max−τ≤t≤1|x(t)| for x ∈ X.

And we set a cone

K = {x ∈ X|x(t) = 0 for t ∈ [−τ, 0], and x(t) ≥ 1

α− 1
t2n−2∥x∥ for t ∈ [0, 1]}.
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Define

η(t) =

{
η(t), t ∈ [−τ, 0],

0, t ∈ (0, 1],

ω(t) =


0, t ∈ [−τ, 0],∫ 1

0

G(t, s)ρ(s)ds, t ∈ (0, 1],

and nonnegative function

[x(t) + η(t)− ω(t)]+ = x∗(t)

= max{x(t) + η(t)− ω(t), 0}

=

{
η(t), t ∈ [−τ, 0],

max{x(t)− ω(t), 0}, t ∈ (0, 1]

for any x ∈ K. And we let f∗(t, x(t)) = f(t, x∗(t)) + ρ(t).
Define ω|[0,1] is the solution of{

Dαx(t) + ρ(t) = 0, t ∈ (0, 1),

x(n−2)(1) = x(n−2)(0) = · · · = x′′(0) = x′(0) = x(0) = 0.

As f : (0, 1)× R+ → R is a continuous function, we can know that function x is a
solution of boundary value problem (1.1) if and only if it satisfies

x(t) =


∫ 1

0

G(t, s)f(s, x(s− τ))ds, t ∈ (0, 1),

η(t), t ∈ [−τ, 0].

Considering the following operator:

(Ax)(t) =


∫ 1

0

G(t, s)(f(s, x∗(s− τ)) + ρ(s))ds, t ∈ (0, 1],

0, t ∈ [−τ, 0].

(3.1)

Let

y(t) =

{
t2n−1−αx(t), t ∈ (0, 1),

0, t ∈ [−τ, 0],

and

y∗(t) =

{
max{tα−2n+1y(t)− ω(t), 0}, t ∈ (0, 1],

η(t), t ∈ [−τ, 0].

Next (3.1) is equivalent to

(Ty)(t) =


∫ 1

0

G∗(t, s)(f(s, y∗(s− τ)) + ρ(s))ds, t ∈ (0, 1],

0, t ∈ [−τ, 0].

(3.2)
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Clearly, if ỹ is a fixed point of operator T in (3.2), then

x̃(t) =

{
tα−2n+1ỹ(t), t ∈ (0, 1],

0, t ∈ [−τ, 0]

is a fixed point of operator A defined in (3.1). By Lemma 2.1 we can obtain that
Dαx̃(t) + (f(t, x̃∗(t− τ)) + ρ(t)) = 0, t ∈ (0, 1)\{τ},
x̃(t) = 0, t ∈ [−τ, 0],

x̃(n−2)(1) = x̃(n−2)(0) = · · · = x̃′′(0) = x̃′(0) = 0.

(3.3)

If

x̃(t− τ) + η(t− τ)− ω(t− τ) ≥ 0 for t ∈ [0, 1], (3.4)

then
x̃∗(t− τ) = x̃(t− τ) + η(t− τ)− ω(t− τ).

Let

x(t) = x̃(t) + η(t)− ω(t). (3.5)

Then some conclusion will be verified below.

Lemma 3.1. x is a positive solution of boundary value problem (1.1) if and only if
x̃(t) = x(t) + ω(t)− η(t) is a positive solution of boundary value problem (3.3) and
inequality x̃(t) + η(t)− ω(t) ≥ 0 holds up when t ∈ (0, 1)\τ .

Proof. If x is a positive solution of boundary value problem (1.1), we shall prove
it in two cases.

For t ∈ [−τ, 0],

x̃(t) = x(t) + ω(t)− η(t)

= x(t)− η(t)

= η(t)− η(t)

= 0,

which implies that x̃(t) = 0.
It is easy to show that x̃(t) satisfies the rest boundary conditions in (3.3) when

t ∈ [−τ, 0].
For t ∈ (0, 1)\{τ},

Dα
0+(x(t) + ω(t)− η(t))

= Dα
0+x(t) +Dα

0+ω(t)−Dα
0+η(t)

= Dα
0+x(t) +Dα

0+ω(t)

= −f(t, x(t− τ))− ρ(t)

= −(f(t, x(t− τ)) + ρ(t))

= −(f(t, x̃∗(t− τ)) + ρ(t)),

which implies that
Dα

0+ x̃(t) = −(f(t, x̃∗(t− τ)) + ρ(t)).
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Since x(t) is a positive solution, then x̃(t) + η(t) − ω(t) ≥ 0 holds when t ∈
(0, 1)\τ . It is easy to show that x̃(t) satisfies the boundary conditions in (3.3).

Therefore, x̃(t) is a positive solution of boundary value problem (3.3).
On the other hand, if x̃(t) = x(t)+ω(t)−η(t) is a positive solution of boundary

value problem (3.3) and x̃(t) + η(t) − ω(t) ≥ 0 holds when t ∈ (0, 1)\τ , as similar
as the proof above, we can easily prove that x(t) is a positive solution of boundary
value problem (1.1).

As a result, in the following paper we will concentrate our mind on finding the
fixed points of operator T defined by (3.2).

In the following content, we give other three conditions:
(H2) ∫ 1

0

(1− s)α−n+1φ1(s)ds > 0.

(H3) Let

lim sup
y→+∞

h1(y)

y
≤ e, e > 0, (3.6)

such that e satisfies Γ(α)
α−1 >

∫ 1

τ
e(1− s)α−n+1φ1(s)ds.

In view of (3.6), there exists a M > 0 such that

h1(y) ≤ ey for y > M. (3.7)

(H4) Suppose there exists a subinterval [a, b] ⊂ (τ, 1), such that

ζ1 = min
t∈[a,b]

(t− τ)2n−2

α− 1
=

(a− τ)2n−2

α− 1
, ζ2 = min

t∈[a,b]
t2n−2 = a2n−2.

And there exists a r1 ≥ max{2, 2c}, where

c =
(α− 1)2

Γ(α)

∫ 1

0

(1− s)α−n+1ρ(s)ds < +∞. (3.8)

Let
ξ1 = ζ2

Γ(α)h2(
r1ζ1
2 )

∫ b

a
s(1− s)α−n+1φ2(s)ds

> r1.

By the above conditions, we denote:

ξ2 =
∫ τ
0
(1−s)α−n+1φ1(s)(g(0)+h1(S))ds+

∫ 1
τ
(1−s)α−n+1φ1(s)g(

1
α−1 (s−τ)2n−2)ds

Γ(α)
α−1 −

∫ 1
τ
e(1−s)α−n+1φ1(s)ds

> 0.

Next we choose a r2 > max{M + 1, r1 + 1, ξ2}. Define

Ω1 = {y ∈ K : ∥y∥ < r1}, Ω2 = {y ∈ K : ∥y∥ < r2}.

And when s ∈ [τ, 1], because 0 ≤ 1
α−1

r1
2 (s− τ)2n−2 < 1

α−1
r1
2 , thus,

0 < g(
1

α− 1

r1
2
) < g(

1

α− 1

r1
2
(s− τ)2n−2) ≤ g(0).
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Then ∀ y ∈ Ω2\Ω1,

t2n−1−αω(t) = t2n−1−α

∫ 1

0

G(t, s)ρ(s)ds

≤ (α− 1)t2n−2

Γ(α)

∫ 1

0

(1− s)α−n+1ρ(s)ds

=
1

α− 1
t2n−2c, (3.9)

where c is defined as (3.8). Thus, for t ∈ (0, 1),

y(t)− t2n−1−αω(t) ≥ 1

α− 1
t2n−2r1 −

1

α− 1
t2n−2c

≥ 1

α− 1
t2n−2(r1 −

1

2
r1)

=
1

α− 1

r1
2
t2n−2. (3.10)

Then

(Ty)(t) =

∫ τ

0

G∗(t, s)(f(s, η(s− τ)) + ρ(s))ds

+

∫ 1

τ

G∗(t, s)(f(s, (s− τ)α−2n+1y(s− τ)− ω(s− τ)) + ρ(s))ds

≤ (α− 1)t2n−2

Γ(α)

∫ τ

0

(1− s)α−n+1φ1(s)(g(η(s− τ)) + h1(η(s− τ)))ds

+
(α− 1)t2n−2

Γ(α)

∫ 1

τ

(1− s)α−n+1φ1(s)

× (g(
1

(α−1)

r1
2
(s−τ)2n−2)+h1(y(s−τ)−(s−τ)2n−1−αω(s−τ)))ds

≤ α− 1

Γ(α)

∫ τ

0

(1− s)α−n+1φ1(s)(g(0) + h1(S))ds

+
α− 1

Γ(α)

∫ 1

τ

(1− s)α−n+1φ1(s)(g(
1

α− 1

r1
2
(s− τ)2n−2) + h1(∥y∥))ds

≤ α− 1

Γ(α)

∫ τ

0

(1− s)α−n+1φ1(s)(g(0) + h1(S))ds

+
α− 1

Γ(α)

∫ 1

τ

(1− s)α−n+1φ1(s)(g(0) + h1(∥y∥))ds

< +∞.

Therefore, T is well-defined on Ω2\Ω1.

Lemma 3.2. Suppose (H1) and (H2) hold. Then the operator T : Ω2\Ω1 → K is
completely continuous.

Proof. Step 1: First we show that T : Ω2\Ω1 → K. In fact, for y ∈ Ω2\Ω1, t ∈
(0, 1), in view of Remark 2.1, denote

B(α) =
1

Γ(α)

∫ 1

0

s(1− s)α−n+1(f(s, y∗(s− τ)) + ρ(s))ds.
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On the one hand,

(Ty)(t) ≤ (α− 1)t2n−1−α

Γ(α)

∫ 1

0

s(1− s)α−n+1(f(s, y∗(s− τ)) + ρ(s))ds

= (α− 1)t2n−1−αB(α),

therefore, ∥Ty∥ = max
t∈[0,1]

|(Ty)(t)| ≤ (α− 1)B(α). On the other hand,

(Ty)(t) ≥ t2n−2

Γ(α)

∫ 1

0

s(1− s)α−n+1(f(s, y∗(s− τ)) + ρ(s))ds

= t2n−2B(α)

≥ 1

α− 1
t2n−2∥Ty∥.

Hence, T : Ω2\Ω1 → K.
Step 2: we prove that T : Ω2\Ω1 → K is a continuous operator.
For any ym, y ∈ Ω2\Ω1, m = 1, 2, · · · with ∥ym − y∥[−τ,1] → 0 as m → ∞. We

know that r1 ≤ ∥ym∥ ≤ r2, r1 ≤ ∥y∥ ≤ r2 and y(t) ≥ 1
α−1 t

2n−2∥y∥ ≥ 1
α−1 t

2n−2r1,
ym(t) ≥ 1

α−1 t
2n−2∥ym∥ ≥ 1

α−1 t
2n−2r1, for t ∈ (0, 1). Then, for t ∈ (0, 1), by (3.10),

we get
ym(t)− t2n−1−αω(t) ≥ 1

α− 1

r1
2
t2n−2,

and
y(t)− t2n−1−αω(t) ≥ 1

α− 1

r1
2
t2n−2.

By (H1), we have

f(s, (s− τ)α−2n+1ym(s− τ)− ω(s− τ)) + ρ(s)

=f(s, (s− τ)α−2n+1(ym(s− τ)− (s− τ)2n−α−1ω(s− τ))) + ρ(s)

≤φ1(s)(g(ym(s− τ)− (s− τ)2n−α−1ω(s− τ))

+ h1(ym(s− τ)− (s− τ)2n−α−1ω(s− τ)))

≤φ1(s)(g(
1

α− 1
(s− τ)2n−2) + h1(r2)),

and similarly,

f(s, (−τ)α−2n+1y(s−τ)−ω(s−τ))+ρ(s) ≤ φ1(s)(g(
1

α−1
(s−τ)2n−2)+h1(r2)).

Because
φ1(s)(g(0)+h1(r2)) ∈ L1(0, 1),

and

|f(s, (s− τ)α−2n+1ym(s− τ)− ω(s− τ)) + ρ(s)

− (f(s, (s− τ)α−2n+1y(s− τ)− ω(s− τ)) + ρ(s))|

≤2φ1(s)(g(
1

α− 1
(s− τ)2n−2) + h1(r2))

≤2φ1(s)(g(0) + h1(r2)).
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By using the Lebesgue dominated convergence theorem, for t ∈ [0, 1], we have

|(Tym)(t)− (Ty)(t)|

=|
∫ 1

τ

G∗(t, s)[f(s, (s− τ)α−2n+1ym(s− τ)− ω(s− τ)) + ρ(s)

− (f(s, (s− τ)α−2n+1y(s− τ)− ω(s− τ)) + ρ(s))]ds|

≤
∫ 1

τ

G∗(t, s)|f(s, (s− τ)α−2n+1ym(s− τ)− ω(s− τ)) + ρ(s)

− (f(s, (s− τ)α−2n+1y(s− τ)− ω(s− τ)) + ρ(s))|ds

≤2(α− 1)

Γ(α)

∫ 1

τ

(1− s)α−n+1φ1(s)(g(0) + h1(r2))ds,

and

lim
m→+∞

|
∫ 1

τ

G∗(t, s)[f(s, (s− τ)α−2n+1ym(s− τ)− ω(s− τ)) + ρ(s)

− (f(s, (s− τ)α−2n+1y(s− τ)− ω(s− τ)) + ρ(s))]ds|

≤
∫ 1

τ

G∗(t, s) lim
m→+∞

|f(s, (s− τ)α−2n+1ym(s− τ)− ω(s− τ)) + ρ(s)

− (f(s, (s− τ)α−2n+1y(s− τ)− ω(s− τ)) + ρ(s))|ds
=0.

This implies that ∥Tym − Ty∥[−τ,1] → 0 as m → +∞. Hence T is continuous.
Step 3: T is a compact operator.
Let Ω ⊂ Ω2\Ω1 be any nonempty bounded set.
(1) First we show that T (Ω) is uniformly bounded.
For any y ∈ Ω, in view of (H1), (H2) and Remark 2.1, we show

(Ty)(t) =

∫ τ

0

G∗(t, s)(f(s, η(s− τ)) + ρ(s))ds

+

∫ 1

τ

G∗(t, s)(f(s, (s− τ)α−2n+1y(s− τ)− ω(s− τ)) + ρ(s))ds

≤ (α− 1)t2n−2

Γ(α)

∫ τ

0

(1− s)α−n+1φ1(s)(g(η(s− τ)) + h1(η(s− τ)))ds

+
(α− 1)t2n−2

Γ(α)

∫ 1

τ

(1− s)α−n+1φ1(s)

× (g(
1

α−1

r1
2
(s−τ)2n−2)+h1(y(s−τ)−(s−τ)2n−1−αω(s−τ)))ds

≤α−1

Γ(α)

∫ τ

0

(1−s)α−n+1φ1(s)(g(η(s−τ))+h1(η(s−τ)))ds

+
α−1

Γ(α)

∫ 1

τ

(1−s)α−n+1φ1(s)(g(
1

α−1

r1
2
(s−τ)2n−2)+h1(y(s−τ)))ds

≤α− 1

Γ(α)

∫ τ

0

(1− s)α−n+1φ1(s)(g(η(s− τ)) + h1(η(s− τ)))ds

+
α− 1

Γ(α)

∫ 1

τ

(1− s)α−n+1φ1(s)(g(
1

α− 1
(s− τ)2n−2) + h1(r2))ds
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≤α− 1

Γ(α)

∫ τ

0

(1− s)α−n+1φ1(s)(g(0) + h1(S))ds

+
α− 1

Γ(α)

∫ 1

τ

(1− s)α−n+1φ1(s)(g(0) + h1(r2))ds

<+∞.

Denote

J(α) =
α− 1

Γ(α)

∫ τ

0

(1− s)α−n+1φ1(s)(g(0) + h1(S))ds

+
α− 1

Γ(α)

∫ 1

τ

(1− s)α−n+1φ1(s)(g(0) + h1(r2))ds.

By the proof above, we can get that ∥Ty∥ ≤ J(α). Hence, T (Ω) is uniformly
bounded.

(2) Next we prove that T (Ω) is equicontinuous.
Since G∗ is uniformly continuous for (t, s) ∈ [0, 1] × [0, 1], for any ϵ > 0,there

exists δ0 > 0, when t1, t2, s ∈ [0, 1] and |t1 − t2| < δ0, we have

|G∗(t1, s)−G∗(t2, s)| <ϵ(

∫ τ

0

φ1(s)(g(0) + h1(S))ds

+

∫ 1

τ

φ1(s)(g(
1

α− 1
(s− τ)2n−2) + h1(r2))ds)

−1.

Thus, for any y ∈ Ω, we get

|(Ty)(t1)− (Ty)(t2)|

≤
∫ τ

0

|G∗(t1, s)−G∗(t2, s)|φ1(s)(g(0) + h1(S))ds

+

∫ 1

τ

|G∗(t1, s)−G∗(t2, s)|φ1(s)(g(
1

α− 1
(s− τ)2n−2) + h1(r2))ds

<ϵ.

Thus T (Ω) is equicontinuous.
According to (1), (2) above, and by the Ascoli-Arzelà theorem, T (Ω) is a se-

quentially compact set. Thus, T is a compact operator.
Let us sum up all of the proof above, and then T is completely continuous.

Theorem 3.1. Let (H1), (H2), (H3) and (H4) hold, then the boundary value
problem (1.1) at least has one positive solution.

Proof. On the one hand, for y ∈ ∂Ω2, as similar as (3.10), for t ∈ (0, 1), we obtain

y(t)− t2n−1−αω(t) ≥ 1

α− 1
t2n−2(r2 − c) ≥ 1

α− 1

r2
2
t2n−2. (3.11)
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Then from (H1), (H3), (3.7), (3.11), and Remark 2.1, we get

(Ty)(t)

≤ (α− 1)t2n−2

Γ(α)

∫ τ

0

(1− s)α−n+1φ1(s)(g(η(s− τ)) + h1(η(s− τ)))ds

+
(α− 1)t2n−2

Γ(α)

∫ 1

τ

(1− s)α−n+1φ1(s)

× (g(
1

α− 1

r2
2
(s− τ)α−1) + h1(y(s− τ)− (s− τ)2n−1−αω(s− τ)))ds

≤ (α− 1)t2n−2

Γ(α)

∫ τ

0

(1− s)α−n+1φ1(s)(g(η(s− τ)) + h1(η(s− τ)))ds

+
(α− 1)t2n−2

Γ(α)

∫ 1

τ

(1− s)α−n+1φ1(s)(g(
1

α− 1

r2
2
(s− τ)2n−2) + h1(y(s− τ)))ds

≤α− 1

Γ(α)

∫ τ

0

(1− s)α−n+1φ1(s)(g(η(s− τ)) + h1(η(s− τ)))ds

+
α− 1

Γ(α)

∫ 1

τ

(1− s)α−n+1φ1(s)(g(
1

α− 1
(s− τ)2n−2) + h1(r2))ds

≤α− 1

Γ(α)

∫ τ

0

(1− s)α−n+1φ1(s)(g(0) + h1(S))ds

+
α− 1

Γ(α)

∫ 1

τ

(1− s)α−n+1φ1(s)(g(
1

α− 1
(s− τ)2n−2) + er2)ds

<r2.

Therefore, for y ∈ K1 ∩ ∂Ω2, we have ∥Ty∥ < ∥y∥, then i(T,Ω2,K) = 1.
On the other hand, for y ∈ ∂Ω1, from (H1), (H4), (3.10), and Remark 2.1, we

have

∥Ty∥ ≥
∫ b

a

min
t∈[a,b]

G∗(t, s)(f(s, (s− τ)α−2n+1y(s− τ)− ω(s− τ)) + ρ(s))ds

≥
∫ b

a

min
t∈[a,b]

G∗(t, s)φ2(s)h2(
1

α− 1

r1
2
(s− τ)2n−2)ds

≥ ζ2
Γ(α)

h2(
r1ζ1
2

)

∫ b

a

s(1− s)α−n+1φ2(s)ds

=
a2n−2

Γ(α)
h2(

r1(a− τ)2n−2

2
)

∫ b

a

s(1− s)α−n+1φ2(s)ds

= ξ1

> r1.

Therefore, for y ∈ K1 ∩ ∂Ω1, we have ∥Ty∥ > ∥y∥, then, i(T,Ω1,K) = 0.
Thus, i(T,Ω2\Ω1,K) = i(T,Ω2,K)− i(T,Ω1,K) = 1. Then, T defined by (3.2)

has a fixed point ỹ ∈ Ω2\Ω1.
In view of (3.10), we have

x̃(t)− ω(t) = tα−2n+1ỹ(t)− ω(t)

= tα−2n+1(ỹ(t)− t2n−1−αω(t))
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> tα−2n+1 1

α− 1

r1
2
t2n−2

=
1

α− 1

r1
2
tα−1

> 0.

It is easy to know that (3.4) is satisfied. Therefore, x(t) = x̃(t)−ω(t) is a positive
solution of the boundary value problem (1.1). The proof is completed.

We choose a number n0 ∈ {1, 2, · · · }, let N0 = {n0, n0 + 1, · · · }. Fixing n ∈ N0

and considering the family of integral equation

y(t) =


κ

∫ 1

0

G∗(t, s)(fn(s, y
∗(s− τ)) + ρ(s))ds+

1

n
, t ∈ (0, 1),

1

n
, t ∈ [−τ, 0],

(3.12)

where κ ∈ (0, 1),

fn(t, y
∗(t− τ)) + ρ(t) =


f(t, y∗(t− τ)) + ρ(t), y∗(t− τ) ≥ 1

n
,

f(t,
1

n
) + ρ(t), y∗(t− τ) <

1

n
.

Next, we give another condition:
(H5) Let

lim
z→+∞

sup
h1(z)

z
<

Γ(α)

(α− 1)
∫ 1

τ
(1− s)α−n+1φ1(s)ds

.

Theorem 3.2. Let (H1), (H2), (H5) hold. Then boundary value problem (1.1) at
least has one positive solution.

Proof. In view of (H5), there exists a positive r satisfies

r >
α− 1

Γ(α)
(

∫ τ

0

(1− s)α−n+1φ1(s)(g(0) + h1(S))ds

+

∫ 1

τ

(1− s)α−n+1φ1(s)(g(
1

α− 1
(s− τ)2n−2) + h1(r))ds),

and meanwhile, we let r > max{2, 2c}, c defined as (3.8).
So, we can use n0 ∈ {1, 2, · · · } such that

r >
α− 1

Γ(α)
(

∫ τ

0

(1− s)α−n+1φ1(s)(g(0) + h1(S))ds

+

∫ 1

τ

(1− s)α−n+1φ1(s)(g(
1

α− 1
(s− τ)2n−2) + h1(r))ds) +

1

n0
.

We claim that any solution y of (3.12) for any κ ∈ (0, 1) must satisfy ∥y∥ ̸= r.
Otherwise, supposing that y is a solution of (3.12) for some κ ∈ (0, 1) such that
∥y∥ = r. We just prove the situation that y∗(t − τ) ≥ 1

n for t ∈ (0, 1). In view of
Lemma 2.2 (1), we can get

y(t) ≤ κ(α− 1)t2n−1−α

Γ(α)

∫ 1

0

s(1− s)α−n+1(fn(s, y
∗(s− τ)) + ρ(s))ds+

1

n
,
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therefore,

∥y∥ ≤ κ(α− 1)

Γ(α)

∫ 1

0

s(1− s)α−n+1(fn(s, y
∗(s− τ)) + ρ(s))ds+

1

n
. (3.13)

Thus, by Remark 2.1, for t ∈ (0, 1), we have

y(t) ≥ 1

n
+

κt2n−2

Γ(α)

∫ 1

0

s(1− s)α−n+1(fn(s, y
∗(s− τ)) + ρ(s))ds

≥ 1

n
+

1

α− 1
t2n−2(∥y∥ − 1

n
)

=
1

n
+

1

α− 1
t2n−2∥y∥ − 1

α− 1
t2n−2 · 1

n

= (1− 1

α− 1
t2n−2) · 1

n
+

1

α− 1
t2n−2∥y∥

≥ 1

α− 1
t2n−2∥y∥

=
1

α− 1
t2n−2r.

Then like for (3.10), for t ∈ (0, 1), we can get

y(t)− t2n−1−αω(t) ≥ 1

α− 1
t2n−2(r − c) ≥ 1

α− 1

r

2
t2n−2. (3.14)

Then from (H1), (3.14), for t ∈ [0, 1], κ ∈ (0, 1), we have

y(t) =
1

n
+ κ

∫ 1

0

G∗(t, s)(fn(s, y
∗(s− τ)) + ρ(s))ds

=
1

n
+ κ

∫ 1

0

G∗(t, s)(f(s, y∗(s− τ)) + ρ(s))ds

≤ 1

n
+

(α− 1)t2n−2

Γ(α)

∫ 1

0

(1− s)α−n+1(f(s, y∗(s− τ)) + ρ(s))ds

≤ 1

n0
+

α− 1

Γ(α)

∫ τ

0

(1− s)α−n+1φ1(s)(g(η(s− τ)) + h1(η(s− τ)))ds

+
α− 1

Γ(α)

∫ 1

τ

(1− s)α−n+1φ1(s)

× (g(
1

α− 1

r

2
(s− τ)2n−2) + h1(y(s− τ)− (s− τ)2n−1−αω(s− τ)))ds.

Hence we obtain

r = ∥y∥
= max

t∈[0,1]
y(t)

≤ 1

n0
+

α− 1

Γ(α)

∫ τ

0

(1− s)α−n+1(φ1(s)(g(η(s− τ)) + h1(η(s− τ))))ds

+
α− 1

Γ(α)

∫ 1

τ

(1− s)α−n+1φ1(s)
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× (g(
1

α− 1

r

2
(s− τ)2n−2) + h1(y(s− τ)− (s− τ)2n−1−αω(s− τ)))ds

≤ 1

n0
+

α− 1

Γ(α)

∫ τ

0

(1− s)α−n+1(φ1(s)(g(η(s− τ)) + h1(η(s− τ))))ds

+
α−1

Γ(α)

∫ 1

τ

(1−s)α−n+1(φ1(s)(g(
1

α− 1

r

2
(s−τ)2n−2) + h1(y(s−τ))))ds

≤ 1

n0
+

α− 1

Γ(α)

∫ τ

0

(1− s)α−n+1(φ1(s)(g(η(s− τ)) + h1(η(s− τ))))ds

+
α− 1

Γ(α)

∫ 1

τ

(1− s)α−n+1(φ1(s)(g(
1

α− 1
(s− τ)2n−2) + h1(r)))ds

≤ 1

n0
+

α− 1

Γ(α)

∫ τ

0

(1− s)α−n+1(φ1(s)(g(0) + h1(S)))ds

+
α− 1

Γ(α)

∫ 1

τ

(1− s)α−n+1(φ1(s)(g(
1

α− 1
(s− τ)2n−2) + h1(r)))ds.

This is a contradiction and the claim is proved.
We set a cone

K1 = {x ∈ X | x(t) ≥ 1

α− 1
t2n−2∥x∥ for t ∈ [0, 1]}.

Now the Lemma 2.4 guarantees that the equation

y(t) =

∫ 1

0

G∗(t, s)(fn(s, y
∗(s− τ)) + ρ(s))ds

has a solution yn in Ω3 = {y ∈ K : 1
2r < ∥y∥ < r}, for t ∈ (0, 1).

And ∀ t ∈ (0, 1), by c < 1
2r < ∥yn∥ < r, we can get {yn}n∈N0

is a uniformly
bounded set on (0, 1).

Next we claim that yn(t) has a lower bound. In view of (H1), we can get that

yn(t) =

∫ 1

0

G∗(t, s)(fn(s, y
∗
n(s− τ)) + ρ(s))ds

≥
∫ b

a

G∗(t, s)(f(s, y∗n(s− τ)) + ρ(s))ds

≥ t2n−2

Γ(α)

∫ b

a

s(1− s)α−n+1(f(s, y∗n(s− τ)) + ρ(s))ds

≥ t2n−2

Γ(α)

∫ b

a

s(1− s)α−n+1(φ2(s)h2(
1

α− 1
(∥yn∥ − c)(s− τ)2n−2))ds

≥ t2n−2

Γ(α)
h2((∥yn∥ − c)ζ1)

∫ b

a

s(1− s)α−n+1φ2(s)ds

≥ t2n−2

Γ(α)
h2(

(∥yn∥ − c)(a− τ)2n−2

α− 1
)

∫ b

a

s(1− s)α−n+1φ2(s)ds

> 0.

Then we prove that {yn}n∈N0
is an equicontinuous family on (0, 1). Since G∗ is

uniformly continuous for (t, s) ∈ [0, 1] × [0, 1], that is, for any ϵ > 0, there exists
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ζ0 > 0, when t1, t2, s ∈ [0, 1] and |t1 − t2| < ζ0, we can get

|G∗(t1, s)−G∗(t2, s)|

= ϵ(

∫ τ

0

φ1(s)(g(η(s− τ)) + h1(η(s− τ)))ds

+

∫ 1

τ

φ1(s)(g(
1

α− 1
(∥yn∥ − c)(s− τ)2n−2) + h1(r))ds)

−1.

Thus

|(yn)(t1)− (yn)(t2)|

≤
∫ τ

0

|G∗(t1, s)−G∗(t2, s)|φ1(s)(g(η(s− τ)) + h1(η(s− τ)))ds

+

∫ 1

τ

|G∗(t1, s)−G∗(t2, s)|φ1(s)

× (g(
1

α− 1
(∥yn∥ − c)(s− τ)2n−2) + h1(r))ds

< ϵ.

Therefore, {yn}n∈N0
is an equicontinuous set on (0, 1). By the Arzelà-Ascoli

theorem, as {yn}n∈N0
is a sequentially compact set, there exist a subsequence N1

of N0 and y ∈ Ω3 such that {yn}n∈N1
is uniformly convergent to y and y satisfies

the relationship that 0 < y(t) < r for any t ∈ (0, 1). Because

f(s, (s− τ)α−2n+1yn(s− τ)− ω(s− τ)) + ρ(s)

= f(s, (s− τ)α−2n+1(yn(s− τ)− (s− τ)2n−α−1ω(s− τ))) + ρ(s)

≤ φ1(s)(g(yn(s− τ)− (s− τ)2n−α−1ω(s− τ))

+ h1(yn(s− τ)− (s− τ)2n−α−1ω(s− τ)))

≤ φ1(s)(g(
1

α− 1
(∥yn∥ − c)(s− τ)2n−2) + h1(r)),

and similarly,

f(s, (s− τ)α−2n+1y(s− τ)− ω(s− τ)) + ρ(s)

≤ φ1(s)(g(
1

α− 1
(∥y∥ − c)(s− τ)2n−2) + h1(r)).

Because
φ1(s)(g(

1

α− 1
(∥yn∥ − c)(s− τ)2n−2) + h1(r)) ∈ L1(0, 1),

φ1(s)(g(
1

α− 1
(∥y∥ − c)(s− τ)2n−2) + h1(r)) ∈ L1(0, 1),

and

|f(s, (s− τ)α−2n+1yn(s− τ)− ω(s− τ)) + ρ(s)

− (f(s, (s− τ)α−2n+1y(s− τ)− ω(s− τ)) + ρ(s))|

≤ φ1(s)(g(
1

α− 1
(∥yn∥ − c)(s− τ)2n−2) + h1(r))

+ φ1(s)(g(
1

α− 1
(∥y∥ − c)(s− τ)2n−2) + h1(r)).
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By the Lebesgue dominated convergence theorem, in view of

yn(t) =

∫ 1

0

G∗(t, s)(fn(s, y
∗
n(s− τ)) + ρ(s))ds

=

∫ 1

0

G∗(t, s)(f(s, y∗n(s− τ)) + ρ(s))ds,

and

|yn(t)− y(t)| = |
∫ 1

τ

G∗(t, s)[f(s, (s− τ)α−2n+1yn(s− τ)− ω(s− τ)) + ρ(s)

− (f(s, (s− τ)α−2n+1y(s− τ)− ω(s− τ)) + ρ(s))]ds|

≤
∫ 1

τ

G∗(t, s)|f(s, (s− τ)α−2n+1yn(s− τ)− ω(s− τ)) + ρ(s)

− (f(s, (s− τ)α−2n+1y(s− τ)− ω(s− τ)) + ρ(s))|ds,

and

lim
n→+∞

|
∫ 1

τ

G∗(t, s)[f(s, (s− τ)α−2n+1yn(s− τ)− ω(s− τ)) + ρ(s)

− (f(s, (s− τ)α−2n+1y(s− τ)− ω(s− τ)) + ρ(s))]ds|

≤
∫ 1

τ

G∗(t, s) lim
m→+∞

|f(s, (s− τ)α−2n+1yn(s− τ)− ω(s− τ)) + ρ(s)

− (f(s, (s− τ)α−2n+1y(s− τ)− ω(s− τ)) + ρ(s))|ds = 0.

This implies that

lim
n→+∞

yn(t) =

∫ 1

0

G∗(t, s) lim
n→+∞

(f(s, y∗n(s− τ)) + ρ(s))ds.

So,

y(t) =

∫ 1

0

G∗(t, s)(f(s, y∗(s− τ)) + ρ(s))ds.

Therefore, T defined by (3.2) has a fixed point ỹ in Ω3 with c < ∥ỹ∥ < r. Similar
to (3.14), we have

x̃(t)− ω(t) = tα−2n+1ỹ(t)− ω(t) = tα−2n+1(ỹ(t)− t2n−1−αω(t))

≥ tα−2n+1 1

α− 1
(∥ỹ∥ − c)t2n−2 =

1

α− 1
(∥ỹ∥ − c)tα−1 > 0.

It is easy to know that (3.4) is satisfied. Therefore, x(t) = x̃(t)−ω(t) is a positive
solution of the boundary value problem (1.1). The proof is completed.
Acknowledgements. We would like to thank the referee(s) for there valuable
suggestions and comments to improve presentation of this paper.
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