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INTERACTION SOLUTIONS AND
ABUNDANT EXACT SOLUTIONS FOR THE
NEW (3+1)-DIMENSIONAL GENERALIZED

KADOMTSEV-PETVIASHVILI EQUATION IN
FLUID MECHANICS

Jian-Guo Liu1,†, Wen-Hui Zhu2,† and Li Zhou1

Abstract In this work, we present the interaction solutions and abundant ex-
act solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili
equation based on the Hirota’s bilinear form and a direct function. The ob-
tained interaction solutions contain the interaction between the rational func-
tion and the tanh function and the interaction between the rational function
and the cos function. The dynamical properties of these resulting solutions are
analyzed and shown in three-dimensional plots, corresponding contour graphs
and plane figures.
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1. Introduction
Profound changes happening in modern natural science, nonlinear science through
the mathematical science, life science, space science and earth science, becomes
an important frontier field for contemporary scientific research. Solitary wave and
soliton are one of the important concepts to promote the development of nonlinear
science [1–5]. Soliton originated in solitary wave, it has been applied in a series of
high tech fields such as nonlinear optical, magnetic flux sub-device, biology, plasma
and optical fiber isolation, and many of these applications can be represented by
nonlinear partial differential equation (NPDE) [6–14]. So it is necessary to study
the solitary wave solution or the soliton solution for the NPDE. Various method are
proposed by the researchers [15–25].

Recently, the rational function solution called lump solution as a kind of soli-
ton solution has attracted the attention of many scholars, especially interaction
solution between the rational function and other functions, such as trigonometric
functions, exponential functions, hyperbolic functions, and so on [26, 27, 30–32]. In
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this paper, we aim to research the new (3+1)-dimensional generalized Kadomtsev-
Petviashvili(ngKP) equation [28].

uty + utx + utz − uzz + 3(ux uy)x + uxxxy = 0. (1.1)

The multiple soliton solutions were investigated by Wazwaz in Ref. [28]. New exact
periodic solitary-wave solutions were obtained in Ref. [29]. As far as we know,
interaction solutions among the rational function, the tanh function and the cos
function have not been found in other literatures.

The organization of this paper is as follows: Section 2 lists the Hirota’s bilinear
form and obtains the interaction solutions between the rational function and the
tanh function. Section 3 presents the interaction solutions between the rational
function and the cos function. Section 4 obtains the abundant exact solutions. The
dynamical properties of these obtained solutions are analyzed and shown in some
corresponding figures. Finally, the conclusions are presented.

2. Hirota’s bilinear form and interaction solutions
between the rational function and the tanh func-
tion

Substituting u = 2[lnζ]x into Eq. (1.1) and simplifying, we have the following
Hirota’s bilinear form [29]

(DtDx +DtDy +DtDz +D3
xDy −D2

z)ζ · ζ = 0. (2.1)

This is equivalent to:

(ζxxxy + ζtx + ζty + ζtz − ζzz) ζ − 3ζxxyζx + 3ζxy ζxx

−ζy ζxxx − ζtζx − ζtζy − ζtζz + ζ2z = 0. (2.2)

Considering Eq. (2.2) has the following interaction solutions between the rational
function and the tanh function

ϱ = ι1x+ ι2y + ι3z + ι4t+ ι5,

ς = ι6x+ ι7y + ι8z + ι9t+ ι10,

ζ1 = ϱ2 + ς2 + k tanh(j1x+ j2y + j3z + j4t) + ι11, (2.3)

where ιi(1 ≤ i ≤ 11) and ji(1 ≤ i ≤ 4) are undetermined constants. Substituting
Eq. (2.3) into Eq. (2.2), we have the following relational expression

ι2 = ι7 = j1 = 0, ι8 =
ι3ι6
ι1

, ι4 =
ι23

ι1 + ι3
, j2 =

ι1j3
ι3

,

j4 =
ι3j3

ι1 + ι3
, ι9 =

ι23ι6
ι21 + ι3ι1

, (2.4)

where ι1 ̸= 0, ι3 ̸= 0, ι1 + ι3 ̸= 0. Therefore, we have

ζ1 = k tanh(
ι3j3t

ι1 + ι3
+

ι1j3y

ι3
+ j3z) + (ι5 +

ι23t

ι1 + ι3
+ ι1x+ ι3z)

2

+(ι10 +
ι6ι

2
3t

ι21 + ι3ι1
+ ι6x+

ι6ι3z

ι1
)2 + ι11. (2.5)
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Substituting Eq. (2.5) into the transformation u = 2[lnξ]x, we derive the inter-
action solutions of the ngKP equation

u = [2[2ι1(ι5 +
ι23t

ι1 + ι3
+ ι1x+ ι3z) + 2ι6(ι10 +

ι6ι
2
3t

ι21 + ι3ι1
+ ι6x

+
ι6ι3z

ι1
)]]/[ι11 + k tanh(

ι3j3t

ι1 + ι3
+

ι1j3y

ι3
+ j3z) + (ι5 +

ι23t

ι1 + ι3

+ι1x+ ι3z)
2 + (ι10 +

ι6ι
2
3t

ι21 + ι3ι1
+ ι6x+

ι6ι3z

ι1
)2]. (2.6)

The dynamical properties for interaction solution between rational function and
tanh function are displayed in Fig. 1. Figures 1(a), 1(b) and 1(c) list the 3d graphs
in the (y, z)-plane when x = −5, 0, 5 respectively, Figures 1(d), 1(e) and 1(f) present
the corresponding contour diagrams of Figures 1(a), 1(b) and 1(c), and Figures 1(g),
1(h) and 1(i) show the corresponding plane figures of Figures 1(a), 1(b) and 1(c)
with y = −8.
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Figure 1. Plots of the interaction solutions (2.6) for ι1 = ι6 = 2, k = t = 1, ι3 = −1, ι5 = 5, ι11 = −6,
ι10 = 3, j3 = −2, when x = −5 in (a) (d) (g), x = 0 in (b) (e) (h) and x = 5 in (c) (f) (i). y = −8 in
(g) (h) and (i).
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3. Interaction solutions between the rational func-
tion and the cos function

Based on the collision of rational function and trigonometric function, we set

ϱ = ι1x+ ι2y + ι3z + ι4t+ ι5,

ς = ι6x+ ι7y + ι8z + ι9t+ ι10,

ζ2 = ϱ2 + ς2 + k cos(j1x+ j2y + j3z + j4t) + ι11. (3.1)

Substituting Eq. (3.1) into Eq. (2.2), we have the following comparison expression

ι7 =
ι2ι6
ι1

, ι8 =
ι3ι6
ι1

, ι4 =
ι23

ι1 + ι2 + ι3
, ι9 =

ι23ι6
ι1 (ι1 + ι2 + ι3)

,

j2 = − ι2j1
ι1

, j4 =
ι1j

2
3 − ι2j

4
1

ι1 (j1 + j3)− ι2j1
, k =

2
(
ι21 + ι26

)
j21

,

ι3 = −[ι1
(
ι21 + ι26

)
(−j1) [2ι

2
2j

3
1 + j3

(
ι21 − ι22 − ι1ι2j

2
1

)
]−√

ι1ι2 (ι21 + ι26)
2j41 [ι1 (j1 + j3)− ι2j1]2[−ι21 + 3ι22 + ι2ι1 (j21 + 2)]]

/[
(
ι21 + ι26

)
j21 [ι

2
1 + ι22 − ι2ι1

(
j21 + 2

)
]], (3.2)

where ι1 ̸= 0, j1+j3 ̸= 0, ι1+ι2+ι3 ̸= 0, j1 ̸= 0, ι21+ι26 ̸= 0, ι1 (j1 + j3)−ι2j1 ̸= 0, ι21+
ι22 − ι2ι1

(
j21 + 2

)
̸= 0. Substituting Eq. (3.1) and Eq. (3.2) into the transformation

u = 2[lnξ]x, we get another interaction solutions of the ngKP equation

u = 4ι1(ι5 +
ι23t

ι1 + ι2 + ι3
+ ι1x+ ι2y + ι3z)/ζ2 − 4(ι21 + ι26)

× sin(
t
(
ι1j

2
3 − ι2j

4
1

)
ι1 (j1 + j3)− ι2j1

+ j1x− ι2j1y

ι1
+ j3z)/(j1ζ2)

+4ι6[ι10 +
ι6ι

2
3t

ι1(ι1 + ι2 + ι3)
+ ι6x+

ι2ι6y

ι1
+

ι6ι3z

ι1
]/ζ2. (3.3)

The dynamical properties for interaction solution between rational function and
cos function are demonstrated in Fig. 2 and Fig. 3. Figures 2(a), 2(b) and 2(c) show
the 3d graphs in the (y, t)-plane when x = −3, 0, 3 respectively, Figures 2(d), 2(e)
and 2(f) list the corresponding contour diagrams of Figures 2(a), 2(b) and 2(c). Fig.
3 display the 3d graphs and corresponding contour diagrams of interaction solution
(3.3) in the (x, y)-plane when z = −35, 0, 35 respectively.

4. Abundant exact solutions
To study the exact solutions for Eq. (1.1), a direct test function is selected as follows
in Eq. (2.2)

ζ = Λ1 e
Ψ1 + e−Ψ1 + Λ2 tan (Ψ2) + Λ3 tanh (Ψ3) , (4.1)

where Ψi = κi x+ λi y+ µi z + νi t, i = 1, 2, 3, 4 and κi, λi, µi, νi are undetermined
constants. Substituting Eq. (4.1) into Eq. (2.2) and equating all the coefficients
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Figure 2. Plots of the interaction solutions (3.3) for ι1 = ι5 = j1 = 2, ι2 = −1, z = ι6 = 0, ι11 = −6,
ι10 = 3, j3 = −2, when x = −3 in (a) (d), x = 0 in (b) (e) and x = 3 in (c) (f).
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Figure 3. Plots of the interaction solutions (3.3) for ι1 = ι5 = j1 = 2, ι2 = −1, ι6 = 1, t = 20 ι11 = −6,
ι10 = 3, j3 = −2, when z = −35 in (a) (d), z = 0 in (b) (e) and z = 35 in (c) (f).
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of different powers of eΨ1 , e−Ψ1 , tan (Ψ2), tanh (Ψ3) and constant term to zero via
symbolic computation [33-39], Eq. (1.1) has the following exact solutions
Case(1)

κ2 = κ3 = 0, λ2 =
µ2
2 − µ2ν2

ν2
, λ3 =

µ2
3 − µ3ν3

ν3
, µ3 =

µ2ν3
ν2

,

λ1 = −
µ2
3

(
κ3
1 + ν1

)
ν23

+
µ3

(
κ3
1 + 2µ1

)
ν3

− κ1 − µ1, ν1 =
µ2
1

κ1 + µ1
,

ν2 =
µ2

(
−
√
κ2
1 − 4κ2

1ϵ1 + κ3
1 + 2µ1

)
2 (κ1 + µ1)

, (4.2)

u1 = [2

(
κ1Λ1e

µ2
1t

κ1+µ1
+κ1x+λ1y+µ1z − κ1e

− µ2
1t

κ1+µ1
−κ1x−λ1y−µ1z

)
]

/[Λ1e
µ2
1t

κ1+µ1
+κ1x+λ1y+µ1z + e−

µ2
1t

κ1+µ1
−κ1x−λ1y−µ1z + Λ2 tan[ν2t+ µ2z

+µ2y

(
µ2

ν2
− 1

)
] + Λ3 tanh[ν3t+

µ2ν3y
(

µ2

ν2
− 1

)
ν2

+
µ2ν3z

ν2
]], (4.3)

where ϵ1 = ±1.
Case(2)

κ2 = κ3 = λ1 = 0, λ2 =
µ2
2 − µ2ν2

ν2
, λ3 =

µ2
3 − µ3ν3

ν3
, κ1 = 2ϵ2,

µ3 =
ν3 (µ1 + 2ϵ2)

µ1 + 4ϵ2
, ν1 =

µ2
1

κ1 + µ1
, ν2 =

µ2 (µ1 + 4ϵ2)

µ1 + 2ϵ2
, (4.4)

u2 = [2

(
2ϵ2Λ1e

µ2
1t

µ1+2ϵ2
+2xϵ2+µ1z−2ϵ2e

− µ2
1t

µ1+2ϵ2
−2xϵ2−µ1z

)
]/[Λ1e

µ2
1t

µ1+2ϵ2
+2xϵ2+µ1z

+e−
µ2
1t

µ1+2ϵ2
−2xϵ2−µ1z + Λ3 tanh[ν3t−

2ν3yϵ2 (µ1 + 2ϵ2)

(µ1 + 4ϵ2) 2
+

ν3z (µ1 + 2ϵ2)

µ1 + 4ϵ2
]

+Λ2 tan

(
µ2t (µ1 + 4ϵ2)

µ1 + 2ϵ2
− 2µ2yϵ2

µ1 + 4ϵ2
+ µ2z

)
], (4.5)

where ϵ2 = ±1.
Case(3)

κ3 = Λ2 = λ1 = 0, λ3 =
µ2
3 − µ3ν3

ν3
, κ1 =

µ1 (µ1 − ν1)

ν1
,

ν3 = −[µ3[µ1ϵ3 (µ1 − ν1)
2
√

−2µ3
1ν1 + (µ2

1 − 4) ν21 + µ4
1 + 3µ4

1ν1

−3µ3
1ν

2
1 + µ2

1ν
3
1 − µ5

1 − 2ν31 ]]/(2µ1ν
2
1), (4.6)

u3 =
2µ1 (µ1 − ν1)

ν1[
Λ3e

ν1t+
µ2
1x

ν1
+µ1(z−x)

tanh(ν3t+λ3y+µ3z)+2

Λ1e
2

(
ν1t+

µ2
1x

ν1
+µ1(z−x)

)
−1

+ 1]

, (4.7)

where ϵ3 = ±1.
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Case(4)

λ1 = λ2 = λ3 = 0, µ2 =
µ1ν2
ν1

, µ3 =
µ2ν3
ν2

,

κ1 =
µ1 (µ1 − ν1)

ν1
, κ2 =

µ2 (µ2 − ν2)

ν2
, κ3 =

µ3 (µ3 − ν3)

ν3
, (4.8)

u4 = [2[κ1Λ1e
ν1t+κ1x+µ1z + κ2Λ2 sec

2

(
ν2t+ κ2x+

µ1ν2z

ν1

)
+ κ3Λ3sech

2

(
ν3t+ κ3x+

µ1ν3z

ν1

)
− κ1e

−ν1t−κ1x−µ1z]]/[Λ1e
ν1t+κ1x+µ1z

+ Λ2 tan

(
ν2t+ κ2x+

µ1ν2z

ν1

)
+ Λ3 tanh

(
ν3t+ κ3x+

µ1ν3z

ν1

)
+ e−ν1t−κ1x−µ1z]. (4.9)

Case(5)

λ1 = Λ2 = λ3 = 0, µ3 =
µ1ν3
ν1

,

κ1 =
µ1 (µ1 − ν1)

ν1
, κ3 =

µ3 (µ3 − ν3)

ν3
, (4.10)

u5 = [2[κ1Λ1e
ν1t+κ1x+µ1z+κ3Λ3sech2

(
ν3t+κ3x+

µ1ν3z

ν1

)
−κ1e

−ν1t−κ1x−µ1z]]

/[Λ1e
ν1t+κ1x+µ1z + Λ3 tanh

(
ν3t+ κ3x+

µ1ν3z

ν1

)
+ e−ν1t−κ1x−µ1z]. (4.11)

Case(6)

λ1 = Λ3 = λ2 = 0, κ1 =
µ1 (µ1 − ν1)

ν1
, κ2 =

µ2 (µ2 − ν2)

ν2
, ν2 =

µ2ν1
µ1

, (4.12)

u6 = [2[κ1Λ1e
ν1t+κ1x+µ1z + κ2Λ2 sec

2 (ν2t+ κ2x+ µ2z)− κ1e
−ν1t−κ1x−µ1z]]

/[Λ1e
ν1t+κ1x+µ1z + Λ2 tan (ν2t+ κ2x+ µ2z) + e−ν1t−κ1x−µ1z]. (4.13)

Case(7)

Λ2 = Λ3 = 0, λ1 =
µ2
1 − ν1 (κ1 + µ1)

4κ3
1 + ν1

, (4.14)

u7 = [2[κ1Λ1 exp[ν1t+ κ1x+
y[µ2

1 − ν1 (κ1 + µ1)]

4κ3
1 + ν1

+ µ1z]− κ1 exp[−ν1t

−κ1x−
y[µ2

1−ν1 (κ1+µ1)]

4κ3
1+ν1

−µ1z]]]/[Λ1 exp[ν1t+κ1x+
y[µ2

1−ν1 (κ1+µ1)]

4κ3
1+ν1

+µ1z] + exp[−ν1t− κ1x− y[µ2
1 − ν1 (κ1 + µ1)]

4κ3
1 + ν1

− µ1z]]. (4.15)

As an example, we study the dynamical behaviors for Eq. (4.3) by choosing
different values of parameters as follows

κ1 = ν3 = 2, µ1 = −1, µ2 = −3. (4.16)
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Figure 4. Solution (4.3) with Λ1 = −2, Λ2 = 1, Λ3 = 0, x = t = 0, (a) three-dimensional graph (b)
contour graph.
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Figure 5. Solution (4.3) with Λ1 = 0, Λ2 = 1, Λ3 = 1, x = t = 0, (a) three-dimensional graph (b)
contour graph.
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Figure 6. Solution (4.3) with Λ1 = −2, Λ2 = 0, Λ3 = 1, x = t = 0, (a) three-dimensional graph (b)
contour graph.
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Figure 7. Solution (4.3) with Λ1 = −2, Λ2 = 1, Λ3 = 1, z = 0, when t = −5 in (a) (d), t = 0 in (b)
(e) and t = 5 in (c) (f).
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Figure 8. Solution (4.9) when z = −10 in (a) (d), z = 0 in (b) (e) and z = 10 in (c) (f).
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Substituting Eq. (4.16) into Eq. (4.3), the dynamical behaviors for solution (4.3)
are shown in Figs. 4-7.

Setting

ν1 = ν3 = 2, µ1 = −1, ν2 = Λ2 = Λ3 = 1,Λ1 = −2. (4.17)

Substituting Eq. (4.17) into Eq. (4.9), the dynamical behaviors for solution (4.9)
are shown in Fig. 8.

5. Conclusion
In this paper, the interaction solutions for the ngKP equation between rational
function and tanh function or cos function are presented based on the Hirota’s
bilinear form. Abundant exact solutions are also obtained by using a direct test
function. Equations using this method need to have the Hirota’s bilinear form. The
dynamical properties of the obtained solutions are analyzed and shown in figures,
which contain 3d plots, 2d contour plots and the plane graphs.
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