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QUADRATIC HARVESTING DOMINATED
OPTIMAL STRATEGY FOR A STOCHASTIC

SINGLE-SPECIES MODEL

Dianli Zhao1,†, Haidong Liu2, Yanli Zhou3 and Sanling Yuan1

Abstract A stochastic population model with the mixed harvesting strategy
is formulated and studied in this paper. Sufficient and necessary conditions
for survival of the species are derived firstly. Then, based on the ergodic sta-
tionary distribution, the optimal strategy is identified. Results show that the
linear harvesting effort threatens to the survival of the species; the quadratic
harvesting strategy occupies an absolute advantage in the harvesting and ex-
cludes the linear part out of the optimal harvesting strategy. It’s interest to
see all these occur only in the random environments. Computer simulations
are carried out to support the obtained results.

Keywords Stochastic single-species model, ergodicity, optimal harvesting
strategy, threshold.
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1. Introduction
Mathematical modeling and its research in harvesting of species was started by
Clark [3, 4]. The study of harvesting is related to the optimal management of re-
newable resources based on the concept of maximal sustainable yield [21], since a
suitable amount of harvesting of predator can control the chaotic dynamics and
make the system stable. Recently, many researchers paid attention to the impacts
of the environmental noises on dynamics and harvesting of the real systems, such
as, Beddington and May [2] considered a stochastic logistic model, and May etc [1]
and Shepherd and Hotwood [20] compared several different models. Most recently,
Li and Wang [11] generalized the optimal harvesting problem in [4] to a more
general stochastic logistic model by solving the Fokker-Planck equation. Zou and
Wang [26] developed the ergodic technical to deal with the harvesting problem, and
obtained the equivalency between the time averaging yield and sustainable yield,
which overcome the difficulty in solving the complex Fokker-Planck equation. Liu
and his coauthors [5, 12, 13] further developed the studying method by using the
results in [17], and got the optimal harvesting strategy for several multi-population
stochastic biological model with and without delay. For more about the related
harvesting problem, we refer to the cited literatures in [5,11–13,26]. To be pointed
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out that the harvesting in fore-mentioned literatures are all the proportionate har-
vesting like hx. However, many researchers have shown that the harvesting term
may take a nonlinear form, see [6,7,10,19] for example. Here we highlighted Gupta’s
work [6], the harvesting effort is assumed to be proportional to the number of prey
hx and a quadratic harvesting hx2 is formulated and studied. Panja etc [19] con-
sidered the quadratic harvesting in a plankton-fish system and they discussed the
bifurcation behavior of the system by taking the harvest constant as bifurcation pa-
rameter. Motivated by these, in this paper, we suggest a complex type of harvesting
(a mixture of the linear harvesting and quadratic harvesting) as:

Y (x) = xH (x) = hx+ h0x
2,

where H (x) = (h+ h0x) is defined as the harvesting effort function. Then the
studied single-species model with the mixed harvesting is like

dx (t) = x (t) (r − ax (t)− (h+ h0x (t))) dt+ σx (t) dB (t) , (1.1)

where x (t) represents the size of population at time t, r denotes the intrinsic growth
rate and r/a is the carrying capacity of the environment. B(t) is a standard Brow-
nian motion defined on a complete probability space (Ω,𝟋, {Ft}t≥0, P ). σ > 0 is
the intensity of white noise.

Let h0 = 0, then (1.1) reduces to the classical logistic model with linear har-
vesting. By solving the Fokker-Planck equation, the authors [2] have proven that
the optimal harvesting effort is h∗ = 1

2

(
r − σ2

2

)
if r > σ2

2 , and the maximum of
expectation of sustainable yield (ESY) is

Y ∗ = max
h>0

{
lim
t→∞

E (hx(t))
}
=

1

4a

(
r − σ2

2

)2

. (1.2)

This result has been verified and developed in [11, 12, 26]. However, when h0 ̸= 0,
to the best of our knowledge, the optimal harvesting for model (1.1) has not been
studied by any scholars up to now. So, in this paper, we will focus our attention
on showing how the harvesting term exerts an influence on dynamics of (1.1), and
deriving the optimal harvesting strategy (h∗, h0

∗) such that:

(i) The expectation of sustainable yield lim
t→∞

E
(
hx (t) + h0x

2 (t)
)

gets its maxi-
mum value.

(ii) The population x modeled by (1.1) is persistent.

The rest of this paper is organized as follows. In Section 2, a optimal harvesting
strategy with sufficient and necessary criteria for its existence is proposed by using
the stationary properties of the solution, and then we analyze the impact of the
harvesting. Together with the harvesting effort, Section 3 discusses the effectiveness
of the optimal harvesting strategy. The last part summarizes the main results.

2. Ergodicity and Optimal harvesting strategy
In this section, we will deduce the optimal harvesting strategy for x in model (1.1).
To begin with, let’s firstly prepare some lemmas. The proofs of these lemmas are
given in Section 4.
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Lemma 2.1. For any given positive initial value x(0) = x0, model (1.1) admits a
unique global and positive solution x(t) on R+. Moreover,
(i) if (r − h)− σ2

2 < 0 , then x goes to extinction almost surly: lim
t→∞

x (t) = 0 a.s.;

(ii) if (r − h) − σ2

2 = 0, then x goes to extinction in time mean almost surly:
lim
t→∞

1
t

∫ t

0
x (s) ds = 0 a.s.;

(iii) if (r − h)− σ2

2 > 0, then x is persistent in the mean, i.e., lim inf
t→∞

1
t

∫ t

0
x (s) ds ≥

(r−h)−σ2

2

a+h0
a.s.

Lemma 2.2. For any p > 0, lim
t→∞

E [xp (s)] ≤ L (p) holds for some positive constant
L(p).

Lemma 2.3. If (r − h) − σ2

2 > 0, then (1.1) has a unique stationary distribution
π0(·) with ergodicity such that for any π0(·)-integrable function f(·)

P

(
lim
t→∞

1

t

∫ t

0

f (x (s)) ds =

∫ +∞

0

f (x)π0 (dx)

)
= 1.

Remark 2.1. From Lemma 2.2 and Lemma 2.3, it holds that

lim
t→∞

E [xp (t)] = lim
t→∞

1

t

∫ t

0

xp (s) ds a.s. (2.1)

Now we are in the position to state our main result on the optimal harvesting
strategy. From Lemma 2.1, we note that even if r − σ2

2 > 0 holds, as long as h

is large enough such that (r − h) − σ2

2 ≤ 0, x will not persist in mean. Noting
that biological survival is the prerequisite for optimal harvesting, so we consider
r − σ2

2 > 0 and h < r − σ2

2 in the following.

Theorem 2.1. Let x(t) be solution of (1.1) with a positive initial value x0, if
r − σ2

2 > 0 and h < r − σ2

2 , then the optimal harvesting strategy (h∗, h0
∗) = (0, a)

and the maximum of ESY is Y ∗ =
r
(
r−σ2

2

)
4a .

Proof. By using the Itó formula to (1.1), we have

d lnx (t) =

[
(r − ax (t)− (h+ h0x (t)))−

σ2

2

]
dt+ σdB (t)

=

[
(r − h)− σ2

2
− (a+ h0)x (t)

]
dt+ σdB (t) .

(2.2)

Taking integrations on both sides shows that

ln
x (t)

x (0)
=

(
(r − h)− σ2

2

)
t− (a+ h0)

∫ t

0

x (s) ds+ σB (t) . (2.3)

By applying the ergodicity in Lemma 2.3 and the Strong Law of Large Numbers,
(2.3) yields

lim
t→∞

1

t
ln

x (t)

x (0)
= 0 and lim

t→∞

1

t

∫ t

0

x (s) ds =
(r − h)− σ2

2

a+ h0
a.s. (2.4)
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At the same time, from (1)

x (t) = x(0) + (r − h)

∫ t

0

x (s) ds− (a+ h0)

∫ t

0

x2 (s) ds+ σ

∫ t

0

x (s) dB (s).

In view of Lemma 2.2 and Lemma 2.3, by letting t → ∞ we get

(r − h) lim
t→∞

1

t

∫ t

0

x (s) ds =(a+ h0) lim
t→∞

1

t

∫ t

0

x2 (s) ds.

By using Remark 2.1, we get

lim
t→∞

E
[
x2 (t)

]
=

(r − h)

a+ h0
lim
t→∞

E [x (t)] . (2.5)

Combining (2.4)-(2.5) with Remark 2.1 shows that the expectation of sustainable
yield

Y = lim
t→∞

E
(
hx (t) + h0x

2 (t)
)
=

(
r − h− σ2

2

)
(ah+ rh0)

(a+ h0)
2 . (2.6)

To get the the maximum of ESY, we calculate partial derivatives of (2.6):

∂Y

∂h
=

a
(
r −

(
2h+ r

ah0

)
− σ2

2

)
(a+ h0)

2 and
∂Y

∂h0
=

a
(
r − h− σ2

2

) (
r −

(
2h+ r

ah0

))
(a+ h0)

3 .

(2.7)
Obviously, ∂Y

∂h = 0 and ∂Y
∂h0

= 0 can not hold together in R2
+. So we give the

following analysis:

Table 1. Classification of the states of two partial derivatives.

2h+ r
ah0 < r − σ2

2
∂Y
∂h > 0 & ∂Y

∂h0
> 0

2h+ r
ah0 = r − σ2

2
∂Y
∂h = 0 & ∂Y

∂h0
> 0

r − σ2

2 < 2h+ r
ah0 < r ∂Y

∂h < 0 & ∂Y
∂h0

> 0

2h+ r
ah0 = r ∂Y

∂h < 0 & ∂Y
∂h0

= 0

2h+ r
ah0 > r ∂Y

∂h < 0 & ∂Y
∂h0

< 0

From this table, it’s easy to deduce the optimal harvesting effort (h∗, h0
∗) =

(0, a), and then we can get the desired maximum of ESY.

Remark 2.2. From Theorem 2.1 and statement of the optimal harvesting strategy,
r − σ2

2 > 0 is the sufficient and necessary condition for existence of the optimal
harvesting strategy.

Remark 2.3. From the proof of Theorem 2.1, we see that the expectation of sus-
tainable yield

Y =

(
r − h− σ2

2

)
(ah+ rh0)

(a+ h0)
2 . (2.8)



1260 D. Zhao, H. Liu, Y. Zhou & S. Yuan

Let h0 = 0 in (2.8), one can easily get the optimal harvesting effort h∗ = 1
2

(
r − σ2

2

)
and the maximum of ESY is Y ∗

Linear = 1
4a

(
r − σ2

2

)2

. Clearly, this is the classical
results given in [2]. By comparing these results, it’s of interest to see that the
quadratic harvesting term (h0x

2) occupies an absolute advantage in the harvesting,
which results in the exclusion of the linear part (hx) from the optimal harvesting
strategy. Compute that Y ∗

Y ∗
Linear

= r

r−σ2

2

> 1, a novel fact is revealed that when
one takes a quadratic harvesting strategy with h0 = a, he will get more sustainable
yield in sense of expectation than that by taking the linear harvesting strategy.

3. Effectiveness of the optimal harvesting strategy
Without restrictions on the effort, the optimal harvesting strategy for model (1.1) is
discussed. It’s shown that the maximum of ESY with quadratic harvesting strategy
is better than that with linear harvesting strategy. However, when considering the
harvesting effort, the optimal harvesting problem become more complicated. For
example, if one gains more but gets this with the cost of more effort, we do not
think he has adopted a more effective strategy. To illustrate this problem more
clearly, let’s start with an example.

Example 3.1. Consider model (1.1) with an initial value x0 = 0.3, r = 0.8, a = 0.3.
Without special declaration, σ = 0.2. To show the influence of the harvesting, we
choose the parameters as follows: (1) deterministic version: σ = 0 and (h, h0) =
(0, 0); (2) linear harvesting strategy (h, h0) = (0.8, 0); (3) mixed harvesting strategy
(h, h0) = (0.8, 1).

Numerical simulations for the solutions of stochastic model (1.1) and its corre-
sponding deterministic version are presented by using the famous Milstein method
[8]. From these figures in Figure 1, together with comparison of three sets of pa-
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Figure 1. Computer simulations of x(t) for the three cases given in Example 3.1.

rameters, we can see that the small noise has no disadvantage to persistence of
the species x. Excessive harvesting may threaten the survival of species, where
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the linear harvesting plays a major role. These results are confirmed theoretically
by (i) in Lemma 2.1. In order to meet the requirement of the definition of the
optimal harvesting strategy, let’s make the harvesting effort smaller and consider
the following three cases: (A1) linear harvesting strategy (h, h0) = (0.39, 0); (A2)
mixed harvesting strategy (h, h0) = (0.2, 0.1); (A3) quadratic harvesting strategy
(h, h0) = (0, 0.3). In the following, the blue line represents the path of model (1.1)
under condition (A1), the red line represents the path of model (1.1) under condition
(A2), and the green line is that under condition (A3).
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Figure 2. Sample trajectories of model (1.1) for the cases (A1)-(A3).

Figure 2 shows the paths of model (1.1) with the parameters from (A1)-(A3)
separately. All the populations in these three cases are persistent, since the harvest-
ing is small such that (r − h)− σ2

2 > 0, which has been shown theoretically by (iii) of
Lemma 2.1. So a small amount of harvesting can not threaten the survival of species.
To give the limit behaviors of the system, we compute the time-averaged yield
1
t

∫ t

0

[
hx (s) + h0x

2 (s)
]
ds and the related harvesting effort 1

t

∫ t

0
[h+ h0x (s)] ds.

From (b) of Figure 3, it is clear that the path of (A3) is on top of other curves,
since (h, h0) = (0, 0.3) is the best harvesting strategy which has been confirmed
by Theorem 2.1 theoretically. Further, (a) and (b) of Figure 4, in turn, support
results of Theorem 2.1. To consider the optimal harvesting problem more perfectly,
we analyze the harvesting effort in (a) of Figure 3. The harvesting effort values of
(A1) and (A3) are almost the same provided the time is sufficiently long, and the
related value of (A2) is bigger than the other two. That is to say, when one take the
mixed harvesting strategy (A2), he will pay more efforts than that by taking one
of the other two. However, back to (b) of Figure 3 again, the yields of the mixed
harvesting strategy (A2) is more than that of (A1). A natural conclusion is that the
more you give and the more you gain. So when we consider both the sustainable
yield and harvesting effort, it is difficult to distinguish which is better between (A1)
and (A2).

From the above analysis, a new standard is proposed for the optimal harvesting
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Figure 3. Time-averaged harvesting yield and the related harvesting effort for the cases (A1)-(A3).
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Figure 4. Computer simulations of the harvesting function images related to the harvesting parameters,
and the marginal curve for maximum of the ESY.

strategy:

• Let A and B be two harvesting strategies, A is said to be better than B
provided that
(1) the maximum of (ESY): Y ∗

A > Y ∗
B and (2) the harvesting effort in time

mean: H∗
A ≤ H∗

B .

Fortunately, a simple computation shows that the harvesting effort in mean for
model (1.1) is

H∗ = lim
t→∞

E (h∗ + h0
∗x (t)) =

1

2

(
r − σ2

2

)
= h∗

Linear.

This and Remark 2.3 illustrate that the optimal harvesting strategy given in The-
orem 2.1 is better than the linear optimal harvesting strategy given in [2]. (a) and
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(b) in Figure 3 confirm this result.

4. Proofs of Lemma 2.1-2.3
Proofs for Lemma 2.1-Lemma 2.3 are similar to those in [12, 26] and [9, 16]. To
keep the integrity of this paper, we list the main proofs in the sequel. Consider the
one-dimensional time-homogeneous stochastic differential equation;

dX = b (X) dt+ α (X) dB(t) with X(0) ∈ R+, (4.1)

Lemma 4.1 (See [25]). Let X(t) be a time-homogeneous solution of (4.1) on E1

(1-dimensional Euclidean space). Assume that:
(U.1) In the domain U ⊂ E1 and some neighborhood thereof, the diffusion σ(X) is
bounded away from zero;
(U.2) If for all X ∈ E1\U the mean time τX at which a path emerging from X
reaches the set U is finite, and sup

X∈K
E (τX) < ∞ for every compact subset K ⊂ E1.

Then the Markov process X(t) has a stationary distribution π(x), and for an inte-
grable function f(·)

P

(
lim
t→∞

1

t

∫ t

0

f [x (s)] ds =

∫ ∞

−∞
f (x)π(dx)

)
= 1.

Lemma 4.2 (See [23, Lemma 2.6]). Let λ0 ≥ 0 and λ > 0 be constants and F (t)

be a function such that lim
t→∞

F (t)
t = 0. If there is a positive function f(t) satisfying

log f (t) ≤ λ0 − λ

∫ t

0

f (s) ds+ F (t),

then lim sup
t→∞

1
t

∫ t

0
f (s) ds ≤ λ0

λ . If

log f (t) ≥ λ0 − λ

∫ t

0

f (s) ds+ F (t),

then lim inf
t→∞

1
t

∫ t

0
f (s) ds ≥ λ0

λ .

Lemma 4.3 (See e.g. [1, Lemma 3.1]). Let M(t), t ≥ 0 be a local martingale
vanishing at time 0 and define

ρM (t) :=

∫ t

0

d ⟨M,M⟩ (s)
(1 + s)

2 , t ≥ 0

where ⟨M,M⟩ (t) is Meyers angle bracket process. Then lim
t→∞

M(t)
t = 0 a.s. provided

that lim
t→∞

ρM (t) < ∞ a.s.

Proof of Lemma 2.1. Existence of the global solution is obviously true, so we
only prove the critical condition for persistence and extinction of the species. By
applying Itó formula to model (1.1), we get

d lnx (t) =

[
(r − h− (a+ h0)x (t))−

σ2

2

]
dt+ σdB (t) . (4.2)
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With help of Lemma 4.3, (i) in Lemma 2.1 is proved. By Lemma 4.2 and Lemma
4.3, from (4.2), we get (ii) and (iii) directly.
Proof of Lemma 2.2. From (1.1), for any p > 0,

Lxp =pxp

[
(r − h− (a+ h0)x)−

(p− 1)σ2

2

]
≤− pxp + pxp

[(
r + 1 +

σ2

2
− (a+ h0)x

)]
≤− pxp +H(p),

where H(p) = sup
x>0

{
p
(
r + 1 + σ2

2

)
xp − (a+ h0)x

p+1
}

. By taking expectations,

we have E (xp (t)) ≤ xp (0) + 1
pH(p) := L (p). The proof is complete.

Proof of Lemma 2.3. Let V (x) = c(x− 1− lnx) ≥ 0 for some positive constant
c, by Itó formula

LV (x) =− c

(
(r − h)− σ2

2

)
+ c (a+ h0)x+ cx (r − ax (t)− (h+ h0x))

≤− c

(
(r − h)− σ2

2

)
+ c (r + a+ h0)x.

Let U = [ 1k , k], then LV (x) < −1 for suitable large numbers c and k. The left proof
follows Theorem 2.1 in [9] , see also [16, Theorem 1]. The proof is complete.

5. Conclusions
This paper studies the impacts of harvesting on dynamics of two stochastic popula-
tion models, and derives the optimal harvesting strategy. Sufficient and necessary
condition for survival of the species modeled by (1.1) is derived. It’s shown that the
linear harvesting effort threatens to the survival of the species. Large linear harvest-
ing effort may directly lead the population to extinction. However, the quadratic
harvesting strategy has nothing to do with the survival threshold of the species,
and has only impacts on the number of sustainable population in time mean.

For comparing the effectiveness of different harvesting strategies, we make a new
measure, that is, to gain more benefits with less harvesting effort.

The most valuable finding of this paper is that when one takes a mixed strategy
of the linear harvesting and quadratic harvesting, the quadratic harvesting term
(h0x

2) will occupy an absolute advantage in the harvesting, and exclude the linear
part (hx) out of the optimal harvesting strategy. Let the noise intensities tend to
zero, then the models and the results in this paper are all reduced to the determin-
istic version. From Theorem 2.1, the maximum values of expectation of sustainable
yield are the same for the linear harvesting strategy and the quadratic harvest-
ing, i.e., Y ∗

Y ∗
Linear

= 1. This means that the advantages of the quadratic harvesting
emerge only in the random environment. In general, both the random noises and
the harvesting terms can change dynamics of the deterministic system significantly.

In this paper, we consider the model with the white noise. What happens if other
perturbations are taken into account, such as pure Markov switching [24], Levy
noise [1,23] and mixed noises [14,24]. From this viewpoint, more general stochastic



Quadratic harvesting dominated optimal strategy. . . 1265

models should be constructed and studied, based on literatures [5,9,11–13,15,16,26].
For these models, wether the quadratic harvesting can show its advantages or not,
we leave this for future investigation.
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