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EXISTENCE OF SOLUTIONS FOR A
FRACTIONAL ADVECTION-DISPERSION
EQUATION WITH IMPULSIVE EFFECTS VIA
VARIATIONAL APPROACH*

Dandan Min! and Fangqi Chen!?f

Abstract In this paper, based on the variational approach and iterative tech-
nique, the existence of nontrivial weak solutions is derived for a fractional
advection-dispersion equation with impulsive effects, and the nonlinear term
of fractional advection-dispersion equation contain the fractional order deriva-
tive. In addition, an example is presented as an application of the main result.
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1. Introduction

In this paper, we investigate the existence of nontrivial weak solutions for following
a fractional advection-dispersion equation (FADE for short) with impulsive effects
d [1
dt 12 °
a.e. t e [O,T], t ?é tj,

D GDFu(n) — 5 (D§GDF()] = oult) + F(tu(t), §DFult))

A(5 oDE T GDR () — 5 DFGDF())) = Lult), j=1,2 o,
u(0) =u(T) =0,
(1.1)

where a € (1,1], oD§~! and ;D" are the left and right Riemann-Loiuville frac-

tional integrals of order 1 — « respectively, Dy and {D$ are the left and right
Caputo fractional derivatives of order 0 < av < 1 respectively, g is a parameter, and
f:[0,T]xRxR —Rand I; : R — R (j =1,2,...,n) are continuous functions,
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A large number of scholars have been attracted to study the fractional advection-
dispersion equations since it can simulate anomalous diffusion on certain conditions,
and describes nonsymmetric or symmetric transition and solute transportation and
so on. For instance, Ervin and Roop in [5] considered the following form FADE

— %(pth_ﬁ +(1 —p)tD;B)u'(t) +0(t)u'(t) + c(t)u(t) = VFE(t,u(t)),a.et € [0,T],
(1.2)

where oD, # and tD;’B are the left and right Riemann-Loiuville fractional integral
operators respectively, 0 < 5 < 1, p € [0,1] is a constant describing the skewness
of the transport process, b, c, F' satisfies some suitable conditions. If taking p = %
n (1.2), then the FADE (1.2) describes symmetric transitions. Sun and Zhang
in [20] investigate the FADE (1.2) with b(t) = ¢(t) = 0,7 = 1, and the boundary
conditions u(0) = u(1) = 0. For more background information on FADE, see [1, 2,
4,13,14,18,21,25-27] and so on. Recently, by the critical point theory, Jiao and
Zhou in [9] consider the symmetric FADE of the following form

4 (5 oD% + 5 D () + VE(u(t) =0, ae. te[0,T) (13)

where oD, # and tD;B are the left and right Riemann-Loiuville fractional integral
operators respectively, 0 < 8 < 1, and VF(t,z) is the gradient of F' at z. The
existence of solution and nontrivial solution for FADE are obtained.

Li et al. in [12] study the existence of solutions to fractional boundary-value
problems with a parameter by using critical point theory and variational methods

d/l 5 1
. E(i oDy "+ 3 tDTB)u’(t) = \u(t) + VE(tut), ae.te[0,T],

u(0) =u(T) =0,

(1.4)
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where oD, # and tD;B are the left and right Riemann-Loiuville fractional integral
operators respectively, 0 < 8 < 1, A € R is a parameter, F: [0,7] x RN — R and
VF(t, x) is the gradient of F' with respect to .

Especially, differential equations with impulsive effects are intensively investi-
gated recently. It can be used to describe discontinuous jumps and sudden changes
of their states in optimal control and so on. Therefore, it is worth to study. There
are few works that the existence of solutions for fractional advection-dispersion equa-
tions with impulsive effects and impulsive fractional differential equations. Chai and
Chen in [3] investigated the following impulsive fractional boundary problem

tDF(EDFu(t)) + alt)ult) = f(t u(t), §Dfu(t)), t#t; a.e. te[0,T],

AEDFTHEDFW))(t5) = Li(ulty)), j =1,2,...,n, (1.5)
u(0) = u(T) =0,

where o € (3,1], 0=t <t; <ty < ... <ty <tpy1 =T, f: [0,T] xRxR =R
and I; : R = R,j = 1,2,...,n, are continuous functions, a € C[0,T]. Under the
condition 0 < a; < a(t) < ag, the authors proved the existence of at least one
nontrivial solution by using the variational method and iterative technique.

Nyamoradi and Tayyebi in [17] study the existence of weak solutions for fol-
lowing impulsive fractional differential equations by using critical point theory and
variational methods

— = oD; (W (1)) +% tD;B(u'(t))} =VF(t,u(t)), ae.tel0,T], t#tj,

AlD; ((u'Y (t)) + D77 (') (8))) = L (w'(t;)), i € A, j € B,
(1.6)

where gD, A and tD;B are the left and right Riemann-Loiuville fractional integrals
of order 0 < 8 < 1 respectively, A = {1,2,...,N}, B ={1,2,...,L}, 0 =ty <
t1 <to<...<tp <try1 =T, VF(t,x) denotes the gradient of F(¢,z) in x, and
F:[0,7T]xRY - Rand I, : R — R (i € A, j € B) are continuous functions. In
early time, Wang et al. in [22] apply Minimax principle and saddle point theorem
to study the existence of weak solutions of problem (1.6).

Obviously, if we choose o« = 1,and I; =0 (j = 1,2,...,n), then the FADE (1.1)
reduces to the second-order FADE of the following form

{ —u"(t) = ou(t) + f(t,u(t),u'(t)), a.e. tel0,T], an

There have been many methods to investigate the existence of solutions of problem
(1.7) such as fixed point theory and monotone iterative method and so on. (see
[7,8,24] and references therein).

Inspired by the works described above, we aim to investigate the existence of
nontrivial weak solutions for a fractional advection-dispersion equation with im-
pulsive effects. Different from the previous paper, the main characteristics of the
present paper are as follows. Firstly, the nonlinear term of fractional advection-
dispersion equation contain the fractional order derivative. As far as we know,
there are no works for the impulsive fractional advection-dispersion equation with
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nonlinearity involving fractional derivatives of unknown function, although many
excellent results about impulsive fractional differential equation are obtained. Sec-
ondly, the approach is different from the [6,9,12,16,17,22,23]. The tool of this
article is variational method and iterative technique, which has been adopted in
[3,20]. Comparison with [20], the assumed conditions in this paper are different
from the conditions in [20], and the result depends on the parameter. Finally,
comparisons with [3] and [11], the hypothetical conditions are weaker than those
in [3,11]. For example, functions ¢, € L*([0,T]) contain constants M;, Ms, func-
tions b(t),c(t),d(t),l(t),m(t) € L1([0,T]) contain constants s1,sa,l,m,d. The pa-
rameter g in [11] is a non-negative real, but, the parameter g can be either positive
or negative in this paper.

The paper consists of four sections. In sect. 2, we present some preliminaries
and lemmas to be used later. In sect. 3, we discuss the existence of nontrivial weak
solutions for FADE (1.1). In sect. 4, we take an example to illustrate our main
results.

2. Preliminaries and lemmas

In this section, some definitions and lemmas are presented, which are to be used to
prove our main results.

Definition 2.1 ( [10]). Let f be a function defined on [a, b]. Then the left and right
Riemann-Liouville fractional derivatives of order v > 0 for function f denoted by
oD} f(t) and D] f(t), are represented by

dr 1 ar

DY) = G DU 0 = s g [ (=9 s

and
dan 3 —1)" g b
D) = ()" G DY) = et [ s,

for every t € [a,b], where n — 1 < 4 < n and n € N. In particular, if 0 < v < 1,
then

D0 = G WDV O = g g [ = s, te et
and
b
DY) = (DG DY) =~ gy [ =D s, te fad

Definition 2.2 ([10]). Lety > 0andn € N.Ify € (n—1,n) and f € AC"([a, b],R),
Then the left and right Caputo fractional derivatives of order v for function f
denoted by ¢D] f(t) and §D] f(t), respectively, exist almost everywhere on [a,b].
¢D{ f(t) and §D] f(t) are represented by

t
D0 = DI = s [ s s
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and
I b
LI = CVFDY 00 = s [ =0 s

respectively, where ¢ € [a, b]. In particular, if 0 <y < 1, then

DI F(t) = D) Lp () = / (t— )7 f (s)ds, t € [a,b],

NG )

and
b
DY) = ~Dy (0 =~y [ (=07 s, t e fadl

Ify=n—1and f € AC” ([a,b),RN), then ¢D;~ ' f(t) and §D; ' f(t) are repre-
sented by $D ! f(t) = f=V(t) and ¢Dy T f(t) = (=)D (), t € [a,b]. In
particular, Dof( ) = CDof( )= f(t), t € a,b].

Prop051t10n 2.1 ([10]). If f € Lp([a,b],RN), g € LY([a,b],RN) and p > 1,q >
Lit+i<ltyorp#lg#1,5+1 =1+, then

b b
/ WD F(0)]g(t)dt = / Dy g1 (D), > 0.

Definition 2.3. Let 0 < o < 1. We define the fractional derivative space J§' as the
completion of C§°([0,T],R) with respect to the norm

T T %
lulla = (/0 |8Dtau(t)|2dt+/0 u(nfdt)*, vu e Jg. (2.1)

of functions u € L%([0,7],R") having an a-order fractional derivative §Du(t) €

Remark 2.1. From [9], we know that the fractional derivative space J§ is the space
L%([0,T),RY) and u(0) = w(T

) = 0.

Proposition 2.2 ([9]). Let0 < a < 1, the fractional derivative space J§ is reflexive
and separable Banach space.

Proposition 2.3 ( [9]). oDfu(t) = §Dfu(t), ¢Dfu(t) = §DFu(t), Yu € J§, t €
[0,7].

Lemma 2.1 (Proposition 3.2, [9]). Let 3 < a < 1. For any z € J§', one has
()
Tll

— |5 D¢ ; 2.2
<t Dl (22)

]|z <

(i)
ot

Iolloe < 5y =g 1607l (23)
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By (2.2), we can consider J§ under the norm

r :
fullo = ([ lsDrutPar)” va e g, (2.0

which is equivalent to (2.1).

Lemma 2.2 (Proposition 4.1, [9]). If 3 < a <1, then for any u € J§', we have

(i)
2 T c o c o 1
eos(rma)[ull < = [ (5Dpu(). DFu())at < — s (25
(ii)
T c 2 1 U 2
| epsu it < sl (26)

Definition 2.4. A function u € J§ is known as a weak solution of FADE (1.1) if

T
_1/ (CDa (1) - SD%o(t) + SDSu(t) - th%(t))dt+E?:11j(u(tj))v(tj)

/ Ft,u(t), SDu(t))v (t)dt+/0 ou(t)v(t)dt

holds for every v € J§'.

Proposition 2.4 ( [9]). Let 0 < o < 1, 1 < p < oo. Assume that o > % and

the sequence {uy} converges weakly to u in J§, i.e. up — u. Then ur — u in
C([0,T],RN), d.e. |Jur — uljoc — 0 as k — oo.

Define functional I, : J§ — R for given w € J§ as

1 T T
L == [ (§Dru®)- iDju)ai = [P0, 5Dzw(o)
1 T u(ty)
- 5@/ u?(t)dt + }‘:1/ I;(s)ds, Yu € J§, (2.7)
0 0

where F(t,u, 2) fo f(t, s, z)ds. Owing to the continuity of f and I;, the functional
I, € Cl(JO, R) and

I =— = /T(“D“ (t)- §DFu(t) + §DFu(L) - §DFu(t) )dt

T
/ F(t u(t), §D%w(t))u(t)dt — o / u(tyo(t)dt
0
3T (ulty)o(ty), Yu,v € JG. (2.8)

Lemma 2.3 (Theorem 3.2, [22]). If u € J§ is a critical point of I, in J§, i.e
I (u) =0, then, u is a weak solution of FADE (1.1).
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Definition 2.5 ( [15]). Suppose that X is a Banach space and ¢ € C*(X,R). We
say that ¢ satisfies the Palais-Smale (P.S.) condition if any sequence {u,} C X
such that ¢(up) is bounded and ¢'(u,) — 0 as n — oo possesses a convergent
subsequence in X.

Lemma 2.4 (Theorem 2.2, [19]). Let X be a real Banach space and ¢ € C*(X,R)
satisfying P.S. condition. Suppose ¢(0) =0, and

(i) there are constants p, 3 > 0 such that ¢|lap, > B, where B, = {x € X : [|z|| <
P}
(ii) there is an e € X\B, such that ¢(e) < 0.

Then ¢ possesses a critical value ¢ > 3. Moreover ¢ can be characterized as

c=inf max u),
gel ueg([0,1]) (b( )

where T'= {g € C([0,1], X)|g(0) = 0,g(1) = e}.

For convenience, put

T TOL*% _ Q N
A _ , B — , o J Bﬁj+17 M. = ts M,,’
T(a+1) Ta)v2a—1 97 k+1 5 = vi)A,
N o) 2—K — 2 8/1( s
N{=N- LL, B=B]||Nx(t s 7:7B2—»<|:—:| ;
=Ml N0 e 5= B [ contma)
d=ld@)ll 25 A7, I= O] 2e, = [mlz +Zj_l;,
e T e o . }%
2 (¢—2)| cos(ma)] 2 (—2)]| cos(mar)]

2 — T2 anT; = ~ ~ ~
=g 9 G A B,
J 2 (¢ — 2)| cos(mar)| Hax
» (zyzld;+l*+c6+<|h||p+m+d*
1:
(CDcostmall _ <2 g2

B A(F)T-m(F) T o=

11 _ B
A= (77 *) S+Y 0. 4+ M (j=1,2,....n).
2 | cos(may)| +0) +5+ 850, + B M; (J n)

>§7 aj:ijij

3. Main result

We are now in a position to give some conditions that will be used in the proof of

our main result.

(R1) There exist constants 6 > 0,0 > 2, 7> 2,0 < p <2, 0; >
ith b

P P 1,a; > 0,
1,2,...,n, and functions b(t),c(t) € L([0,T],R) with b(t) > 0, c(t) >

>0, 5=
0, such that
F(t,z,y) < bt)|z|" + c(t)|=||y|*, for |x] <, y €R, a.e. t €[0,T],

Ii(u) > —ajlul??, j=1,2,...,n, for |u| <d;
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(R2) There exist nonnegative functions p,v € L%*([0,T],R), and constants v; >
0, j=1,2,...,n, such that

|t 2,y) — f(tz,y)| < e(t)]2 — x| +o(E)|y —yl, ae t€[0,T],
for x,7 € [—ﬁl,ﬁl],g,y € R, and
|Ij(u1) _I](u2)| S 7j|u1 —’LL2|, .7: 172,...7’”, fO’I’ U, Uz € [_}517ﬁ1];

(R3) There exist constants ¢ > 2, 0 < 7;,7,§ < 2,d; > 0,1; >0, j =1,2,...,n,
and functions d(t),1(t),m(t) € L*([0,T],R) with d(t) > 0, I(t) > 0, m(¢) > 0, such
that

xf(t,x,y) — CF(t, z,y) > —d(t)|z| fl(t)|y|§ —m(t), for z,y € R, a.e. t €[0,T],

C/ ulj(u) > —d;lu|™” —1;, j=1,2,...,n, for u € R;

(R4) There exist nonnegative constant Ny and functions h(t), N2(t) € L*([0,T],R)
with h(t) > 0, Na(t) > 0,and ¢ >2,0<k<1,0<k; <1,Q; >0,M; >0, j=
1,2,...,n, such that

F(t,z,y) > Nylz|" — No(t)|z||y|® — h(t), for z,y €R, a.e.t € [0,T],

Ii(u) <Qjlu|™ +M;, j=1,2,...,n, for 0 <u < oco.

Theorem 3.1. Suppose that (Ry) — (Ry) hold, and

_H‘PHLI + [l B~ 4 27y e | cos(ma)
T ¢S T

Then, the FADE (1.1) has a nontrivial weak solution.

Proof. We give the proof of this theorem by five steps.
Step 1. We certificate that there exist wy,p > 0 such that I, (u) > w; for
ue{ueJi:ulla =p}

For given w € J§ with ||w||o < P;. Choose 6=

% vf‘;*”, for any u € Jg§ with
2

[ulla <6, by (2.3), we have |u(t)| < 8. In view of (Ry), (2.2), (2.3), (2.5)~(2.7), and
Holder’s inequality, we have

1

T T
L =3 [ (8000 Dju)dt= [ Fleuto. sDrue)ar (32

1 T ) . u(t;)
- 59/ u (t)dt—l—Zj:l/ I;(s)ds
0 0
T

1 T
> | cos(ma)| s Dt u(t) 3 — / b(t)|ul"dt — / () ul"|g D ()| dt
0 0
a;

o;j+1
2l

1 n
— Sellu®)l: -

1
> leos(ra)lully, = B [ullgllbllr — B ullillel 2, PY'
0 42 2 a; . ,
~ A el =2 S BTl e g
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Since ¢, >2,0< pu<2,0; >1, j=1,2,...,n, and (3.1), we can take p small
enough, then we can gain a constant wy, p > 0 such that I,,(u) > wy with [Jullo = p.
Step 2. We testify that there exists e € J§ with ||e||o > p such that I,,(e) < 0.

Choosing v = W where
o telo Z)
T, ) 4 )
~ T 3T
t) = 1; t |:737>a
u(t) S
4T —1) 3T
t [—,T}.
T 4

For fixed v € J§, we have v(t) > 0,Vt € (0,T), and ||| = 1. For A > 0, owing to
(R4), (2.2), (2.3), (2.5)—(2.7), and Holder’s inequality, we obtain that

T T
L, (Av(t)) :—%AQ/O <8Df‘y(t)~ fD%V(ﬂ)dtf/O F(t, Av(t), D& w(t))dt

1 T Av(ty)
- §QA2/O uz(t)dt—i—Z;L:l/O Ii(s)ds

1 1

A2
| cos(ma)|

T
|0D?I/(t)|%2* ; Ny|Av|*dt
T

+/ Ng(t)\AquDf‘w(t)Pdt—i—/ h(t)dt—gAQHVHQLz
0 0

Q) \ryt1y[[s
2 (AT IR+ A M)

1 1
<oA= NiA'|Jv]
| cos(ma)|

e AlWlool[Na (D] 2 P+ (|4l

Q n Q K4 Kj Kj
_ §A2||V||2LQ + Ej:l(rj‘lA BRI L5t 4 Ay(tj)Mj)

1 1
SGA? T [[v[]2 — NiAlv|
| cos(ma)|

pe FAB[V[alNo @) 2 P+ (Al e
Q n Q K K Ki
= NIl 35 (A B I+ M)A ). (33)
Duetot > 2,0 < rx < 1,0 < k; <1, we know that there exists a Ag > 0 large
enough such that I,(Agv(t)) < 0 with ||Aov|la > p. Choice e(t) = Agv(t), then
I,(e(t)) < 0 with |le]|o > p. Clealy, I,,(0) = 0.
Step 3. We show I, satisfies P.S. condition. Let {u,} C J§ be a P.S. sequence,

that is {I,,(un)} is bounded and I/ (u,) — 0 as n — oo. From (R3), (2.2), (2.3),
(2.5)7(2.7) and Holder’s inequality, we assert

ClLy(upn) — Il (up)un (3.4)

:—fg/ (6DFuat) - {DFua(t) dt—(/ Pt un(t), SDew(t))dt
n(ts) T
_,CQ/ w2 (t )dt+g2;;1/0 Ij(s)ds—i—/o (68 un(t) - DG un(r))dt
T
" / F(tn(t), GOt + 0 [ 00t~ Tyt (1)
0 0
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:(1 - %g) /OT ( € D%y (1) - fD%un(t))dt + 9(1 - %) /OT u? (t)dt

T
+/ fun(t), §DFw(t))un(t) — CE(t, un(t), 5D w(t))dt

2 (¢ / $ds — L (1) (1))
( 1) eostralsDrun 0~ ([ d0hm@ras [ iofspzutf

- / m(0)it) — 0% 2 un (B3 — Sy (s un (1)1 + 1)

2(%( — 1) | cos(ma)|[[un||2 — (||d(t)||L2

oSS (Spady B a7 + S5ty ), Vo € T
In view of 0 < 75,7, < 2, ¢ > 2, and {[,(un)} is bounded and I} (u,) — 0
as n — oo, we know that {u,} C J§ is bounded. Moreover, it has a weakly
convergent subsequence u,, — u € J§ in view of the reflexivity of Jg§. It follows
from Proposition 2.4 we know that u, — u in C[0,T]. We still denote {u,, } by
{un}. Since f and I; (j = 1,2,...,n) are continuous, and u,, — u in C[0,T], we
have

_x AT |+ IO, 25¢ [wll + lImllze)

T

/0 (un (£) — u(t))2dt — 0,

S0 (un(ty)) — Li(u(ty)](un(t;) — ulty)) — 0, (3.5)
T

/0 [f(t,un(t), 6DFw(t)) — f(t,u(t), oDFfw(t))](un(t) —u(t)) — 0.

In view of the fact that I’ (u,) — 0,u, — u as n — oo, the boundedness of the
sequence {u, — u}, we obtain

(23, () = I, () (i, — w)| < 1 () [[fun = ] + [T, (u) (g = u)| = 0

as n — 0o. Thus, we observe that
T
| cos(ma)|un — ull2 < - / (6D (un®) = u(®) - £DF(un(t) = u(t)) ) dt
T
(0 ) ~ ()~ ) o [ (t) — u(®)
0

S (un(t5)) — 1 ()] () — ()
T

+ / [t un(t), §DRw(®)) — £t ult), §Dfw(®))]
0

(un(t) — u(t))dt
—0, (3.6)
as n — oo. S0, u, — u in J§. Hence, functional I,, satisfies the P.S. condition.

From Lemma 2.4, we know that there exists a point u € J§ satisfying I, () = 0
and I, (@) > wy > 0.
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Step 4. we prove that we can construct a sequence {u,} in J§ satisfying
I, (up) = 0and I,  (u,) > wi > 0 with [Juylla < P1, n € N. For a given
up € J§ with ||ui|lo < Pi, from the previous conclusions, we know that I,,, has
a nontrivial critical point us. If we can show |Juz||o < Pi, then, from the previous
conclusions, we also obtain I, has a nontrivial critical point us. So, by the same
process as above, we suppose ||u,—1]|o < P1, we can get the nontrivial critical point
up of I, _,, and ||up||o < Pi. Now, we show ||uzllo < Pi. On the basis of (3.3), we
have

I, (u2) < max )Iul(Ay(t))

A€[0
1 1
< A2 — NyAYv||s. + ABJ|Nao(t P h
= Alloso) 2 | cos(ma)| Nz + ABINo (@) g2z P+ (1B

_ §A2||1/||%2 +Ej=1 (Tj—lA i+l gri+1 —|—Al/(tj)Mj>

1
< max A2(77
A€[0,00) 2 | cos(ma)|

+ X0 QAT+ 1AM, (3.7)

+2) = NiA + ABP! + [|h] s

where Q; = %5 B+Y, M; = v(t;))M;, 5= 942, Ny = Ni|v||y., B = B x

2
IN2(t)]] _2_. By Young inequality, we have

=2

ABPf < ;(;AB)C’/ + ;(EUP{")I},
- H(Aﬁ)ﬁ

SC___pete xS contra)]
2

e R it
where p' = 2,¢' = ;2 and g9 = (%OCS(W)\)?

K

Denote 5 = 277”(?)"’3“ {%} ﬁ, from (3.7), we have

(%) | cos(ma)]

Iy, (ug) < Ag{lgé)A%%m +E) ~NA + ATRS + 8 P}
+ Al + S, QAT + 57 AM;. (3.8)
Put
Z(A) =A2 (%m + @) ~ N A+ ATRS £ 50 QAN 57 AN, (3.9)
Then,
((7;2) | cos(mar)|
I, (u2) < Jax Z(A) + Al + S—CPE. (3.10)
If0<A<1,and 0 < K,K; <1, then
Z(A) g(%m g) FEHEIQ, S M = A (3.11)
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If1<A<oo0,0<k,k; <1,¢>1, then

1 1 — — —
< 2~ - — - n ) n o L
2(A) =A (2 | cos(ma)| TOH SRy X M ) N
—AN? — N A" = Z(A), (3.12)

and Z'(A) = 2AA — /N;A*~1. By a simple calculation, we know that Z(A) has a
l
maximum at A = (;A ) ,and Z(A) = maxe(o,00) Z(A) := B.
Choose C = max {A, B}7 we derive

2 >|cos(7ra)|

L, (ug) < C+ ||h]| 22 + ( % P2, (3.13)

For another, by (3.4),
CLuy (uz) — I, (uz)uz
1
>(5¢ = 1) leos(ra)lus 2 = (Id(®)], 25 AT lualls + O] 25 P + [lmil1 )

2

C_ 2 n T Ti
— 0>~ A%uall2 — (Zoadi Bl + Sy )- (3.14)

In view of I}, (uz) = 0, and (3.13), we have

C

2
)|cos(7ra
CH+ Al + —2

<¢ <
+ (@I, 25z ATlluzlln + 1O 2oe PF+ ||m||L1)

= 2) | cos(mar)]
S

[(5¢ 1)l cos(ra)] — 052 4%] s,
(€

)‘Pf) + (T B us |7 + Ty

P2+ d|us||7, + 1P + ¢(C + i+ || 1 + 20—y d;|us |7,
(3.15)

<

where d = ||d(t)|| 2--
L2
Young inequality, we have

dj = d;B7, W = ||m|[px + ¥, l;. By

A7, 1= U] 2

—2
: 2 o2 4r = (5F)leos(ma)]
T < =7
dluzlls < 2 d [((—2)|cos(7ra)d * 4 2l
(42;2) | cos(mar)|
—a A T e,
=2
2t 8¢ e ( )\cos(m)\
Pf < =% AL EVANR I
h 2 ! [(Q—Z)\cos(wa)d * 8 !
o G otoall
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P

- 27 dnT; =5 (552)|cos(ra)|
d' Tj < J i J —j 7 2— 2
illuzlle < =—5=d; {(gf 2)|Cos(7roz)|} * el
. D) cos(ma)|
=d; + THWHW
h d* = 2778% AT = * = 2-57& 8¢ ﬁ d* =
where - T2 {(4—2)\cos(wa)\:| ’ - 2 [(4—2)|C05(7"a)| A
_2 T
2n g [%} 7 So, by (3.15), we have
1 =2 2
[(5¢=1)lcos(ra)| — 02~ A% fus 3
(52)| cos(ma)] ., (55 cos(ma)| .
2 (—2
CoS(Txv ~ =5—)| COS|TTX
+ WPE +CC+ bl +m+d* + W\\uzlli, (3.16)
that is,
) -2
(552 teostra)] = 052 47l
—9 ~
gWPf—FE};l@‘+l*+CC+CHh|IL1 +m+d* (3.17)
So, it follows from (3.17), we have
_9 ~
HU2H2 S(W})ﬁ + Ejzld;f + 1P+ CC+ ||| +m+ d*)
1
(3.18)

. {(%)‘Cos(mﬂ _ QC%QAZ].

Since

P - (2;?=1dj +12* +§“C+(||h||L1 +m+d*)é,
(= )\EOS(W)\ _ QC;;A2

so we have |luz||o < Py. So, by the same process as above, we suppose ||tn—1]|q < P,
we can get the nontrivial critical point u, of I, _,, and |u,|o < P1.

Step 5. We certificate that the iterative sequence {u, } constructed in the previ-
ous step is convergent to a nontrivial weak solution u of FADE (1.1). Assume that
the sequence {uy,} is divergent on J§, that is, there exists a number € > 0, for any
positive number N such that for each n,n +1 > N, we have |[up41 — tn|lo > €.

In view of ||up|le < Pi1, and Lemma 2.1, we have ||u,|lcc < BPy = Py. Thus,
from (R3), we get

T
| [ 1 tnia(®). 5D (0) = £t (0. 5D a6 ()

T
< /O [o()|unt1(t) —un () + L (O)GDF (tn —tn—1) ()] |un41(t) —un (t)|dt
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T
<t ()= () (1O =00 Ol [ 0
T
+ [ O (= 1) 01

ntr (8) =wn @) lloo (lpll L1 [n1 () = n () oo + [ 216 Df* (un —tin—1)|| )

<ot 1 (8) — (D)l (2l P+ 22 20 ), (319)
and
1L (unt1(t5)) = L (un () | [ung1 (5) — un(t;)]
<Yjlunta(ts) — un(ty )‘2
<Yilluns1 — unll
<2illunt1 — tnllooPr, §=1,2,...,0. (3.20)

Since I, (Unt1)(Uny1r — un) = 0,1, (up)(Uns1 — un) = 0, and combing with
(3.19), (3.20), we observe that

| COS(?Ta)|||u7L+1 - UnHi
T
<- /O (SD?(unH(t) —un(t)) - $D(tpgr (t) —un(t))dt

T
(I, (tns1) — I, () (i1 — n) + 0 / (s (£) — 1 (£)) %l
S (1 () — I (i ()] (1 (85) — 0 (25))

T
+/ ftungr (), 6D un(t)) = [t un(t), D7 un—1(1))(Unt1(t) — un(t))

<Dlptner — e (Il P+ [l ) + 2355yl — 1o P

+ 29T||Un+1 — unHooPl

- - P~
=2||lupn+1 — Un||c><>(PlQTJr el Py + ||¢HL2*1 + Plz}l:ﬂj)v (3.21)

asn — 0o. Put ¢ = Q(PlgT—i- lloll £ Py + 1Vlz2 5 B +P12” 17]) which implies that

number € > 0, for any positive number N such that for each n,n+1 > N, we have
|tnt1 — Unlloo > €. It is contradict with the fact that {u,(¢)} strongly converges to
win C([0,T],R) as k — oo.

Next, we claim that IZ(u) = 0. In fact, by Lemma 2.2, we derive

|tnt1 — tnlloo > wcm‘ﬂum_l —unllZ > ‘Cosgm)‘gz = ¢, that is, there exists a

T
| (D8 - (0) $DFu(0) + 5DFe(e) - iDFwn ~ T)(0)
0
<605 (un — @)l 225 Dol 22 + [§D5 0] 22§D (tn — ) 2

<lun —al| II‘C [0l + l[ollallllun — @lla |

1
: ( a)|
:2||u7l - a||O£|| | COS( )| H ||Oé (322)
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Moreover, u, — u in J§ means that
T
/0 ( 6D un (t) - §DFo(t) + §Dfo(t) - S;’D%un(t))dt
T
N / (D7) - §Df0() + §DFu() - {DF() ). (3.23)
0
Cleary,
S L (un(t)))v(t;) = Sio L5 (ult;))v(ts)- (3.24)
From (Rz), we have
T
| [ (0. 5D una(0) = 0, GDFTE o)
T
S/O [p(@)|un(t) = u(®)] + D (O)[6DF (un—1 — w)(B)[]|v(t)]dt
Svlloo(lun = ullz2llellz2 + 191l L2 [I5DF (un—1 — @)l
Slvlloo (el 2 Allun = tlla + [[¥]l22 lun—1 = ulla)-
Therefore, by w,, — @ in J§, we have
f(tvun(t)v (C)D?unfl(t)) - f(tva(t)a ngﬂ(t))), (325)
as n — oo. In addition,
T T T
g‘ / wn ()0 (t)dt — / ﬂ(t)v(t)dt‘ < Q/ lun () — @(0)[Jo(t)|dt
0 0 0
< 0A%||un = Ullavla-
So, we also have
T T
/ n (E)0(t)dt — / A(Bo()dt, (3.26)
0 0

since u,, — u in J§*. Moreover, by (2.8) and I;, _ (u,)v = 0, we obtain

1
0=1,  (up)v=-—

T
_ /0 F(t un(t), SD%un 1 (£))o(t)dt

T
~o [ w0t + S Iy ())elty). Vo € I
0
The above equality combined with (3.23)—(3.26) indicates that
1

T
0=i@e=-3 [ (6D Dfo0) + {0 (DR

2 0
T
- / St (e, §DET())o(t)dt

~o [ aOuOd + S @)l Yo e T,
0

T
5/0 (3D;’un(t)~ sDFv(t) + §Du(t) - fD%un(t))dt

(3.27)

(3.28)
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and

- e
nli)rréo I, (un) = Iz(u).

This implies that u is a weak solution of FADE (1.1). Similarly, we can certificate

that limy, 00 Ly, _, (un) = Iz(u). Because I, _,(u,) > w; > 0, we conclude that

Iz(u) > wyp > 0, it indicates that @ is a nontrivial weak solution of FADE (1.1).

Hence, our claim is proved. O

4. An Example

Example 4.1. Investigate the existence of nontrivial weak solutions for following
a fractional advection-dispersion equation (FADE for short) with impulsive effects
drl a—1l/c na 1 a—1/c o c o
— 2|5 0DE T 6D ()~ 5 «DFT (DFu(E)] = eu®)+£(E ult), §DFu(),
t#tj, ae. t€0,7T],

1 —1/c na 1 —1l/cpa :
A5 oD EDFuL)) — 5 DFTGDFu())) = Lu(t), § = 1,2,

2
u(0) =u(T) =0,

(4.1)
where o = 2, T =1, I1(s) = —bys|s|,s € R,b; > 0.
Define

0, y<0,

’ ’ ¥, 0<y <1,

={z,0<2<1, h(y)= -

, 1 <x < oo, 1

Ly, Lo <y < oo,
f(t,xz,y) = dbe™'a® + deit?23 (sin y)% — ca(cost)g(x)h(y),

with b > 0,¢1,c0 > O,Zo > 0. We verify that all conditions of Theorem 3.1 are valid.
(R1)

F(t,z,y) < bx! —|—clx4|y\%, ae. t€0,1],z,y € R,
with b(t) = b,c(t) =c1,e =n =4, = %;
Il(s) > _bl|5|27S € R7b1 > 07

with aj; = bl,O'j = 2.
(Ra)

|f(t,2,9) = f(tz,y)] < ot)|T — 2|+ @)y —yl, ae t€[0,1],
for x,7 € [—ﬁl, ﬁl],g, y € R, where

~ ~ ~1
@(t) = 12be P + 12¢, PAt? + co L cost,
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16 ~
Y(t) = gclet2 + 3co| cost], t € [0,1];

moreover,
[y (u1) — I (u2)| < 2b1 Pyluy — ug|, for uy,uy € [—Py, Py,

where v = 20, Py, d* =" =d} = =Q, = M, =B = 0.
(Rs3)

xf(t,x,y) 73F(t7l’7y) > Oa fOT z,y GRa ae.te [071]3

where ¢ = 3,d(t) = I(¢t) = m(t) = 0;
3/“ Li(s)ds — I (u)u > 0, for u € R,
0

where dj = lj =0.
(Ra4)
be4 1
F(t,ﬂj,y) > 7 762|‘T|‘y|3a ae.te [07 1]3 T,y € ]Ra

where N; = g,h(t) =0,Na(t) =co,e =4,k =1,
Ii(s) <0, > 0,01 >0,

where Ql = M1 =0.
3

‘COS(%)‘Q, it is found that all conditions are satisfied, thus, FADE

16 L
(F<%>>

(4.1) has a nontrivial weak solution.

Choose o =
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