
Journal of Applied Analysis and Computation Website:http://jaac-online.com/
Volume 10, Number 3, June 2020, 972–985 DOI:10.11948/20190178

FINITE ITERATIVE ALGORITHM FOR THE
COMPLEX GENERALIZED SYLVESTER

TENSOR EQUATIONS*

Yifen Ke

Abstract A finite iterative algorithm is proposed to solve a class of complex
generalized Sylvester tensor equations. The properties of this proposed algo-
rithm are discussed based on a real inner product of two complex tensors and
the finite convergence of this algorithm is obtained. Two numerical examples
are offered to illustrate the effectiveness of the proposed algorithm.

Keywords Sylvester tensor equation, finite iterative algorithm, convergence.

MSC(2010) 65H10, 12A24.

1. Introduction
A tensor is a multidimensional array of data whose elements are referred by using
multiple indices. We use

A = (ai1i2···iN) ∈ CI1×I2×···×IN

to denote a complex tensor A, where N is called the order of tensor A and (I1, I2, . . . ,
IN) is the dimension of A. As a special case, the vector is a 1-order tensor and the
matrix is a 2-order tensor. Let

A = (ai1i2···iN) ∈ CI1×I2×···×IN

be a conjugate of tensor A, where ai1i2···iN is the complex conjugate of ai1i2···iN .
In this paper, we consider the iterative algorithm to solve the following complex

generalized Sylvester tensor equation

X ×1 A1 + · · ·+ X ×N AN + X ×1 B1 + · · ·+ X ×N BN = D, (1.1)

where the matrices An, Bn ∈ CIn×In(n = 1, 2, . . . , N) and the right-side tensor
D ∈ CI1×I2×···×IN are known, and X ∈ CI1×I2×···×IN is the unknown tensor to be
solved. For the tensor X ∈ CI1×I2×···×IN and the matrix U ∈ CIn×In , X ×n U ∈
CI1×I2×···×IN is defined by

(X ×n U)i1···in−1jin+1···iN =

In∑
in=1

xi1···in···iNujin .

Email address: keyifen@fjnu.edu.cn
College of Mathematics and Informatics & FJKLMAA, Fujian Normal Uni-
versity, Fuzhou 350117, China

∗This work was supported by National Key Research and Development Pro-
gram of China (Nos. 2018YFC1504200 and 2018YFC0603500) and National
Natural Science Foundation of China (Nos. 11901098 and U1839207).

http://dx.doi.org/10.11948/20190178

Finite iterative algorithm. . . 973

When the complex generalized tensor equation (1.1) over the real field R and
Bn = 0 for all n = 1, 2, . . . , N , the tensor equation (1.1) reduces to the real Sylvester
tensor equation

X ×1 A1 + X ×2 A2 + · · ·+ X ×N AN = D. (1.2)

By using the Kronecker product [1,13], the tensor equation (1.2) can be reformulated
as follows:

Ax = b (1.3)

with
A = I(IN) ⊗ · · · ⊗ I(I2) ⊗A1 + · · ·+AN ⊗ I(IN−1) ⊗ · · · ⊗ I(I1), (1.4)

and x = vec(X), b = vec(D). Here, I(n) stands for the identity matrix of order n
and the operator vec(·) stacks the columns of a tensor to form a vector. In the case
that X is a 3-order tensor, the tensor equation (1.2) reduces to

X ×1 A+ X ×2 B + X ×3 C = D, (1.5)

which comes from the finite element [7] or spectral method [14,16–18] discretization
of a linear partial differential equation in high dimension.

When X is a simple 2-order tensor, the complex generalized tensor equation
(1.1) reduces to the extended Sylvester-conjugate matrix equation

A1X +XAT
2 +B1X +XBT

2 = D (1.6)

and the Sylvester tensor equation (1.2) reduces to the Sylvester matrix equation

A1X +XAT
2 = D, (1.7)

which arises frequently from the areas of systems and control theory [6] and has
received much attention, e.g., see [5, 8–10].

Nowadays, tensor equations have attracted much attention [1–4,7,11,13,15]. For
example, Kressner and Tobler in [13] proposed a so-called tensor Krylov subspace
method for solving (1.3) with the coefficient matrix A as (1.4) and the right-hand
side b = b1⊗b2⊗· · ·⊗bN , which is based on a tensorized Krylov subspace associated
with A and b, i.e., the Kronecker product of the usual Krylov subspaces. The
tensorized Krylov subspace method transforms the system (1.3) to a system of
smaller size. In [1], Ballani and Grasedyck presented an iterative scheme similarly
to Krylov subspace method to solve the linear system (1.3) with

A =

kA∑
j=1

⊗N
n=1Ajn, Ajn ∈ RIn×In

and

b =

kb∑
j=1

⊗N
n=1bjn, bjn ∈ RIn ,

which is based on the projection of the residual to a low dimensional subspace
and all calculations are performed in hierarchical Tucker format. In particular,
Beik, Movahed and Ahmadi-Asl in [2] proposed the conjugate gradient algorithm
of tensor form (CG-BTF) to solving the Sylvester tensor equation (1.2) with An ∈

974 Y. Ke

RIn×In(n = 1, 2, . . . , N) being symmetric positive definite and the nested conjugate
gradient algorithm of tensor form (NCG-BTF) for the Sylvester tensor equation
(1.2) with An ∈ RIn×In(n = 1, 2, . . . , N) being nonsymmetric positive definite.

As a general form of the matrix equation (1.6), that is

p∑
i1=1

Ai1XBi1 +

q∑
i2=1

Ci2XDi2 = F, (1.8)

where Ai1 , Ci2 ∈ Cm×r, Bi2 , Di2 ∈ Cs×n(i1 = 1, 2, . . . , p; i2 = 1, 2, . . . , q), F ∈
Cm×n are the given known matrices and X ∈ Cr×s is the matrix to be determined,
Wu, Lv and Hou [19] presented an iterative algorithm for solving (1.8). After
that, Zhang in [21] offered the finite iterative algorithm for solving the complex
generalized coupled Sylvester matrix equations, that is

∑q
j=1(A1jXjB1j + C1jX

T
j D1j + E1jXjF1j +G1jX

H
j H1j) = M1,∑q

j=1(A2jXjB2j + C2jX
T
j D2j + E2jXjF2j +G2jX

H
j H2j) = M2,

...∑q
j=1(ApjXjBpj + CpjX

T
j Dpj + E1jXjFpj +GpjX

H
j Hpj) = Mp,

(1.9)

where Aij , Eij ∈ Cmi×rj , Bij , Fij ∈ Csj×ni , Cij , Gij ∈ Cmi×sj , Dij ,Hij ∈ Crj×ni ,
Mi ∈ Cmi×ni (i = 1, 2, . . . , p; j = 1, 2, . . . , q) are the given known matrices and
Xj ∈ Crj×sj (j = 1, 2, . . . , q) are the unknown matrices. In this paper, the finite
iterative algorithm for solving the complex generalized Sylvester tensor equation
(1.1) will be discussed.

The remainder of this paper is organized as follows. In Section 2, we offers some
symbols and preliminaries. In Section 3, we present a finite iterative algorithm
for solving the complex generalized Sylvester tensor equation (1.1) and constructs
several results which be used in the convergence proof. Numerical examples are
offered in Section 4 to illustrate the effectiveness of the proposed algorithm. Finally,
some concluding remarks are given in Section 5.

2. Preliminaries
For a matrix A = (aij) ∈ CI×I , the symbols AT and AH denote the transpose and
conjugate transpose of matrix A, that is

AT =


a11 a21 · · · aI1
a12 a22 · · · aI2
...

...

a1I a2I · · · aII

 and AH =


a11 a21 · · · aI1
a12 a22 · · · aI2
...

...

a1I a2I · · · aII

 .

Now, we recall the real inner product, which is given for complex spaces over
the real field R. This inner product will play a very important role in this paper.

Finite iterative algorithm. . . 975

Definition 2.1 ([20]). A real inner product space is a vector space V over the real
field R together with an inner product, i.e., with a mapping

⟨·, ·⟩r : V× V → R

satisfying the following three axioms for all vectors x, y, z ∈ V and all scalars η ∈ R.
(1) Symmetry: ⟨x, y⟩r = ⟨y, x⟩r.
(2) Linearity in the first argument:

⟨ηx, y⟩r = η⟨x, y⟩r;
⟨x+ y, z⟩r = ⟨x, z⟩r + ⟨y, z⟩r.

(3) Positive-definiteness: ⟨x, x⟩r > 0 for all x ̸= 0.
Moreover, two vectors x, y ∈ V are said to be orthogonal if ⟨y, x⟩r = 0.

For the tensors X ,Y ∈ CI1×I2×···×IN , the inner product is defined as

⟨X ,Y⟩ :=
∑

i1,i2,··· ,iN

xi1i2···iN yi1i2···iN

and a real inner product can be defined as

⟨X ,Y⟩r := Re
(
⟨X ,Y⟩

)
,

where Re(λ) denotes the real part of the complex number λ. In fact, for the tensors
X ,Y,Z ∈ CI1×I2×···×IN , it is easy to verify that

(1) ⟨X ,Y⟩r = ⟨Y,X⟩r;
(2) ⟨ηX ,Y⟩r = η⟨X ,Y⟩r for any η ∈ R;
(3) ⟨X + Y,Z⟩r = ⟨X ,Z⟩r + ⟨Y,Z⟩r;
(4) ⟨X ,X⟩r > 0 for all X ̸= O, where O is the zero tensor in CI1×I2×···×IN , i.e.,

all entries of O are 0.
The induced-norm of a tensor X is defined by the following formula

∥X∥ :=
√

⟨X ,X⟩ =
√

⟨X ,X⟩r.

For the linear operator L from CI1×I2×···×IN to CI1×I2×···×IN , the conjugate
linear operator L∗ from CI1×I2×···×IN to CI1×I2×···×IN satisfies

⟨L(X),Y⟩r = ⟨X ,L∗(Y)⟩r

for any X and Y in CI1×I2×···×IN .

Lemma 2.1. For the tensors X ,Y ∈ CI1×I2×···×IN and U ∈ CIn×In , let

L1(X) = X ×n U and L2(X) = X ×n U,

according to the conjugate operator, we have

L∗
1(Y) = Y ×n UH and L∗

2(Y) = Y ×n UT.

976 Y. Ke

Proof. By the computation, we have

⟨L1(X),Y⟩r = ⟨X ×n U,Y⟩r

= Re
(∑

i1,··· ,in−1,j,in+1,··· ,iN

(In∑
in=1

xi1···in···iNujin

)
yi1···in−1jin+1···iN

)

= Re
(∑

i1,··· ,in−1,in,in+1,··· ,iN

xi1···in···iN
(In∑
j=1

yi1···in−1jin+1···iNujin

))

= Re
(∑

i1,··· ,in−1,in,in+1,··· ,iN

xi1···in···iN
(In∑
j=1

yi1···in−1jin+1···iNujin

))
= ⟨X ,Y ×n UH⟩r = ⟨X ,L∗

1(Y)⟩r
and

⟨L2(X),Y⟩r = ⟨X ×n U,Y⟩r

= Re
(∑

i1,··· ,in−1,j,in+1,··· ,iN

(In∑
in=1

xi1···in···iNujin

)
yi1···in−1jin+1···iN

)

= Re
(∑
i1,··· ,in−1,j,in+1,··· ,iN

(In∑
in=1

xi1···in···iNujin

)
yi1···in−1jin+1···iN

)

= Re
(∑

i1,··· ,in−1,j,in+1,··· ,iN

(In∑
in=1

xi1···in···iNujin

)
yi1···in−1jin+1···iN

)

= Re
(∑

i1,··· ,in−1,in,in+1,··· ,iN

xi1···in···iN
(In∑
j=1

yi1···in−1jin+1···iNujin

))
= ⟨X ,Y ×n UT⟩r = ⟨X ,L∗

2(Y)⟩r.

This completes the proof.
For simplicity, in the sequel, we use the following linear operator:

L(X) := X ×1 A1 + · · ·+ X ×N AN + X ×1 B1 + · · ·+ X ×N BN . (2.1)

Then, the complex generalized Sylvester tensor equation (1.1) can be reformulated
by

L(X) = D. (2.2)
According to Lemma 2.1, it is not difficult to verify that L∗ is specified as follows:

L∗(Z) = Z ×1 A
H
1 + · · ·+ Z ×N AH

N + Z ×1 B
T
1 + · · ·+ Z ×N BT

N . (2.3)

With these results, we will present a finite iterative algorithm to solve the complex
generalized Sylvester tensor equation (1.1) in the following section.

3. Algorithm and convergence
In this section, we will propose a finite iterative algorithm for solving the complex
generalized Sylvester tensor equation (1.1) and establish the convergence result for
the proposed iterative algorithm.

Finite iterative algorithm. . . 977

Algorithm 3.1. (Finite iterative algorithm for solving (1.1))
Step 1. Let the matrices An, Bn ∈ CIn×In for n = 1, 2, . . . , N and the right-hand

side D. Choose any initial tensor X0 ∈ CI1×I2×···×IN , compute
R0 = D − L(X0),
Q0 = L∗(R0).

Set k := 0.
Step 2. If ∥Rk∥ = 0 or ∥Qk∥ = 0, then stop; else compute

αk =
∥Rk∥2

∥Qk∥2
,

Xk+1 = Xk + αkQk,
Rk+1 = D − L(Xk+1) = Rk − αkL(Qk),

Qk+1 = L∗(Rk+1) +
∥Rk+1∥2

∥Rk∥2
Qk.

Step 3. Set k := k + 1, go to Step 2.

Now, we give some results for Algorithm 3.1.

Theorem 3.1. According to Algorithm 3.1, the tensor sequences Rk and Qk for
k = 0, 1, 2, . . . satisfy

⟨Rk,Rl⟩r = 0, k, l = 0, 1, 2, . . . , k ̸= l, (3.1)
⟨Qk,Ql⟩r = 0, k, l = 0, 1, 2, . . . , k ̸= l. (3.2)

Proof. Using the mathematical induction. Firstly, we prove that
⟨R0,R1⟩r = 0 and ⟨Q0,Q1⟩r = 0.

In fact, we have
⟨R0,R1⟩r = ⟨R0,R0 − α0L(Q0)⟩r

= ⟨R0,R0⟩r − ⟨R0, α0L(Q0)⟩r
= ⟨R0,R0⟩r − α0⟨L(Q0),R0⟩r
= ⟨R0,R0⟩r − α0⟨Q0,L

∗(R0)⟩r

= ⟨R0,R0⟩r −
∥R0∥2

∥Q0∥2
⟨Q0,Q0)⟩r = 0

and

⟨Q0,Q1⟩r = ⟨Q0,L
∗(R1) +

∥R1∥2

∥R0∥2
Q0⟩r

= ⟨Q0,L
∗(R1)⟩r +

∥R1∥2

∥R0∥2
⟨Q0,Q0⟩r

= ⟨L(Q0),R1⟩r +
∥R1∥2

∥R0∥2
⟨Q0,Q0⟩r

= ⟨R0 −R1

α0
,R1⟩r +

∥R1∥2

∥R0∥2
⟨Q0,Q0⟩r

=
1

α0
⟨R0,R1⟩r −

1

α0
⟨R1,R1⟩r +

∥R1∥2

∥R0∥2
⟨Q0,Q0⟩r

= −∥Q0∥2

∥R0∥2
⟨R1,R1⟩r +

∥R1∥2

∥R0∥2
⟨Q0,Q0⟩r = 0.

978 Y. Ke

Now, we assume that the results of Theorem 3.1 are correct for k, l ≤ s(s > 1).
For l = s+ 1 and k = s, we have

⟨Rs,Rs+1⟩r = ⟨Rs,Rs − αsL(Qs)⟩r
= ⟨Rs,Rs⟩r − αs⟨L(Qs),Rs⟩r
= ⟨Rs,Rs⟩r − αs⟨Qs,L

∗(Rs)⟩r

= ⟨Rs,Rs⟩r − αs⟨Qs,Qs −
∥Rs∥2

∥Rs−1∥2
Qs−1⟩r

= ⟨Rs,Rs⟩r − αs⟨Qs,Qs⟩r +
αs∥Rs∥2

∥Rs−1∥2
⟨Qs,Qs−1⟩r

= ⟨Rs,Rs⟩r −
∥Rs∥2

∥Qs∥2
⟨Qs,Qs⟩r = 0

and

⟨Qs,Qs+1⟩r = ⟨Qs,L
∗(Rs+1) +

∥Rs+1∥2

∥Rs∥2
Qs⟩r

= ⟨Qs,L
∗(Rs+1)⟩r +

∥Rs+1∥2

∥Rs∥2
⟨Qs,Qs⟩r

= ⟨L(Qs),Rs+1⟩r +
∥Rs+1∥2

∥Rs∥2
⟨Qs,Qs⟩r

= ⟨Rs −Rs+1

αs
,Rs+1⟩r +

∥Rs+1∥2

∥Rs∥2
⟨Qs,Qs⟩r

=
1

αs
⟨Rs,Rs+1⟩r −

1

αs
⟨Rs+1,Rs+1⟩r +

∥Rs+1∥2

∥Rs∥2
⟨Qs,Qs⟩r

= −∥Qs∥2

∥Rs∥2
⟨Rs+1,Rs+1⟩r +

∥Rs+1∥2

∥Rs∥2
⟨Qs,Qs⟩r

= 0.

Finally, we prove that the results of Theorem 3.1 are correct for l = s + 1 and
k ≤ s− 1. In fact, we have

⟨Rk,Rs+1⟩r = ⟨Rk,Rs − αsL(Qs)⟩r
= ⟨Rk,Rs⟩r − αs⟨L(Qs),Rk⟩r
= −αs⟨Qs,L

∗(Rk)⟩r

= −αs⟨Qs,Qk − ∥Rk∥2

∥Rk−1∥2
Qk−1⟩r

= −αs⟨Qs,Qk⟩r +
αs∥Rk∥2

∥Rk−1∥2
⟨Qs,Qk−1⟩r = 0

and

⟨Qk,Qs+1⟩r = ⟨Qk,L
∗(Rs+1) +

∥Rs+1∥2

∥Rs∥2
Qs⟩r

= ⟨Qk,L
∗(Rs+1)⟩r +

∥Rs+1∥2

∥Rs∥2
⟨Qk,Qs⟩r

Finite iterative algorithm. . . 979

= ⟨L(Qk),Rs+1⟩r

= ⟨Rk −Rk+1

αk
,Rs+1⟩r

=
1

αk

(
⟨Rk,Rs+1⟩r − ⟨Rk+1,Rs+1⟩r

)
= 0.

According to the mathematical induction, the proof is completed.

Theorem 3.2. If the tensor X∗ is a solution of the complex generalized Sylvester
tensor equation (1.1), for any initial iterative tensor X0 ∈ CI1×I2×···×IN , the tensor
sequences Rk and Qk generated by Algorithm 3.1 satisfy

⟨Qk,X∗ −Xk⟩r = ∥Rk∥2, k = 0, 1, 2, (3.3)

Proof. Using the mathematical induction. Firstly, we verify that

⟨Q0,X∗ −X0⟩r = ∥R0∥2.

In fact, we have

⟨Q0,X∗ −X0⟩r = ⟨L∗(R0),X∗ −X0⟩r = ⟨R0,L(X∗ −X0)⟩r
= ⟨R0,L(X∗)− L(X0)⟩r = ⟨R0,D − L(X0)⟩r
= ⟨R0,R0⟩r = ∥R0∥2.

Now, we assume that the result of Theorem 3.2 is correct for k = s(s ≥ 1). For
k = s+ 1, we have

⟨Qs+1,X∗ −Xs+1⟩r

= ⟨L∗(Rs+1) +
∥Rs+1∥2

∥Rs∥2
Qs,X∗ −Xs+1⟩r

= ⟨L∗(Rs+1),X∗ −Xs+1⟩r +
∥Rs+1∥2

∥Rs∥2
⟨Qs,X∗ −Xs+1⟩r

= ⟨Rs+1,L(X∗ −Xs+1)⟩r +
∥Rs+1∥2

∥Rs∥2
⟨Qs,X∗ −Xs − αsQs⟩r

= ⟨Rs+1,D − L(Xs+1)⟩r +
∥Rs+1∥2

∥Rs∥2
⟨Qs,X∗ −Xs⟩r −

αs∥Rs+1∥2

∥Rs∥2
⟨Qs,Qs⟩r

= ⟨Rs+1,Rs+1⟩r +
∥Rs+1∥2

∥Rs∥2
∥Rs∥2 −

∥Rs∥2

∥Qs∥2
· ∥Rs+1∥2

∥Rs∥2
⟨Qs,Qs⟩r

= ∥Rs+1∥2.

According to the mathematical induction, the proof is completed.
With Theorems 3.1 and 3.2, we can obtain the following conclusion.

Theorem 3.3. If the complex generalized Sylvester tensor equation (1.1) is consis-
tent, then a solution can be obtained within finite iteration steps by using Algorithm
3.1 for any initial tensor X0 ∈ CI1×I2×···×IN .

980 Y. Ke

At the end of this section, we present the NCG-BTF algorithm [2] for the
Sylvester tensor equation (1.2) with An ∈ RIn×In(n = 1, 2, . . . , N) being real non-
symmetric positive definite. Let

Hn =
An +AT

n

2
and Sn =

AT
n −An

2
(3.4)

for n = 1, 2, . . . , N . Substituting An = Hn − Sn into (1.2), we have

X ×1 H1+X ×2 H2+· · ·+X ×N HN = D+X ×1 S1+X ×2 S2+· · ·+X ×N SN .

We compute Xk+1 as the solution of the following tensor equation:

X ×1 H1+X ×2 H2+· · ·+X ×N HN = D+Xk ×1 S1+Xk ×2 S2+· · ·+Xk ×N SN ,

where Xk is the k-th approximate solution to the exact solution X∗ of (1.2). Notice
that for the tensors X ,Y ∈ RI1×I2×···×IN , the inner product is reduced to

⟨X ,Y⟩ :=
∑

i1,i2,··· ,iN

xi1i2···iN yi1i2···iN .

Then, the NCG-BTF algorithm for solving (1.2) is as follows.

Algorithm 3.2. (NCG BTF algorithm for solving (1.2) [2])
Step 1. Let the matrices An, Bn ∈ RIn×In for n = 1, 2, . . . , N and the right-

hand side D ∈ RI1×I2×···×IN . Given the tolerance σ. Choose any initial tensor
X0 ∈ RI1×I2×···×IN , compute

R0 = D −X0 ×1 A1 −X0 ×2 A2 − · · · − X0 ×N AN .
Set X(0,0) = X0 and k := 0.

Step 2. If ∥Rk∥ = 0, then stop; else compute
D̃ = D + X(k,0) ×1 S1 + X(k,0) ×2 S2 + · · ·+ X(k,0) ×N SN ,

R(k,0) = D̃ − X(k,0) ×1 H1 −X(k,0) ×2 H2 − · · · − X(k,0) ×N HN ,

P0 = R(k,0),

for ℓ = 0, 1, 2, . . . , do
W = Pℓ ×1 H1 + Pℓ ×2 H2 + · · ·+ Pℓ ×N HN ,

αℓ =
⟨R(k,ℓ),R(k,ℓ)⟩

⟨W,Pℓ⟩
,

X(k,ℓ+1) = X(k,ℓ) + αℓPℓ,

R(k,ℓ+1) = R(k,ℓ) − αℓW,

if ∥R(k,ℓ+1)∥ ≤ σ∥R(k,0)∥, then compute
Xk+1 = X(k,ℓ+1),

Rk+1 = D −Xk+1 ×1 A1 −Xk+1 ×2 A2 − · · · − Xk+1 ×N AN ,

else compute

βℓ =
∥R(k,ℓ+1)∥2

∥R(k,ℓ)∥2
,

Pℓ+1 = R(k,ℓ+1) + βℓPℓ,

end if.
end for.

Step 3. Set k := k + 1 and X(k,0) = Xk+1, go to Step 2.

Finite iterative algorithm. . . 981

4. Numerical examples
In this section, we use some test problems to examine the numerical effectiveness of
Algorithm 3.1 for solving the complex generalized Sylvester tensor equation (1.1).

In actual computations, all runs are started from the initial tensor X0 = O, are
terminated if the current iterations satisfy

(i) ∥Rk∥ ≤ 10−6 or ∥Qk∥ ≤ 10−6 for Algorithm 3.1,
(ii) ∥Rk∥ ≤ 10−6 for Algorithm 3.2,

or if the number of the prescribed iterative steps kmax = 4000 is exceeded, and are
performed on a personal computer with 3.60 GHz central processing unit (Intel(R)
Core(TM) i7-7700), 32.0 GB memory and Windows 10 operating system.

Here, ‘IT’ and ‘CPU’ denote the number of iteration steps and elapsed CPU
time in seconds, respectively. In addition, ERR := ∥Rk∥. We comment here that
the Tensor Toolbox [12] is utilized for solving the succeeding discussed problems

Example 4.1. Consider the following convection-diffusion equation

−ν∆u+ cT∇u = f in Ω = [0, 1]× [0, 1]× [0, 1],

u = 0, on ∂Ω.

By using a standard finite difference discretization on a uniform grid for the diffusion
term and a second-order convergent scheme (Fromm’s scheme) for the convection
term with the mesh-size h = 1/(p+1), the discrete system matrix of the form (1.2)
is obtained such that

An =
ν

h2



2 −1

−1 2 −1

.

−1 2 −1

−1 2


p×p

+
cn
4h



3 −5 1

1 3 −5
. . .

. 1

1 3 −5

1 3


p×p

, n = 1, 2, 3.

And the right-hand side D is constructed so that X∗ = ones(p, p, p) is the exact
solution of the real Sylvester tensor equation (1.2).

For Example 4.1, we compare Algorithms 3.1 and 3.2. The inner iteration of
Algorithm 3.2 is terminated if the value σ = 10−3 or the number of the prescribed
inner iterative steps ℓmax = 100. The notation ‘—’ denotes the case that the
algorithm is stopped after kmax iterations without computing a suitable approximate
solution.

The obtained results are presented in Table 1 with c1 = c2 = c3 = 1 and Table
2 with c1 = 2, c2 = 4 and c3 = 8, respectively. From both tables, we can see
that the NCG BTF algorithm is stopped after kmax iterations while the proposed
finite iterative algorithm performs well for the viscous parameter ν = 0.01, 0.1.
Notice that when ν = 1 and c1 = c2 = c3 = 1, the NCG BTF algorithm surpasses
the finite iterative algorithm in CPU time. However, the finite iterative algorithm
outperforms the NCG BTF algorithm in terms of the required CPU time when
ν = 1, c1 = 2, c2 = 4 and c3 = 8.

982 Y. Ke

Table 1. Numerical results for Example 4.1 with c1 = c2 = c3 = 1

Algorithm p 10 20 30 40

ν = 0.01

IT 110 342 642 993
Algorithm 3.1 CPU 0.1802 0.8596 2.2244 5.4495

ERR 8.3334e-05 9.8194e-05 9.9630e-05 9.6617e-05
∥Xk −X∗∥ 3.5909e-06 2.8993e-06 2.2330e-06 1.7522e-06

IT — — — —
Algorithm 3.2 CPU — — — —

ERR — — — —
∥Xk −X∗∥ — — — —

ν = 0.1

IT 119 429 934 1621
Algorithm 3.1 CPU 0.2086 1.0964 3.2363 8.5487

ERR 6.8776e-05 9.1699e-05 9.2786e-05 9.9407e-05
∥Xk −X∗∥ 9.1169e-06 7.9246e-07 5.2281e-07 3.5560e-07

IT — — — —
Algorithm 3.2 CPU — — — —

ERR — — — —
∥Xk −X∗∥ — — — —

ν = 1

IT 118 458 1026 1823
Algorithm 3.1 CPU 0.2060 1.1286 3.6703 10.0833

ERR 8.1771e-05 8.7127e-05 9.2088e-05 9.8007e-05
∥Xk −X∗∥ 1.3843e-07 7.9723e-08 6.2234e-08 4.7348e-08

IT 7 8 8 8
Algorithm 3.2 CPU 0.1894 0.5707 1.1523 2.2605

ERR 9.3391e-05 1.8217e-05 2.1200e-05 2.3934e-05
∥Xk −X∗∥ 1.5234e-06 2.5373e-07 2.9433e-07 3.3172e-07

Table 2. Numerical results for Example 4.1 with c1 = 2, c2 = 4, c3 = 8

Algorithm p 10 20 30 40

ν = 0.01

IT 167 412 670 963
Algorithm 3.1 CPU 0.2821 1.0776 2.4698 5.8402

ERR 9.4749e-05 9.7837e-05 9.5953e-05 9.9879e-05
∥Xk −X∗∥ 1.9364e-06 8.4346e-07 9.1760e-07 7.1202e-07

IT — — — —
Algorithm 3.2 CPU — — — —

ERR — — — —
∥Xk −X∗∥ — — — —

ν = 0.1

IT 185 547 1048 1694
Algorithm 3.1 CPU 0.3216 1.4728 3.5380 9.4980

ERR 8.7556e-05 9.3382e-05 9.7626e-05 9.7968e-05
∥Xk −X∗∥ 7.7475e-07 4.7910e-07 4.0709e-07 3.3213e-07

IT — — — —
Algorithm 3.2 CPU — — — —

ERR — — — —
∥Xk −X∗∥ — — — —

ν = 1

IT 211 767 1707 3018
Algorithm 3.1 CPU 0.3646 1.9861 5.8372 16.2171

ERR 9.6083e-05 9.7733e-05 9.9412e-05 9.9650e-05
∥Xk −X∗∥ 1.9164e-07 1.4820e-07 9.6294e-08 1.7522e-06

IT 91 89 89 89
Algorithm 3.2 CPU 2.4500 6.5841 13.4773 26.1544

ERR 8.7412e-05 9.7808e-05 9.2644e-05 9.1362e-05
∥Xk −X∗∥ 1.0056e-06 1.1360e-06 1.0816e-06 1.7522e-06

Example 4.2. Consider the complex generalized Sylvester tensor equation (1.1)
with

A1 =


7− 3i 3− 18i −5− 21i

−17− i 4 + 4i 6 + i

−1 −11 + 13i 3

 , B1 =


8− 5i 4− 7i 13 + 8i

−6 + 12i −1 + 30i −4 + 9i

−3− 18i 11 + 6i 5− 3i

 ,

Finite iterative algorithm. . . 983

A2 =


−4 −1− 4i −6 + 8i

3− 6i −19 + 9i 10 + 2i

3− 16i 10− 18i 5i

 , B2 =


6 + 19i −2− 7i 4 + 8i

−7 + 26i 5 17 + 16i

−9− 17i 2 + 15i 12 + 5i

 ,

A3 =


−7− 3i −5 + 2i −10− 4i

−4− 4i −3 + 7i 11− 6i

−2− 2i 0 4− 5i

 , B3 =


5 + 11i −7− 36i −14i

11 + 3i −15− 6i 12− 6i

12− 6i 13− i 7− 5i

 ,

A4 =


4 + 7i 8 + 6i 6− i

−1− 9i −6− 12i 1− 30i

22 + 4i −7− i 7− 6i

 , B4 =


9− 4i −3− 2i 2− 2i

−17 + 8i −5 + 9i 6− 24i

5i −16 + 6i 11 + 16i

 ,

where i is imaginary unit. And the right-hand side D is constructed so that X∗ =
ones(3, 3, 3, 3) + ones(3, 3, 3, 3)i is the exact solution of the tensor equation (1.1).

For Example 4.2, we get the approximate solution as X∗ after 312 iterative steps,
which the residual and error are

ERR = 6.1095e-05 and ∥X312 −X∗∥ = 2.2969e-06.

For more details, the convergence history of the finite iterative algorithm is plotted
in Figure 1.

0 50 100 150 200 250 300 350

IT

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

E
R

R

Example 4.2

Figure 1. The convergence history of ERR for Example 4.2.

984 Y. Ke

5. Conclusions
We have proposed a finite iterative algorithm to solve the complex generalized
Sylvester tensor equation (1.1), which is generalized of Sylvester tensor equations
(1.2) considered in [2]. It is proved that the algorithm is convergent within the
finite iterative steps in the absence of the round-off error, which is based on the
introducing real inner product. The applications of the proposed algorithm have
been compared with the NCG-BTF algorithm when solves the Sylvester tensor
equation (1.2). In addition, another example is offered to illustrate the effectiveness
of the proposed algorithm for the complex generalized Sylvester tensor equation
(1.1).

Acknowledgments. The author is grateful to the anonymous referees for their
useful suggestions which improve the contents of this article. The author is also
grateful for the hospitality and support during her research at Chern Institute of
Mathematics of Nankai University from April 1 to June 30 in 2018.

References
[1] J. Ballani and L. Grasedyck, A Projection method to solve linear systems in tensor

format, Numer. Linear. Algebra. Appl., 2013, 20, 27–43.
[2] F. P. A. Beik, F. S. Movahed and S. Ahmadi-Asl, On the Krylov subspace methods

based on tensor format for positive definite Sylvester tensor equations, Numer. Linear.
Algebra. Appl., 2016, 23, 444–466.

[3] Z. Chen and L. Lu, A projection method and Kronecker product preconditioner for
solving Sylvester tensor equations, Sci. China Math., 2012, 55(6), 1281–1292.

[4] Z. Chen and L. Lu, A gradient based iterative solutions for Sylvester tensor equations,
Math. Probl. Eng., Volume 2013, Article ID 819479, 7 pages.

[5] F. Ding and T. Chen, On iterative solutions of general coupled matrix equations,
SIAM J. Control Optim., 2006, 44(6), 2269–2284.

[6] G. H. Golub, S. Nash and C. F. Van Loan, A Hessenberg-Schur method for the problem
AX +XB = C, IEEE Trans. Automat. Contr., 1979, 24, 909–913.

[7] L. Grasedyck, Existence and computation of low Kronecker-rank approximations for
large linear systems of tensor product structure, Computing, 2004, 72(3-4), 247–265.

[8] Y. Ke and C. Ma, A preconditioned nested splitting conjugate gradient iterative method
for the large sparse generalized Sylvester equation, Comput. Math. Appl., 2014, 68,
1409–1420.

[9] Y. Ke and C. Ma, Alternating direction method for generalized Sylvester matrix equa-
tion AXB + CY D = E, Appl. Math. Comput., 2015, 260, 106–125.

[10] Y. Ke and C. Ma, The unified frame of alternating direction method of multipliers
for three classes of matrix equations arising in control theory, Asian J. Control, 2017,
20(3), 1–18.

[11] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev.,
2009, 51(3), 455–500.

[12] T. Kolda, B. Bader et al., MATLAB Tensor Toolbox Version 2.6 (released Feb. 6,
2015). (Available from: http://www.sandia.gov/ tgkolda/TensorToolbox).

[13] D. Kressner and C. Tobler, Krylov subspace methods for linear systems with tensor
product structure, SIAM J. Matrix Anal. Appl., 2010, 31, 1688–1714.

Finite iterative algorithm. . . 985

[14] B. Li, S. Tian, Y. Sun and Z. Hu, Schur-decomposition for 3D matrix equations and its
application in solving radiative discrete ordinates equations discretized by Chebyshev
collocation spectral method, J. Comput. Phys., 2010, 229(4), 1198–1212.

[15] L. Liang and B. Zheng, Sensitivity analysis of the Lyapunov tensor equation, Linear
Multilinear A., 2018, 1–18.

[16] A. Malek and S. H. M. Masuleh, Mixed collocation-finite difference method for 3D
microscopic heat transport problems, J. Comput. Appl. Math., 2008, 217, 137–147.

[17] A. Malek, Z. K. Bojdi and P. N. N. Golbarg, Solving fully three-dimensional microscale
dual phase lag problem using mixed-collocation finite difference discretization, J. Heat
Transfer, 2012, 134, 0945041–0945046.

[18] S. H. M. Masuleh and T. N. Phillips, Viscoelastic flow in an undulating tube using
spectral methods, Comput. Fluids, 2004, 33, 1075–1095.

[19] A. Wu, L. Lv and M. Hou, Finite iterative algorithms for extended Sylvester-conjugate
matrix equations, Math. Comput. Model., 2011, 54, 2363–2384.

[20] X. Zhang, Matrix Analysis and Applications, Tsinghua University Press, Beijing, 2004.
[21] H. Zhang, A finite iterative algorithm for solving the complex generalized coupled

Sylvester matrix equations by using the linear operators, J. Franklin Inst., 2017, 354,
1856–1874.

	Introduction
	Preliminaries
	Algorithm and convergence
	Numerical examples
	Conclusions

