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KRYLOV SUBSPACE METHODS OF
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Abstract In this paper, we propose a class of special Krylov subspace meth-
ods to solve continuous algebraic Riccati equation (CARE), i.e., the Hessenberg-
based methods. The presented approaches can obtain efficiently the solution of
algebraic Riccati equation to some extent. The main idea is to apply Kleinman-
Newton’s method to transform the process of solving algebraic Riccati equation
into Lyapunov equation at every inner iteration. Further, the Hessenberg pro-
cess of pivoting strategy combined with Petrov-Galerkin condition and mini-
mal norm condition is discussed for solving the Lyapunov equation in detail,
then we get two methods, namely global generalized Hessenberg (GHESS) and
changing minimal residual methods based on the Hessenberg process (CMRH)
for solving CARE, respectively. Numerical experiments illustrate the efficiency
of the provided methods.
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method, Hessenberg-based method, Pivoting strategy, Petrov-Galerkin condi-
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1. Introduction
In this paper, we will discuss the following continuous algebraic Riccati equation
(CARE)

XBX −XA−ATX − C = 0, (1.1)

where A, B, C ∈ Rn×n, B, C are symmetric and positive semidefinite, and the
undetermined solution X ∈ Rn×n is also symmetric, positive semidefinite and stabi-
lizing, namely, BX−A is stable according to relevant control theory, which implies
the eigenvalues of matrix BX −A lie in the open left half-plane [9].

The continuous algebraic equation (1.1) have been investigated extensively due
to various scientific and engineering applications, especially for control theory and
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dynamical problems [2, 5, 9, 19]. Normally, it is difficult to get the exactly solution
even when n isn’t so large, which greatly promotes the substantial developments of
constructing various kinds of iterative techniques. Many research work have been
investigated in some literatures on fast solvers for the continuous algebraic Riccati
equations (1.1). Some of the most classical methods are Newton’s method [6,23] and
popular structure-preserving doubling algorithm [7, 11]. Chu et al. [8] developed a
numerical method for generalized algebraic Riccati equation. Their method consists
of computations of the eigendecomposition of the system pencil corresponding to
the eigenvalues on the extended imaginary axis and the stable eigenspace of an
augmented matrix pencil, which is a generalization of the generalized eigenvalue
approach for classical algebraic Riccati equation. Lu in [17] provided the solution
form and simple iteration of a nonsymmetric algebraic Riccati equation arising in
transport theory, which is much more efficient than the Gauss-Jacobi method given
by Juang in [16]. Furthermore, Bao et al. [4] proposed a modified simple iterative
method for nonsymmetric algebraic Riccati equations, which is an improvement
version for [17].

To our knowledge, however, there is still not so many ongoing researches from
the perspective of Krylov subspace methods. Jbilou proposed the block Krylov
subspace methods for large algebraic Riccati equation, which used the block Arnoldi
process to construct an orthogonal basis of the corresponding block Krylov subspace
and then extracted low rank approximate solutions [13]. Amodei et al. presented
an invariant subspace method for large-scale algebraic Riccati equation, which is
a new family of low-rank approximations of the solution of the algebraic Riccati
equation by considering stable invariant subspaces of the Hamiltonian matrix [1]. In
[24], Simoncini gave two numerical methods for the solution of large-scale algebraic
Riccati equation, which can be considered as Galerkin projection (GP) method.

As is known to all, some large linear systems, especially for those arising from
discretization by finite differences or by finite elements, can be solved rapidly by
efficient iterative methods, such as those based on Krylov subspace [10]. Roughly,
Krylov subspace methods can be classified as three types: Arnoldi, Lanczos, and
Hessenberg based methods. Such as, Generalized Minimum Residual method (GM-
RES) implements the Arnoldi process and Quasi-Minimal Residual method (QMR)
is based on the Lanczos process. However there is possible the occurrence of break-
down or near-breakdown for the Lanczos algorithm. Another efficient subspace
technique is Hessenberg method which is based on an upper Hessenberg matrix to
construct a basis for the Krylov subspace. The approach has been shown that it
requires less work and storage than Arnoldi’s method. In [21], Sadok introduced
firstly an novel and interesting approach by replacing in QMR the Lanczos algo-
rithm by the Hessenberg process, which was simply denoted as CMRH (Changing
Minimal Residual method based on the Hessenberg process). For more details,
see [12,22,25].

In fact, the above subspace methods can be also generalized to solve large linear
matrix systems, such as Sylvester matrix equation or Lyapunov matrix equation,
even to solve nonlinear matrix equations, such as algebraic Riccati equation. In this
paper, we will first apply the Hessenberg-based methods, including global general-
ized Hessenberg (GHESS) and CMRH, to solve the continuous algebraic Riccati
equation. Our numerical tests illustrate the proposed methods for solving the con-
tinuous algebraic Riccati equation are quite efficient.

We use the following notation throughout this paper as a matter of convenience.
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Given two real n×m matrices A = (aij) and B = (bij), the Frobenius inner product
of matrices A and B is defined by ⟨A,B⟩F = tr(ATB) in which tr(·) and AT denotes
the trace of matrix and transpose of A, respectively. Furthermore, ∥A∥F denotes
the Frobenius norm of matrix A. For a reversible matrix A, A−1 stands for the
inverse of matrix A. Finally, we assume that R is any real n × m matrix, the
K-dimension matrix Krylov subspace associated to the pair (Q, R) is defined by

KK(Q, R) = span{R,Q(R), · · · ,QK−1(R)}, (1.2)

where Qi(R) = Q(Qi−1(R)) (i = 0, · · · ,K) and Q0(R) = R.
The remainder of this paper is organized as follows. In Section 2, Kleinman-

Newton’s method for CARE will be described simply. In Section 3. we will intro-
duce the Hessenberg-based methods, including the CMRH method with maximum
strategy and the construction of its preconditioner, to solve the continuous algebraic
Riccati equation in detail. Some extensions are proposed in Section 4. In Section 5,
numerical tests are provided to illustrate the superiority of the presented iteration
methods. Finally, a concluding remark is given in Section 6.

2. Kleinman-Newton’s method for CARE
First of all, we describe briefly the general Newton’s method for solving a differen-
tiable nonlinear equation f(x) = 0. The iterative scheme is

xk+1 = xk − (f ′(xk))−1f(xk), (2.1)

where f ′(xk) denotes the Fréchet derivative of the map f at xk. Now, in order
to utilize the Fréchet derivative in continuous algebraic Riccati equations (1.1), we
write the following formulas:

L(X) = XBX −XA−ATX − C, (2.2)
L′(X)R̂ = R̂(BX −A) + (BX −A)T R̂, (2.3)

where XT = X, BT = B.
On the basis of the following matrix iterative scheme of Newton’s method

Xk+1 = Xk − (L′(Xk))
−1L(Xk), (2.4)

we get

L′(Xk)R̂k = −L(Xk), (2.5)

where R̂k := Xk+1 −Xk. Furthermore, we have

R̂k(BXk −A) + (BXk −A)T R̂k = −XkBXk +XkA+ATXk + C. (2.6)

Evidently, one can solve the above Lyapunov equation about R̂k, then getting
Xk+1 = Xk + R̂k by given the known point Xk at previous step.

As a matter of fact, if the initial matrix X0 is symmetric then the sequence
{Xk} generated by Newton’s method is also symmetric. Observing that (2.5) can
be rewritten as

L′(Xk)Xk+1 = L′(Xk)Xk − L(Xk). (2.7)
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Accordingly, it obtains

Xk+1A+ATXk+1 = XkBXk + C, (2.8)

where Ak = BXk−A. So, it can be simply described as the following algorithm [6].

Algorithm 1 Kleinman-Newton’s method for CARE
Input: Initial guess matrix X0 ∈ Rn×n, such that X0 = (X0)

T and BX0 − A is
stable.
for k = 0, 1, ... · · · , until convergence do

Set Ak = BXk −A;
Solve Xk+1Ak + (Ak)

TXk+1 = XkBXk + C;
end for

Next section, we focus on the technique about the Lyapunov equation above
Algorithm 1. For the sake of convenience, we first denote

Q(X) := ATX +XA, (2.9)

where A = BX − A. Therefore, the step 2 of Algorithm 1 can be seen to the
Lyapunov equation as follows

Q(X) = C̃, (2.10)

where C̃ = XBX + C, and X is given.

3. The description of Hessenberg based process
In this section, we will exhibit the global generalized Hessenberg process, which
includes the Arnoldi and global Hessenberg processes as its special cases.

Let R ∈ Rn×m and KK(Q, R) = span
{
R,Q(R), · · · ,QK−1(R)

}
be the Krylov

subspace and {Ui}Ki=1 be orthogonal sequence with Ui ∈ Rn×m for all i = 1, · · · ,K.
The global generalized Hessenberg process satisfies the following orthogonality con-
dition

⟨Ri, U1⟩F = ⟨Ri, U2⟩F = · · · ⟨Ri, UK⟩F = 0,

so as to build the basis {R1, R2, · · · , RK} for KK(Q, R).
It is clear that if the previous steps of K iterations of Algorithm 2 are imple-

mented without any occurrence of breakdown, then we can obtain

[Q(R1),Q(R2), · · · ,Q(RK)] = RK+1(H̃K ⊗ Im) (3.1)
= RK(HK ⊗ Im) + hK+1,KRK+1

(
(eK)T ⊗ Im

)
,

where

H̃K :=

 HK

hK+1,K(eK)T

 ∈ R(K+1)×K , (3.2)
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Algorithm 2 Global generalized Hessenberg process for linear matrix equation
1: Input: matrix R ∈ Rn×m and the dimension of the Krylov subspace K.
2: Set β = ⟨R,U1⟩F , R1 = R/β;
3: for j = 1, · · · ,K do
4: W = Q(Rj);
5: for i = 1, · · · , j do
6: hij = ⟨Ui,W ⟩F /⟨Ui, Ri⟩F ;
7: W = W − hijRi;
8: end for
9: hj+1,j = ⟨W,Uj+1⟩F , if hj+1,j = 0, then stop;

10: Rj+1 = W/hj+1,j ;
11: end for

RK+1 = [R1, R2, · · · , RK+1] ∈ Rn×(Km+K), HK ∈ RK×K and H̃K is a Hessenberg
matrix with entries generated by Algorithm 2. eK is the K-th column of identity
matrix with size K ×K.

Now, we will exploit a Petrov-Galerkin condition and a minimal residual norm
condition to state the global generalized Hessenberg process. Let X0 be an initial
guess to the continuous algebraic Riccati equations (1.1), R0 = C̃ −Q(X0) be the
corresponding residual, where C̃ = X0BX0 + C. At the k−th iteration step of
Algorithm 2. By the formula

XK = X0 +RK(uK ⊗ Im),

where RK = [R1, R2, · · · , RK ] ∈ Rn×(Km), then uK ∈ RK can be obtained by the
under Petrov-Galerkin orthogonality condition

⟨RK , U1⟩F = ⟨RK , U2⟩F = · · · ⟨RK , UK⟩F = 0, (3.3)

and

RK = C̃ −Q(XK)

= C̃ −Q(X0 +RK(uK ⊗ Im))

= R0 − [Q(R1),Q(R2), · · · ,Q(RK)](uK ⊗ Im)

= R0 −RK+1(H̃K ⊗ Im)(uK ⊗ Im)

= R0 −RK+1(H̃KuK ⊗ Im)

= R0 −RK(HKuK ⊗ Im) + hK+1,KRK+1

(
(eK)TuK ⊗ Im

)
.

Notice that the relation (3.1) was used in the above equality. Moreover,

RK = RK

(
(βeK1 −HKuK)⊗ Im

)
+ hK+1,KRK+1

(
(eK)TuK ⊗ Im

)
, (3.4)

where β is chosen according to specified algorithm, such as β = ∥R0∥F . RK satisfies
the block-based orthogonality of columns. By calculations, it give rises to

∥RK∥2F = ∥βeK1 −HKuK∥22 + h2
K+1,K

K∑
i=1

(uK
K)2.

Hence, we can obtain the approximation solution of uK by solving the system of
HKuK = βeK1 . If hK+1,K = 0, then the solution is exact for original problem.
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In addition, it follows from (3.4) that

RK = RK+1

(
(βeK+1

1 − H̃KuK)⊗ Im
)

(3.5)

and

∥RK∥F = ∥βeK+1
1 − H̃KuK∥2.

Therefore, uK can be also obtained by solving the following least squares problem

uK = arg min
uK∈RK

∥βeK+1
1 − H̃KuK∥2, (3.6)

where H̃K is from (3.2). It is worth mentioning that if we take Ui = Ri (i =
1, 2, · · · ,K), then the global generalized Hessenberg process in Algorithm 2 will
reduce to the particular case, i.e., global Arnoldi process shown in Algorithm 3. In
fact, the global generalized Hessenberg process is possible to encounter the break-
down, so a pivoting strategy is necessary to this process. The result is given by
Algorithm 4.

Algorithm 3 Arnoldi process for linear matrix equation
1: Input: matrix R ∈ Rn×m and the dimension of the Krylov subspace K.
2: Set β = ∥R∥F , R1 = R/β;
3: for j = 1, · · · ,K do
4: W = Q(Rj);
5: for i = 1, · · · , j do
6: hij = ⟨Ri,W ⟩F ;
7: W = W − hijRi;
8: end for
9: hj+1,j = ∥W∥F , if hj+1,j = 0, then stop;

10: Rj+1 = W/hj+1,j ;
11: end for

Algorithm 4 Hessenberg process with pivoting strategy for linear matrix equation
1: Input: matrix R ∈ Rn×m and the dimension of the Krylov subspace K.
2: Determine i0, j0 such that |Ri0,j0 | = max{|Ri0,j0 |}

j=1,··· ,m
i=1,··· ,n ;

3: Set β = Ri0,j0 , R1 = R/β, p1,1 = i0, p1,2 = j0;
4: for j = 1, · · · ,K do
5: W = Q(Rj);
6: for i = 1, · · · , j do
7: hij = Wpi,1,pi,2

;
8: W = W − hijRi;
9: end for

10: Determine i0, j0 such that |Wi0,j0 | = max{|Wi0,j0 |}
j=1,··· ,m
i=1,··· ,n ;

11: Set hj+1,j = Wi0,j0 , Rj+1 = W/hj+1,j , pj+1,1 = i0, pj+1,2 = j0;
12: end for

As in the case of solving linear matrix systems, combining Algorithm 3 with
Petrov-Galerkin orthogonality condition (3.3) yields global full orthogonalization
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method (simply denoted by FOM) [15], while combining Algorithm 3 with mini-
mizing norm condition (3.6) defines GMRES method. On the other hand, combin-
ing Algorithm 4 with the Petrov-Galerkin orthogonality condition (3.3) generates
global generalized Hessenberg method with pivoting strategy (simply denoted by
GHESS), while combining Algorithm 4 with minimizing norm condition (3.6) de-
fines global GMRH method. CMRH was firstly provided to solve nonsymmetric
linear systems in [21], which shows that the method is less expensive and needs
less storage than GMRES per iteration. It also needs to be restarted to avoid the
increasing of number of matrices requiring storage as K.

In this paper, we focus on the GHESS and GMRH, bonded with Kleinman-
Newton’s method, to solve the continuous algebraic Riccati equation (CARE) (1.1).
The descriptions of global GHESS method and CMRH method with restarted ver-
sion are summarized in Algorithm 5.

Algorithm 5 GHESS/CMRH methods for solving continuous algebraic Riccati
equation

1: Input: Given matrix A, B, C ∈ Rn×n, initial guess matrix X0 ∈ Rn×n, such
that X0 = (X0)

T and BX0 − A is stable. Let the dimension of the Krylov
subspace be K and the tolerance error ε > 0.

2: for k = 0, · · · , Itermax do
3: Compute R0 = C̃ −Q(X0) where C̃ = C −X0BX0. Set Ak = BXk −A;
4: Compute H̃K and RK by applying Algorithm 4 to KK(Q, R0);

5: Solve the problem

HKuK = βeK1 ; (GHESS method)

uK = arg min
uK∈RK

∥βeK+1
1 − H̃KuK∥2; (CMRH method)

6: Compute the approximate solution XK = X0 +RK(uK ⊗ Im);
7: Compute RK = C̃ −Q(XK);
8: if ∥RK∥F < ε then
9: output the approximate solution XK ;

10: else
11: R0 = RK , X0 = XK ;
12: end if
13: end for

4. Extension
As generalization of matrix, high dimensional tensor, such as T ∈ RI1×I2×···×IN ,
also can be employed to verify adequately our methods. The tensor form of global
generalized Hessenberg process apparently deserve discussion and further research.
It is nature and feasible to realize the generalization and high dimensional applica-
tions from the linear matrix equation to linear tensor equation. Although it may be
difficult to tackle the nonlinear tensor product and manage some relevant proper-
ties, however, we will firstly prepare to come up with the linear tensor equation with
these proposed methods, such as GHESS (or CMRH) for Sylvester tensor equation
or Lyapunov tensor equation in future.

It has been shown that the rate of convergence for any Krylov solvers greatly
improves since the condition number of matrix decreases when the preconditioning is
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introduced properly. Assume that Mk ∈ Rn×n is an appropriate preconditioner that
could vary from one iteration to another iteration. Considering the preconditioners
to the equation in the step 2 of Algorithm 1, we can describe as following

AT
kM

−1
k Yk +M−1

k YkAk = C̃ (4.1)

or

MkAT
kM

−1
k Yk + YkAk = C. (4.2)

where Yk = MkXk+1, C̃ = C − XkBXk, C = MkC̃, Ak = BXk − A. Moreover,
suppose that Âk = MkAT

kM
−1
k , and define the linear mapping Q̂ as

Q̂(Y ) = ÂT
k Y + YAk. (4.3)

After preconditioned, (2.10) will be transformed into

Q̂(Y ) = C, (4.4)

which is a Sylvester matrix equation.
As a result, we give ultimately the following CMRH method with the variable

preconditioners for solving continuous algebraic Riccati equation in Algorithm 6.

5. Numerical experiments
In this section, some numerical examples are discussed to validate the performance
of effectiveness and advantages of the proposed Hessenberg based methods for solv-
ing the algebraic Riccati equation. We compare the convergence of the global gen-
eralized Hessenberg method (denoted as ’GHESS’), global CMRH method (still
denoted as ’CMRH’) and global generalized minimum residual method (denoted as
’GMRES’) by the iteration step (denoted as ’IT’), elapsed CPU time in seconds
(denoted as ’CPU’), and residual error (denoted as ’RES’). In actual computations,
the running is terminated when the current iteration satisfies

RES :=
∥Rk∥
∥R0∥

< 10−10

or if the number of iteration exceeds the prescribed iteration steps kmax = 100,
where Rk = Q(Xk) − (XkBXk − C), R0 = Q(X0) − (X0BX0 − C), Xk denotes
the k-th step iteration in Algorithms, X0 is initial guess. And if the elapsed CPU
time is more than 1000 seconds or breakdown of iteration, we denote the situation
as ′−′.

All the numerical experiments have been carried out by MATLAB R2011b 7.1.3
on a PC equipped with an Intel(R) Core(TM) i7-2670QM, CPU running at 2.20GHZ
with 8 GB of RAM in Windows 7 operating system.

Example 5.1. We first consider the algebraic Riccati equation (1.1) with the fol-
lowing form [13]:

A =


4 1− d · · · 1

1− d 4 1− d · · ·
. . . . . . . . . . . .

1 · · · 1− d 4


n×n

,
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Algorithm 6 CMRH method with the variable preconditioner for solving contin-
uous algebraic Riccati equation

1: Input: Given matrix A, B, C ∈ Rn×n, initial guess matrix X0 ∈ Rn×n, such
that X0 = (X0)

T and BX0 − A is stable. Let the dimension of the Krylov
subspace be K and the tolerance error ε > 0.

2: for k = 0, · · · , Itermax do
3: Compute R0 = C̃ −Q(X0) where C̃ = C −X0BX0. Set Ak = BXk −A;
4: Determine i0, j0 such that |(R0)i0,j0 | = max{|(R0)i0,j0 |}

j=1,··· ,m
i=1,··· ,n ;

5: Set β = (R0)i0,j0 , R1 = R0/β, p1,1 = i0, p1,2 = j0;
6: for j = 1, · · · ,K do
7: Yj = MjRj ;

8: W = Q̂(Yj);
9: for i = 1, · · · , j do

10: hij = Wpi,1,pi,2
;

11: W = W − hijRi;
12: end for
13: Determine i0, j0 such that |Wi0,j0 | = max{|Wi0,j0 |}

j=1,··· ,m
i=1,··· ,n ;

14: Set hj+1,j = Wi0,j0 , Rj+1 = W/hj+1,j , pj+1,1 = i0, pj+1,2 = j0;

15: Denote H̃K = [hi,j ] ∈ RK+1,K , and YK = [Y1, Y2, · · · , YK ];
16: Solve the problem

uK = arg min
uK∈RK

∥βeK+1
1 − H̃KuK∥2; (4.5)

17: Compute the approximate solution XK = X0 + YK(uK ⊗ Im);

18: Compute RK = C̃ − Q̂(XK);
19: if ∥RK∥F < ε then
20: output the approximate solution XK ;
21: else
22: R0 = RK , X0 = XK ;
23: end if
24: end for

where d (a constant in interval [0, 1]) and matrix B are given in Table 1. C = C̃T C̃

is a low-rank random matrix, where C̃ is an n× k random matrix whose entries are
given in [0, 1] with uniform distribution.

We give four different cases for different matrices A, B with various sizes. B is
chosen by identity matrix or scalar matrix. Parameter d is selected as 0.5 or 0.8.
Dimensions of matrices are set from 100 to 1000. The numerical results show that
CMRH and GHESS are nearly similar efficiency, but both of them overmatch the
GMRES, which can be seen from convergence performances in the Table 1. The fact
further bears out the conclusions in [21], one of which clarifies a point that CMRH
performs more accurately and reduces the residual norm compared with GMRES
for linear systems. From the residual trend chart with the changing numbers of
iteration in Figure 1, one can demonstrably find the desired performance of the
proposed methods. In this example, it seems that CMRH method equally matches
with GHESS method. To confirm this observation, we will give more examples
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below.

Table 1. Numerical results for Example 5.1.
Case Size CMRH GHESS GMRES

d = 0.8 It 5 5 100
1 B = 2I CPU 6.5879e− 02 4.4593e− 02 1.8461e+ 00

n = 100, k = 5 RES 2.5392e− 13 1.8566e− 12 7.3285e− 04
d = 0.5 It 6 6 100

2 B = I CPU 9.3140e− 02 4.5456e− 02 1.9344e+ 00
n = 100, k = 5 RES 5.8532e− 16 5.1960e− 16 1.4234e− 05

d = 0.8 It 5 5 100
3 B = 2I CPU 2.630124e− 01 1.456257e− 01 8.626567e+ 00

n = 200, k = 5 RES 2.0026e− 13 6.5526e− 13 2.7603e− 03
d = 0.5 It 8 8 100

4 B = I CPU 1.4887e+ 01 1.4629e+ 01 1.0355e+ 02
n = 1000, k = 10 RES 2.7925e− 16 2.7850e− 16 6.2269e− 09
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Figure 1. The relative residual for CMRH, GHESS and GMRES mehtods with difference cases in Table
1.

Example 5.2. We consider the algebraic Riccati equation (1.1) with the test matrix
matrix A is obtained by discretizing the following operators [3, 14]

LA(u) := △u− f1(x, y)
∂u

∂x
− f2(x, y)

∂u

∂y
− f3(x, y)u

on the unit square Ω = [0, 1]×[0, 1] with homogeneous Dirichlet boundary conditions
where f1(x, y), f2(x, y), f3(x, y), and matrix B are given in Table 2. C = C̃T C̃ is
also a low-rank random matrix, where C̃ is an n× k random matrix whose entries
are given in [0, 1] with uniform distribution. The matrix A is generated by the
function of ‘fdm-2d-matrix’ from the LYAPACK toolbox [20].

In this example, the selection of matrix A depends on functions f1(x, y), f2(x, y),
f3(x, y), and the matrix B is just chosen with two cases, i.e., identity matrix and
B̃T B̃

∥B̃∥F
, where B̃ = rand(n, k). Three functions f1(x, y), f2(x, y), f3(x, y) are set

with four cases in Table 2. All the numerical results are depicted in Table 3 and
Figure 2. From the elapsed CPU and numbers of iteration, the CMRH is more
stable slightly than the GHESS method in most cases, which distinctly outperform
the GMRES method from all aspects.
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Table 2. Different cases for Example 5.2 with B̃ = rand(n, k).
Case 1 2 3 4
B B = I B= B̃T B̃

∥B̃∥F
B = I B= B̃T B̃

∥B̃∥F

f1(x, y) ex
2+y cos(xy) sin(xy) 2xy

f2(x, y) sin(x2 + 2y) ex
2y ex

2y exy

f3(x, y) cos(xy) x− y x+ y2 xy

Table 3. Numerical results for Example 5.2.
Case Size CMRH GHESS GMRES

n0 = 9 It 9 10 100
1 n = 81 CPU 2.4519e− 01 9.3002e− 02 1.3383e+ 00

k = 5 RES 9.4482e− 16 1.0060e− 15 1.2663e− 08
n0 = 20 It 20 22 100

2 n = 400 CPU 4.8016e+ 00 4.5642e+ 00 5.7404e+ 01
k = 5 RES 7.6813e− 15 2.2402e− 14 6.5506e− 03

n0 = 25 It 23 26 100
3 n = 625 CPU 1.6791e+ 01 1.7032e+ 01 2.0781e+ 02

k = 5 RES 1.0745e− 14 1.5410e− 14 2.0127e− 02
n0 = 30 It 26 28 100

4 n = 900 CPU 6.0244e+ 01 4.5223e+ 01 3.0686e+ 02
k = 10 RES 1.3342e− 14 1.3471e− 14 2.2768e− 02
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Figure 2. The relative residual for CMRH, GHESS and GMRES mehtods with difference cases in Table
3.

Example 5.3. The test matrices A for this example are bcsstk02, bcsstk06, bc-
sstk15, bcsstk16 which stem from the Matrix Market, where bcsstk15, bcsstk16 is
the data from module of an offshore platform and U.S. Army Corps of Engineers
dam, respectively. For more detail, see [18].

The parameter conditions of matrix A of four data set introduced in this example
are shown in the Table 4. The dimensions of matrices form small size 66×66 to large
size 4884×4884. The condition number and Frobenius norm and number of nonzero
imply the slight sparsity for matrix A. These test problems all can be obtained
from Website http://math.nist.gov/MatrixMarket/. From Table 5, we find that, for
bcsstk02 and bcsstk06, GMRES can work well for solving the continuous algebraic
Riccati equation, however for test problems bcsstk15 and bcsstk16, GMRES don’t
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implement successfully due to exceed the maximum CPU limit. For CMRH and
GHESS methods, the convergence performance also illustrate expected result, i.e.,
the efficiency and feasibility for solving the continuous algebraic Riccati equation.

Table 4. Different parameters of matrix A for Example 5.3.
Test Problem Size Frobenius norm Nonzero Condition number

bcsstk02 66× 66 5.3e+ 04 2211 1.3e+ 04
bcsstk06 420× 420 2.1e+ 10 4140 1.2e+ 07
bcsstk15 3948× 3948 5.7e+ 10 60882 8.0e+ 09
bcsstk16 4884× 4884 6.0e+ 10 147631 65e+ 09

Table 5. Numerical results for Example 5.2.
Test Problem CMRH GHESS GMRES

It 2 2 100
bcsstk02 CPU 2.9521e− 02 1.3012e− 2 9.1087e− 01

RES 3.5986e− 11 5.8162e− 11 4.6891e− 04
It 2 2 100

bcsstk06 CPU 2.5120e− 01 2.4731e− 01 8.2353e+ 01
RES 3.6600e− 14 2.3812e− 14 9.4524e− 04

It 2 2 −
bcsstk15 CPU 4.2106e+ 01 4.2317e+ 01 −

RES 1.5174e− 10 1.4356e− 10 −
It 2 2 −

bcsstk16 CPU 1.2274e+ 02 1.3277e+ 02 −
RES 1.7008e− 14 2.5103e− 14 −

6. Conclusion
In this paper, Krylov subspace methods of Hessenberg based, i.e., CMRH and
GHESS methods, are investigated for solving the continuous algebraic Riccati equa-
tion. In view of this, these approaches are quite efficient not only for linear matrix
equations but also for nonlinear matrix equations. The proposed approaches have
been demonstrated to be superior to the classical global GMRES, which can be fully
validated in our numerical experiments section. Meanwhile, we point out some ideas
for our future research work about the extension in linear tensor systems and its
preconditioning method.
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