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A NEW ITERATIVE METHOD FOR SOLVING
SPLIT FEASIBILITY PROBLEM
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Abstract In this paper, we construct a new iterative algorithm and show
that the newly introduced iterative algorithm converges faster than a number
of existing iterative algorithms for contractive-like mappings. We present a
numerical example followed by graphs to validate our claim. We prove strong
and weak convergence results for approximating fixed points of generalized
α-nonexpansive mappings. Again we reconfirm our results by an example
and table. Further, we utilize our proposed algorithm to solve split feasibility
problem.
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1. Introduction
Fixed point theory is one of the fast growing topic of nonlinear functional analysis.
It has many applications in finding out the solutions of ODE, PDE, variational
inequalities and zero of monotone operators. Banach Contraction Principle is one
of the prime result of fixed point theory. The early findings in fixed point theory
revolve around generalization of Banach Contraction Principle. The whole math-
ematics community had to wait for the first fixed point theorem for nonexpansive
mapping for 43 years. Let K be a nonempty closed convex subset of a uniformly
convex Banach space E. Then, a mapping T : K → K is said to be nonexpansive
if ∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ K. A point x ∈ K is said to be a fixed point
of T if Tx = x. We will denote the set of fixed points of T by F (T ). T is called
quasi-nonexpansive if F (T ) ̸= ∅ and ∥Tx − p∥ ≤ ∥x − p∥ for all x ∈ K. It is well
known that every nonexpansive mapping with a fixed point is quasi-nonexpansive
mapping. One can observe that the well known Banach Contraction Principle is
no longer true for nonexpansive mappings i.e. a nonexpansive mapping need not
admit a fixed point on complete metric space. Also, Picard iteration need not be
convergent for a nonexpansive map in a complete metric space. This led to the
beginning of a new era of fixed point theory for nonexpansive mappings by using
geometric properties. In 1965, Browder [7], Göhde [11] and Kirk [15] gave three
basic existence results in respect of nonexpansive mappings.
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Following this, many mathematicians have introduced various generalizations
and extensions of nonexpansive mappings. In 2008, Suzuki [22] introduced a new
generalization of nonexpansive mappings and called the defining condition as Con-
dition (C) which is also referred as Suzuki generalized nonexpansive mappings. A
mapping T : K → K defined on a nonempty subset K of a Banach space E is said
to satisfy the Condition (C) if

1

2
∥x− Tx∥ ≤ ∥x− y∥ ⇒ ∥Tx− Ty∥ ≤ ∥x− y∥

for all x and y ∈ K. Suzuki proved that the mappings satisfying the Condition (C)
is weaker than nonexpansive and also obtained few results regarding the existence
of fixed points for such mappings.

Later, in 2011, Aoyama and Kohsaka [3] introduced another generalization of
nonexpansive mappings, namely, α-nonexpansive mappins and obtained few con-
vergence results. A mapping T : K → K is said to be α-nonexpansive if there exists
an α ∈ [0, 1) such that for all x, y ∈ K,

∥Tx− Ty∥2 ≤ α∥Tx− y∥2 + α∥x− Ty∥2 + (1− 2α)∥x− y∥2.

It is obvious that every nonexpansive mapping is 0-nonexpansive and every α-
nonexpansive mapping with a fixed point is quasi-nonexpansive. It is worth men-
tioning that nonexpansive mappings are always continuous but mappings satisfying
the Condition (C) or α-nonexpansive mappings need not be continuous in general.

In 2017, Pant and Shukla [18] introduced the class of generalized α-nonexpansive
mappings. A mapping T : K → K is said to be generalized α-nonexpansive if there
exists an α ∈ [0, 1) such that

1

2
∥x−Tx∥ ≤ ∥x− y∥ ⇒ ∥Tx−Ty∥ ≤ α∥Tx−y∥+α∥Ty−x∥+(1−2α)∥x−y∥

for all x and y ∈ K. They established some existence and convergence theorems
for the newly introduced class of mappings. Clearly, every mapping satisfying the
Condition (C) is a generalized α-nonexpansive mapping.

In the last few years many iterative processes have been obtained in different
domains to approximate the fixed points of various classes of mappings. To name
a few, we have Mann iteration [16], Ishikawa iteration [14], Noor iteration [17],
Agarwal et al. iteration [2], Abbas and Nazir iteration [1], Thakur et al. iterations
[24,25], M∗ iteration [26], M iteration [27], K iteration [12] and K∗ iteration [28].
Very recently, Piri et al. [19] introduced a new iteration process as follows:

a1 ∈ K,

cn = T ((1− βn)an + βnTan),

bn = Tcn,

an+1 = (1− αn)Tcn + αnTbn,

(1.1)

where {αn} and {βn} are sequences in (0, 1). Authors proved that their iteration
process (1.1) is having a better rate of convergence than a number of existing itera-
tion processes. Further, they used their iteration process to obtain few convergence
results involving generalized α-nonexpansive mappings.
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Motivated and inspired by the research going on this direction, we introduce
a new iteration process to approximate fixed points of generalized α-nonexpansive
mappings. We define our process as follows:

x1 ∈ K,

zn = T ((1− αn)xn + αnTxn),

yn = T ((1− βn)Txn + βnTzn),

xn+1 = Tyn,

(1.2)

where {αn} and {βn} are sequences in (0, 1).

The aim of this paper is to prove that the newly defined iteration process (1.2)
converges faster than iteration process (1.1) for contractive-like mappings. Also, we
prove some weak and strong convergence results involving the iteration process (1.2)
for generalized α-nonexpansive mappings. Further, we provide a numerical example
to show that our process (1.2) converges faster than a number of existing iteration
processes. In the last section, we discuss about the solution of split feasibility
problem using our newly introduced iterative algorithm.

2. Preliminaries
For making our paper self contained, we collect some basic definitions and needed
results.

Definition 2.1. A Banach space E is said to be uniformly convex if for each
ϵ ∈ (0, 2] there is a δ > 0 such that for x, y ∈ E with ∥x∥ ≤ 1, ∥y∥ ≤ 1 and
∥x− y∥ > ϵ, we have ∥∥∥x+ y

2

∥∥∥ < 1− δ.

Definition 2.2. A Banach space E is said to satisfy the Opial’s condition if for
any sequence {xn} in E which converges weakly to x ∈ E i.e. xn ⇀ x implies that

lim sup
n→∞

∥xn − x∥ < lim sup
n→∞

∥xn − y∥

for all y ∈ E with y ̸= x.

Examples of Banach spaces satisfying this condition are Hilbert spaces and all
lp spaces (1 < p < ∞). On the other hand, Lp[0, 2π] with 1 < p ̸= 2 fail to satisfy
Opial’s condition.

A mapping T : K → E is demiclosed at y ∈ E if for each sequence {xn} in K
and each x ∈ E, xn ⇀ x and Txn → y imply that x ∈ K and Tx = y.

Let K be a nonempty closed convex subset of a Banach E, and let {xn} be a
bounded sequence in E. For x ∈ E write:

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius of {xn} relative to K is given by

r({xn}) = inf{r(x, xn) : x ∈ K}
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and the asymptotic center A(K, {xn}) of {xn} is defined as:

A(K, {xn}) = {x ∈ K : r(x, {xn}) = r(K, {xn})}.

It is known that, in a uniformly convex Banach space, A(K, {xn}) consists of exactly
one point.

The following definitions about the rate of convergence were given by Berinde [6].

Definition 2.3. Let {an} and {bn} be two real sequences converging to a and b

respectively. Then, {an} converges faster then {bn} if lim
n→∞

∥an−a∥
∥bn−b∥ = 0.

Definition 2.4. Let {un} and {vn} be two fixed point iteration processes con-
verging to the same fixed point p. If {an} and {bn} are two sequences of positive
numbers converging to zero such that ∥un−p∥ ≤ an and ∥vn−p∥ ≤ bn for all n ≥ 1,
then we say that {un} converges faster than {vn} to p if {an} converges faster then
{bn}.

The following lemma due to Schu [20] is very useful in our subsequent discussion.

Lemma 2.1. Let E be a uniformly convex Banach space and {tn} be any sequence
such that 0 < p ≤ tn ≤ q < 1 for some p, q ∈ R and for all n ≥ 1. Let {xn} and
{yn} be any two sequences of E such that lim sup

n→∞
∥xn∥ ≤ r, lim sup

n→∞
∥yn∥ ≤ r and

lim sup
n→∞

∥tnxn + (1− tn)yn∥ = r for some r ≥ 0. Then, lim
n→∞

∥xn − yn∥ = 0.

Now, we recall some important results involving generalized α-nonexpansive
mappings.

Lemma 2.2 ( [18]). Let K be a nonempty subset of a Banach space E and T :
K → K a generalized α-nonexpansive mapping. Then,

(i) F (T ) is closed. Moreover, if E is strictly convex and K is convex, then F (T )
is convex.

(ii) If F (T ) ̸= ∅, then T is quasi-nonexpansive.
(iii)

∥x− Ty∥ ≤ 3 + α

1− α
∥x− Tx∥+ ∥x− y∥

for all x and y ∈ K.

Lemma 2.3 ( [23]). Let T be a generalized α-nonexpansive mapping defined on
a nonempty closed subset K of a Banach space E with the Opial property. If a
sequence {xn} converges weakly to z and lim

n→∞
∥Txn − xn∥ = 0, then I − T is

demiclosed at zero.

In 1972, Zamifirescu [31] coined the idea of so-called Zamfirescu mappings which
serves as an important generalization for contractions. A generalized version of the
famous Banach contraction principle [4] was given using this kind of mappings
in [31]. Later on, in 2004, Berinde [5] gave a more general class of mappings known
as quasi-contractive mappings. Following this, Imoru and Olantiwo [13] gave the
following definition:

Definition 2.5. A mapping T : K → K is known as contractive-like mapping if
there exists a strictly increasing and continuous function φ : [0,∞) → [0,∞) with
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φ(0) = 0 and a constant δ ∈ [0, 1) such that for all x, y ∈ K, we have

∥Tx− Ty∥ ≤ δ∥x− y∥+ φ(∥x− Tx∥).

Clearly, the class of contractive-like mappings is wider than the class of quasi-
contractive mappings.

3. Rate of Convergence
In this section, first we show that our algorithm (1.2) converges faster than the
algorithm (1.1) for contractive-like mappings.

Theorem 3.1. Let T be a contractive-like mapping defined on a nonempty closed
convex subset K of a Banach space E with F (T ) ̸= ∅. If {xn} is a sequence defined
by (1.2), then {xn} converges faster than the iterative algorithm (1.1).

Proof. From (1.2), for any p ∈ F (T ), we have

∥zn − p∥ = ∥T ((1− αn)xn + αnTxn)− p∥

≤ δ∥(1− αn)xn + αnTxn − p∥

≤ δ((1− αn)∥xn − p∥+ αn∥Txn − p∥)

≤ δ((1− αn)∥xn − p∥+ αnδ∥xn − p∥)

= δ(1− (1− δ)αn)∥xn − p∥

≤ δ∥xn − p∥,

∥yn − p∥ = ∥T ((1− βn)Txn + βnTzn)− p∥

≤ δ∥(1− βn)Txn + βnTzn − p∥

≤ δ((1− βn)∥Txn − p∥+ βn∥Tzn − p∥)

≤ δ((1− βn)δ∥xn − p∥+ βnδ∥zn − p∥)

= δ2((1− βn)∥xn − p∥+ βn∥zn − p∥)

≤ δ2((1− βn)∥xn − p∥+ βnδ∥xn − p∥)

≤ δ2(1− (1− δ)βn)∥xn − p∥

≤ δ2∥xn − p∥.

and
∥xn+1 − p∥ = ∥Tyn − p∥

≤ δ∥yn − p∥

≤ δ3∥xn − p∥
...

≤ δ3n∥x1 − p∥.
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Now, from (1.1) we get

∥cn − p∥ = ∥T ((1− βn)an + βnTan)− p∥

≤ δ∥(1− βn)an + βnTan − p∥

≤ δ((1− βn)∥an − p∥+ βn∥Tan − p∥)

≤ δ((1− βn)∥an − p∥+ βnδ∥an − p∥)

= δ(1− (1− δ)βn)∥an − p∥

≤ δ∥an − p∥,

∥bn − p∥ = ∥Tcn − p∥

≤ δ∥cn − p∥

≤ δ2∥an − p∥

and
∥an+1 − p∥ = ∥(1− αn)Tcn + αnTbn − p∥

≤ (1− αn)∥Tcn − p∥+ αn∥Tbn − p∥)

≤ δ((1− αn)∥cn − p∥+ αn∥bn − p∥)

≤ δ((1− αn)∥cn − p∥+ αnδ∥cn − p∥)

= δ(1− (1− δ)αn)∥cn − p∥

≤ δ∥cn − p∥

≤ δ2∥an − p∥
...

≤ δ2n∥a1 − p∥.

Let bn = δ3n∥x1 − p∥ and an = δ2n∥a1 − p∥, then

bn
an

= δ3n∥x1−p∥
δ2n∥a1−p∥

→ 0 as n → ∞.

Hence, {xn} converges faster than {an}.
Now, we present a example of a contractive-like mapping which is not a con-

traction.

Example 3.1. Let E = R and K = [0, 8]. Let T : K → K be a mapping defined
as

Tx =


x

6
, x ∈ [0, 4)

x

12
, x ∈ [4, 8].

Proof. Clearly x = 0 is the fixed point of T. First, we prove that T is a contractive-
like mapping but not a contraction. Since T is not continuous at x = 4 ∈ [0, 8],
so T is not a contraction. We show that T is a contractive-like mapping. For this,
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define φ : [0,∞) → [0,∞) as φ(x) = x
10 . Then, φ is a strictly increasing as well as

continuous function. Also, φ(0) = 0.

We need to show that

∥Tx− Ty∥ ≤ δ∥x− y∥+ φ(∥x− Tx∥) (A)

for all x, y ∈ [0, 8] and δ is a constant in [0, 1).

Before going ahead, let us note the following. When x ∈ [0, 4), then

∥x− Tx∥ =
∥∥∥x− x

6

∥∥∥ =
5x

6

and

φ(
5x

6
) =

x

12
. (3.1)

Similarly, when x ∈ [4, 8], then

∥x− Tx∥ =
∥∥∥x− x

12

∥∥∥ =
11x

12

and

φ(
11x

12
) =

11x

120
. (3.2)

Consider the following cases:
Case A: Let x, y ∈ [0, 4), then using (3.1) we get

∥Tx− Ty∥ = ∥x
6
− y

6
∥

≤ 1

6
∥x− y∥

≤ 1

6
∥x− y∥+ x

12

=
1

6
∥x− y∥+ φ(

5x

6
)

=
1

6
∥x− y∥+ φ(∥x− Tx∥).

So (A) is satisfied with δ = 1
6 .

Case B: Let x ∈ [0, 4) and y ∈ [4, 8] then using (3.1) we get

∥Tx− Ty∥ = ∥x
6
− y

12
∥

= ∥ x

12
+

x

12
− y

12
∥

≤ 1

12
∥x− y∥+

∥∥∥ x

12

∥∥∥
≤ 1

6
∥x− y∥+ φ(

5x

6
)

=
1

6
∥x− y∥+ φ(∥x− Tx∥).
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So (A) is satisfied with δ = 1
6 .

Case C: Let x ∈ [4, 8] and y ∈ [0, 4) then using (3.2) we get

∥Tx− Ty∥ = ∥ x

12
− y

6
∥

= ∥x
6
− x

12
− y

6
∥

≤ 1

6
∥x− y∥+

∥∥∥ x

12

∥∥∥
≤ 1

6
∥x− y∥+

∥∥∥11x
120

∥∥∥
=

1

6
∥x− y∥+ φ(∥x− Tx∥).

So (A) is satisfied with δ = 1
6 .

Case D: Let x, y ∈ [4, 8] then using (3.2) we get

∥Tx− Ty∥ = ∥ x

12
− y

12
∥

≤ 1

12
∥x− y∥+

∥∥∥11x
120

∥∥∥
≤ 1

6
∥x− y∥+

∥∥∥11x
120

∥∥∥
=

1

6
∥x− y∥+ φ(∥x− Tx∥).

So (A) is satisfied with δ = 1
6 .

Consequently, (A) is satisfied for δ = 1
6 and φ(x) = x

10 in all the possible cases.
Thus, T is a contractive-like mapping.

Now, using T , we show that our iteration process (1.2) has a better rate of
convergence. Set αn = βn = γn = n+5

n+7 for each n ∈ N. Then, we get the following
tables and graphs with the initial value 7.5.

Table 1.
Step Agarwal Abbas Thakur M∗ K∗ New

1 7.5 7.5 7.5 7.5 7.5 7.5
2 0.449219 0.311686 0.266113 0.0602214 0.0244141 0.00569661
3 0.0371268 0.0151702 0.0141267 0.000448035 0.0000839571 7.06361× 10−6

4 0.00288764 0.000713562 0.000680173 3.04221× 10−6 2.59127× 10−7 7.9938× 10−9

5 0.000212794 0.0000325538 0.0000300014 1.90313× 10−8 7.2872× 10−10 8.33452× 10−12

6 0.0000149416 1.44502× 10−6 1.22241× 10−6 1.10543× 10−10 1.8899× 10−12 8.06847× 10−15

7 1.00446× 10−6 6.25812× 10−8 4.6333× 10−8 6.00095× 10−13 4.5646× 10−15 7.30012× 10−18

8 6.49138× 10−8 2.65063× 10−9 1.64349× 10−9 3.06171× 10−15 1.03506× 10−17 6.20758× 10−21
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Table 2.
Step Noor Thakur New K M Piri et al. New

1 7.5 7.5 7.5 7.5 7.5 7.5
2 2.146 0.100911 0.0124783 0.0651042 0.0244141 0.00569661
3 0.551395 0.00139001 0.0000286472 0.000636306 0.0000839571 7.06361× 10−6

4 0.12825 0.0000180187 6.18921× 10−8 5.89172× 10−6 2.59127× 10−7 7.9938× 10−9

5 0.0272568 2.21304× 10−7 1.26692× 10−10 5.20733× 10−8 7.2872× 10−10 8.33452× 10−12

6 0.00533441 2.58985× 10−9 2.47106× 10−13 4.4198× 10−10 1.8899× 10−12 8.06847× 10−15

7 0.000967698 2.90173× 10−11 4.6144× 10−16 3.62021× 10−12 4.5646× 10−15 7.30012× 10−18

8 0.000163634 3.12545× 10−13 8.2836× 10−19 2.87318× 10−14 1.03506× 10−17 6.20758× 10−21

Figure 1. Graph corresponding to Table 1.

Figure 2. Graph corresponding to Table 2.
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Clearly, our algorithm (1.2) converges at a faster rate for contractive-like map-
pings.

4. Convergence Results
First, we prove few lemmas which will be useful in obtaining convergence results.

Lemma 4.1. Let T be a generalized α-nonexpansive mapping defined on a nonempty
closed convex subset K of a Banach space E with F (T ) ̸= ∅. Let {xn} be the iterative
sequence defined by the iteration process (1.2). Then, lim

n→∞
∥xn − p∥ exists for all

p ∈ F (T ).

Proof. Let p ∈ F (T ). By Lemma 2.2(ii), T is quasi-nonexpansive, so we have

∥zn − p∥ = ∥T ((1− αn)xn + αnTxn)− p∥

≤ ∥(1− αn)xn + αnTxn − p∥

≤ (1− αn)∥xn − p∥+ αn∥Txn − p∥

≤ (1− αn)∥xn − p∥+ αn∥xn − p∥

= ∥xn − p∥

(4.1)

and
∥yn − p∥ = ∥T ((1− βn)Txn + βnTzn)− p∥

≤ ∥(1− βn)Txn + βnTzn − p∥

≤ (1− βn)∥Txn − p∥+ βn∥Tzn − p∥

≤ (1− βn)∥xn − p∥+ βn∥zn − p∥

≤ (1− βn)∥xn − p∥+ βn∥xn − p∥

= ∥xn − p∥.

(4.2)

Using (4.1) and (4.2), we get

∥xn+1 − p∥ = ∥Tyn − p∥

≤ ∥yn − p∥

≤ ∥xn − p∥.

Thus, {∥xn−p∥} is bounded and non-increasing sequence of reals and hence lim
n→∞

∥xn−
p∥ exists.

Lemma 4.2. Let T be a generalized α-nonexpansive mapping defined on a nonempty
closed convex subset K of a uniformly convex Banach space E. Let {xn} be the
iterative sequence defined by the iteration process (1.2). Then, F (T ) ̸= ∅ if and only
if {xn} is bounded and lim

n→∞
∥Txn − xn∥ = 0.

Proof. Suppose F (T ) ̸= ∅ and let p ∈ F (T ). Then, by Lemma 4.1, lim
n→∞

∥xn − p∥
exists. Let

lim
n→∞

∥xn − p∥ = c. (4.3)
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From inequalities (4.1) and (4.2), we have

lim sup
n→∞

∥yn − p∥ ≤ c (4.4)

and
lim sup
n→∞

∥zn − p∥ ≤ c. (4.5)

Now,
c = lim

n→∞
∥xn+1 − p∥ = lim

n→∞
∥Tyn − p∥,

and
∥Tyn − p∥ ≤ ∥yn − p∥.

So,
c ≤ lim inf

n→∞
∥yn − p∥

which along with inequality (4.4) implies

lim
n→∞

∥yn − p∥ = c. (4.6)

Now, consider

∥yn − p∥ = ∥T ((1− βn)Txn + βnTzn)− p∥

≤ ∥(1− βn)Txn + βnTzn − p∥

≤ (1− βn)∥Txn − p∥+ βn∥Tzn − p∥

≤ (1− βn)∥xn − p∥+ βn∥zn − p∥

= ∥xn − p∥+ βn(∥zn − p∥ − ∥xn − p∥).

(4.7)

It follows that

∥yn − p∥ − ∥xn − p∥ ≤ βn(∥zn − p∥ − ∥xn − p∥).

Now, since {βn} ∈ (0, 1), using (4.7) we have

∥yn − p∥ − ∥xn − p∥ ≤ ∥yn − p∥ − ∥xn − p∥
βn

≤ ∥zn − p∥ − ∥xn − p∥

which gives ∥yn − p∥ ≤ ∥zn − p∥ and using (4.6) we get

c ≤ lim inf
n→∞

∥zn − p∥. (4.8)

Owing to (4.5) and (4.8), we have

lim
n→∞

∥zn − p∥ = c. (4.9)

Also, using the fact that T is quasi-nonexpansive we have ∥Txn−p∥ ≤ ∥xn−p∥,
which gives

lim sup
n→∞

∥Txn − p∥ ≤ c. (4.10)
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From (4.1), we have

∥zn − p∥ ≤ ∥(1− αn)xn + αnTxn − p∥ ≤ ∥xn − p∥

which on using (4.3) and (4.9) gives

lim
n→∞

∥(1− αn)xn + αnTxn − p∥ = c. (4.11)

Using (4.3), (4.10), (4.11) and Lemma 2.1, we conclude that lim
n→∞

∥Txn − xn∥ = 0.

Conversely, suppose that {xn} is bounded and lim
n→∞

∥xn − Txn∥ = 0. Let p ∈
A(K, {xn}), we have

r(Tp, {xn}) = lim sup
n→∞

∥xn − Tp∥

≤ ( 3+α
1−α ) lim sup

n→∞
∥Txn − xn∥+ lim sup

n→∞
∥xn − p∥

= lim sup
n→∞

∥xn − p∥

= r(p, {xn}).

This implies that Tp ∈ A(K, {xn}). Since E is uniformly convex, A(K, {xn}) is
singleton, therefore we get Tp = p.

Theorem 4.1. Let T be a generalized α-nonexpansive mapping defined on a nonempty
closed convex subset K of a Banach space E which satisfies the Opial’s condition
with F (T ) ̸= ∅. If {xn} is the iterative sequence defined by the iteration process
(1.2), then {xn} converges weakly to a fixed point of T .

Proof. Let p ∈ F (T ). Then, from Lemma 4.1 lim
n→∞

∥xn − p∥ exists. In order to
show the weak convergence of the iteration process (1.2) to a fixed point of T , we
will prove that {xn} has a unique weak subsequential limit in F (T ). For this, let
{xnj

} and {xnk
} be two subsequences of {xn} which converges weakly to u and v

respectively. By Lemma 4.1, we have lim
n→∞

∥Txn − xn∥ = 0 and using the Lemma
2.3, we have I − T is demiclosed at zero. So u, v ∈ F (T ).

Next, we show the uniqueness. Since u, v ∈ F (T ), so lim
n→∞

∥xn − u∥ and
lim
n→∞

∥xn − v∥ exists. Let u ̸= v. Then, by Opial’s condition, we obtain

lim
n→∞

∥xn − u∥ = lim
j→∞

∥xnj − u∥

< lim
j→∞

∥xnj − v∥

= lim
n→∞

∥xn − v∥

= lim
k→∞

∥xnk
− v∥

< lim
k→∞

∥xnk
− u∥

= lim
n→∞

∥xn − u∥

which is a contradiction, so u = v. Thus, {xn} converges weakly to a fixed point of
T .

Now, we establish some strong convergence results.
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Theorem 4.2. Let K be a nonempty closed convex subset of a uniformly convex
Banach space E and T : K → K be a generalized α-nonexpansive mapping with
F (T ) ̸= ∅. If {xn} is defined by the iteration process (1.2), then {xn} converges
strongly to a point of F (T ) if and only if lim inf

n→∞
d(xn, F (T )) = 0.

Proof. If the sequence {xn} converges to a point p ∈ F (T ), then it is obvious
that lim inf

n→∞
d(xn, F (T )) = 0.

For the converse part, assume that lim inf
n→∞

d(xn, F (T )) = 0. From Lemma 4.1,
we have lim

n→∞
∥xn − p∥ exists for all p ∈ F (T ), which gives

∥xn+1 − p∥ ≤ ∥xn − p∥ for any p ∈ F (T )

which yields
d(xn+1, F (T ) ≤ d(xn, F (T ). (4.12)

Thus, {d(xn, F (T )} forms a non-increasing sequence which is bounded below by
zero as well, so we get that lim

n→∞
d(xn, F (T ) exists. As, lim inf

n→∞
d(xn, F (T ) = 0 so

lim
n→∞

d(xn, F (T ) = 0.

Now, there exists a subsequence {xnj
} of {xn} and a sequence {uj} in F (T )

such that ∥xnj
− uj∥ ≤ 1

2j for all j ∈ N. From the proof of Lemma 4.1, we have

∥xnj+1 − uj∥ ≤ ∥xnj − uj∥ ≤ 1

2j

. Using triangle inequality, we get

∥uj+1 − uj∥ ≤ ∥uj+1 − xnj+1
∥+ ∥xnj+1

− uj∥

≤ 1
2j+1 + 1

2j

≤ 1
2j−1

→ 0 as j → ∞.

So, {uj} is a Cauchy sequence in F (T ). By Lemma 2.2 F (T ) is closed, so {uj}
converges to some u ∈ F (T ).

Again, owing to triangle inequality, we have

∥xnj
− u∥ ≤ ∥xnj

− uj∥+ ∥uj − u∥.

Letting j → ∞, we have {xnj
} converges strongly to u ∈ F (T ).

Since lim
n→∞

∥xn − u∥ exists by Lemma 4.1, therefore {xn} converges strongly to
u ∈ F (T ).

A mapping T : K → K is said to satisfy the Condition (A) ( [21]) if there exists
a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all
r ∈ (0,∞) such that ∥x − Tx∥ ≥ f(d(x, F (T ))) for all x ∈ K, where d(x, F (T )) =
inf{∥x− p∥ : p ∈ F (T )}.

Now, we present a strong convergence result using the Condition (A).

Theorem 4.3. Let K be a nonempty closed convex subset of a uniformly convex
Banach space E and T : K → K be a generalized α-nonexpansive mapping with
F (T ) ̸= ∅. If T satisfies the Condition (A) and {xn} is defined by the iteration
process (1.2), then {xn} converges strongly to a point of F (T ).
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Proof. From 4.12, lim
n→∞

d(xn, F (T )) exists.
Also, by Lemma 4.2 we have lim

n→∞
∥xn − Txn∥ = 0.

It follows from the Condition (A) that

lim
n→∞

f(d(xn, F (T ))) ≤ lim
n→∞

∥xn − Txn∥ = 0,

so that lim
n→∞

f(d(xn, F (T ))) = 0.

Since f is a non decreasing function satisfying f(0) = 0 and f(r) > 0 for all
r ∈ (0,∞), therefore lim

n→∞
d(xn, F (T )) = 0.

By Theorem 4.2., the sequence {xn} converges strongly to a point of F (T ).
Now, first we will construct an example of a generalized α-nonexpansive mapping

which is neither a Suzuki generalized nonexpansive mapping nor a nonexpansive
mapping. Then, using this example, we will show that our iteration scheme (1.2)
has a better speed of convergence than number of existing iteration schemes.

Example 4.1. Let E = R with the usual norm and K = [0,∞). Let T : K → K
be a mapping defined as

T (x) =


0, x ∈ [0,

3

2
)

5x

13
, x ∈ [

3

2
,∞).

for all x ∈ K.
Proof. Clearly x = 0 is the fixed point of T. Then,
(i) Since T is not continuous at x = 3

2 , so T is not a nonexpansive map.
(ii) Let x = 1 and y = 3

2 , then

1

2
∥x− Tx∥ =

1

2
≤ 1

2
= ∥x− y∥.

But
∥Tx− Ty∥ =

5y

13
=

15

26
>

1

2
= ∥x− y∥.

So, T is not a Suzuki generalized nonexpansive mapping.
(iii) Now, we prove that T is a generalized α-nonexpansive mapping. For this, let
α = 1

3 and consider the following cases:
Case (A). When x ∈ [ 32 ,∞) and y ∈ [0, 3

2 ) then,

∥Tx− Ty∥ = |Tx− Ty| = 5x

13
.

Now,

α∥Tx− y∥+ α∥Ty − x∥+ (1− 2α)∥x− y∥ =
1

3
|Tx− y|+ 1

3
|Ty − x|+ 1

3
|x− y|

=
1

3
|5x
13

− y|+ 1

3
|x|+ 1

3
|x− y|

≥ 1

3
|5x
13

− y|+ 1

3
|x− y|

≥ 6x

13
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>
5x

13
= ∥Tx− Ty∥.

Case (B). When x, y ∈ [ 32 ,∞) then,

∥Tx− Ty∥ =
5

13
∥x− y∥ =

5

13
|x− y|.

Now,

α∥Tx− y∥+ α∥Ty − x∥+ (1− 2α)∥x− y∥ =
1

3
|Tx− y|+ 1

3
|Ty − x|+ 1

3
|x− y|

=
1

3
|5x
13

− y|+ 1

3
|x− 5y

13
|+ 1

3
|x− y|

≥ 1

3
|18x
13

− 18y

13
|+ 1

3
|x− y|

=
6

13
|x− y|+ 1

3
|x− y|

>
5

13
|x− y|

= ∥Tx− Ty∥.

Case (C). When x, y ∈ [0, 3
2 ) then,

∥Tx− Ty∥ = 0.

So,

α∥Tx− y∥+ α∥Ty − x∥+ (1− 2α)∥x− y∥ =
1

3
|Tx− y|+ 1

3
|Ty − x|+ 1

3
|x− y|

≥ ∥Tx− Ty∥.

Therefore, T is a generalized α-nonexpansive mapping with α = 1
3 .

Let αn = βn = γn = n
n+10 for all n ∈ N and x1 = 70000.5, then we get the

following tables of iteration values and graphs.

Table 3.
Step Agarwal Abbas Thakur M∗ K∗ New

1 70000.5 70000.5 70000.5 70000.5 70000.5 70000.5
2 26786.3 11676.5 26657.1 9755.54 9228.9 3752.13
3 10126.3 2086.53 9920.18 1285.63 1099.54 190.181
4 3767.1 388.543 3583.13 160.776 119.736 9.14749
5 1376.1 74.1824 1251.84 19.1422 12.0315 0.0000
6 493.08 14.3753 422.386 2.17636 1.12452 0.0000
7 173.234 2.80895 137.583 0.0000 0.0000 0.0000
8 59.6767 0.332132 43.2732 0.0000 0.0000 0.0000
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Table 4.
Step Noor Thakur New K M Piri et al. New

1 70000.5 70000.5 70000.5 70000.5 70000.5 70000.5
2 65942.7 10302.4 3962.48 9775.8 9228.9 3752.13
3 58718.0 1497.98 221.594 1297.8 1099.54 190.181
4 49573.5 214.332 12.1946 164.719 119.736 9.14749
5 39794.2 30.1132 0.658967 20.0825 12.0315 0.0000
6 30450.6 4.15003 0.0000 2.36139 0.943144 0.0000
7 22263.8 0.0000 0.0000 0.0000 0.0000 0.0000
8 15587.4 0.0000 0.0000 0.0000 0.0000 0.0000

Figure 3. Graph corresponding to Table 3.

Figure 4. Graph corresponding to Table 4.

It is evident from above tables and graphs that our algorithm (1.2) converges at
a better speed than the above mentioned schemes.
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5. Application
In this section, we will use our iteration process (1.2) to find the solution of split
feasibility problem.

Let H1 and H2 be two real Hilbert spaces, C and Q be closed, convex and
nonempty subsets of H1 and H2, respectively and let A : H1 → H2 be a bounded
and linear operator. Then, the split feasibility problem (abbreviate SFP) can be
mathematically described as finding a point x ∈ C such that

x ∈ C,Ax ∈ Q. (5.1)

We assume that the solution set Ω of the SFP (5.1) is nonempty, let
Ω = {x ∈ C : Ax ∈ Q} = C ∩A−1Q.

Then, Ω is closed, convex and nonempty set. Censor and Elfving [9] solved the
class of inverse problems with the help of SFP. In 2002, Byrne [8] introduced the
famous CQ-algorithm for solving the SFP. In this, the iterative step xk is calculated
as follows:

xk+1 = PC [I − γA∗(I − PQ)A]xk, k ≥ 0, (5.2)

where 0 < γ < 2
∥A∥2 , PC and PQ denote the projections onto sets C and Q, respec-

tively and A∗ : H2
∗ → H1

∗ is the adjoint of A.
We have the following important lemma due to Feng et al. [10]

Lemma 5.1. Let operator T = PC [I−γA∗(I−PQ)A], where 0 < γ < 2
∥A∥2 . Then,

T is a nonexpansive map.

Also, since we have assumed that solution set Ω of SFP is nonempty, it is easy
to see that any x∗ ∈ C is the solution of SFP if and only if it solves the following
fixed point equation:

PC [I − γA∗(I − PQ)A]x = x, x ∈ C.

So, the solution set Ω is equal to the fixed point set of T , i.e, F (T ) = Ω =
C ∩A−1Q ̸= ∅. For details, one can refer [29,30].

Now, we present our main results.

Theorem 5.1. If {xn} is the sequence generated by the iterative algorithm (1.2)
with T = PC [I−γA∗(I−PQ)A] then, {xn} converges weakly to the solution of SFP
(5.1).

Proof. By Lemma 5.1, T is a nonexpansive map and every nonexpansive mapping
is a generalized 0-nonexpansive mapping, so the result follows from Theorem 4.1.

Theorem 5.2. If {xn} is the sequence generated by the iterative algorithm (1.2)
with T = PC [I − γA∗(I − PQ)A] then, {xn} converges strongly to the solution of
SFP (5.1) if and only if lim inf

n→∞
d(xn,Ω) = 0.

Proof. Proof follows from Theorem 4.2.
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