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ON Ψ-PROJECTIVE EXPANSION, QUASI
PARTIAL METRICS AGGREGATION WITH

AN APPLICATION
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Abstract In the present article, the notion of expansion between quasi par-
tial metric spaces through aggregation is defined. With the help of aggregation
functions, the concept of projective Ψ-expansion is introduced and some fixed
point results are obtained through this notion. Furthermore, sufficient con-
ditions are provided to characterize aggregation function and to ensure the
existence and uniqueness of fixed point. All the results presented in this paper
are new and an application to asymptotic complexity analysis is also given
after the results.
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1. Introduction and Preliminaries
Borsik and Doboš [3] investigated the problem of aggregation for a collection of
metrics (which need not be finite). They studied the properties of those functions
that permit a collection of metrics to be merged in a single one.

Throughout the paper, N,R and R+ will denote the set of natural numbers, the
set of real numbers and the set of non-negative real numbers respectively.

Definition 1.1. A function Φ : Rn
+ → R+ is said to be homogeneous if Φ(αx) =

αΦ(x) for each x ∈ Rn
+ and α ∈ R+.

Borsik and Doboš [3] defined the notion of metric aggregation function as follows:

Definition 1.2 ( [3]). A function Φ : R2
+ → R+ is a metric aggregation function

provided that the function dΦ : X × X → R+ is a metric for every pair of metric
spaces (X1, d1) and (X2, d2), where X = X1 ×X2 and

dΦ((x, y), (z, w)) = Φ(d1(x, z), d2(y, w))

for all (x, y), (z, w) ∈ X.

The authors of [3] defined the monotonicity and sub-additivity of Φ as:
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Definition 1.3 ( [3]). A function Φ : Rn
+ → R+ is said to be monotone if x ⪯

y ⇒ Φ(x) ≤ Φ(y) for all x, y ∈ Rn
+ and sub-additive if Φ(x+ y) ≤ Φ(x) +Φ(y) for

all x, y ∈ Rn
+ where ⪯ stands for the following pointwise order relation on Rn

+:

x ⪯ y ⇔ xi ≤ yi ; i = 1, ...n.

In 1994, Matthews [12,13] introduced partial metric spaces with an application
in denotational semantics and program verification. Many authors worked with
this notion afterwards such as Heckmann [7] defined weak partial metric following
Matthews’ notion, Romaguera et al. [16] presented Scott topology based on com-
plete partial metric space, Romaguera and Valero [17] introduced a quantitative
computational model for partial metric spaces with formal balls. After that many
authors worked in the similar directions, some of them are [6, 18,19].

Massanet and Valero [11] were motivated by the application of partial metrics to
computer science and the fact that many partial metrics used in computer science
can be obtained via aggregation.

In 2013, Karapinar [8] presented a generalized version of Matthews’s work by
introducing quasi partial metric spaces by removing the symmetry axiom.

Definition 1.4 ( [8]). For a nonempty set X, a mapping q : X ×X → R+ is said
to be a quasi partial metric if the following conditions hold:

(q1) if 0 ≤ q(x, x) = q(x, y) = q(y, y), then x = y;

(q2) q(x, x) ≤ q(x, y);

(q3) q(x, x) ≤ q(y, x);

(q4) q(x, z) ≤ q(x, y) + q(y, z)− q(y, y)

for all x, y ∈ X. Then the pair (X, q) is called a quasi partial metric space (QPMS).
If q(y, x) = q(x, y) for each x, y ∈ X, then (X, q) reduces to partial metric space

(PMS). Also, for a quasi-partial metric q on X, the mapping dq : X × X → R+

defined by
dq(x, y) = q(x, y) + q(y, x)− q(x, x)− q(y, y)

is a (usual) metric on X.

Karapinar [8] defined the concept of convergence and completeness in quasi
partial metric space in the following way:

Definition 1.5 ( [8]). Let (X, q) be a quasi partial metric space (QPMS). Then

1. a sequence {xn} ⊂ X is called a Cauchy sequence iff limm,n→∞ q(xm, xn) and
limn,m→∞ q(xn, xm) exist and are finite;

2. the quasi partial metric space (X, q) is said to be complete if every Cauchy
sequence {xn} ⊂ X converges to some x ∈ X such that q(x, x) = limm,n→∞
q(xm, xn) = limn,m→∞ q(xn, xm).

Definition 1.6 ( [8]). Let (X, q) be a quasi partial metric space (QPMS). Then
a Cauchy sequence {xn} ⊂ X converges to x ∈ X iff q(x, x) = limn→∞ q(x, xn) =
limn→∞ q(xn, x).

Following are some relevant results in the field of quasi partial metric spaces
presented by Karapinar [8]:
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Lemma 1.1 ( [8]). Let (X, q) be a QPMS. Let (X, pq) be the corresponding PMS
and let (X, dpq

) be the corresponding metric space. The following statements are
equivalent:

1. The sequence {xn} is Cauchy in (X, q).
2. The sequence {xn} is Cauchy in (X, pq).
3. The sequence {xn} is Cauchy in (X, dpq

).

Lemma 1.2 ( [8]). Let (X, q) be a QPMS. Let (X, pq) be the corresponding PMS
and let (X, dpq

) be the corresponding metric space. The following statements are
equivalent:

1. (X, q) is complete.
2. (X, pq) is complete.
3. (X, dpq ) is complete.

Moreover,

lim
n→∞

dpq
(x, xn) = 0 ⇔ pq(x, x) = lim

n→∞
pq(x, xn) = lim

n,m→∞
pq(xn, xm)

⇔ q(x, x) = lim
n→∞

q(x, xn) = lim
n,m→∞

q(xn, xm)

= lim
n→∞

q(xn, x) = lim
m,n→∞

q(xm, xn).

On the other hand, Wang et al. introduced the notion of expansion mappings
for a metric space in [20].

Theorem 1.1 ( [20]). Let T : X → X be an onto mapping defined on a complete
metric space (X, d) satisfying the condition

d(Ta, Tb) ≥ cd(a, b) ∀a, b ∈ X.

where c > 1. Then T has a unique fixed point in X.

Later on, various authors extended this result by using more generalized expan-
sion conditions.

Recently, Dhawan et al. [5] defined expansion in quasi partial metric spaces and
proved some fixed point theorems stated below:

Lemma 1.3 ( [5]). Let (X, q) be a quasi partial metric space and {xn} be a sequence
of points of X. If there exists a number k ∈ (0, 1) such that

q(xn+1, xn) ≤ kq(xn, xn−1); n = 1, 2, ...

Then {xn} is a Cauchy sequence in X.

Theorem 1.2 ( [5]). Let (X, q) be a complete quasi partial metric space and D :
X → X be a bijective mapping defined on X. Suppose that there exists c1, c2, c3 ≥ 0
such that c1 + c2 + c3 > 1 and

q(Dx,Dy) ≥ c1q(x, y) + c2q(x,Dx) + c3q(y,Dy), ∀x, y ∈ X.

Then D has a fixed point in X.
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Proof. For more details, the reader can refer to [5].

Corollary 1.1 ( [5]). Let (X, q) be a complete quasi partial metric space and D :
X → X be a bijective mapping. Suppose that there exists a constant c > 1 such that

q(Dx,Dy) ≥ cq(x, y), ∀x, y ∈ X.

Then D has a unique fixed point in X.

After that many authors worked on aggregation functions, some of them are
[2, 4, 11,14,15].

The main focus of this paper is to introduce the notion of expansion mappings
in quasi partial metric spaces with the involvement of aggregation functions in such
a way that the previous results existing in literature can be retrieved as a particular
case of our new ones.

The manuscript is organized as follows: Section 2 presents quasi partial metric
aggregation with some properties and conditions required to characterize aggrega-
tion functions. In section 3, Projective Ψ-expansion is introduced via these notions
and some fixed point results are obtained through it. Section 4 presents some useful
examples. In section 5, an application to computer science is presented.

2. Quasi Partial Metric Aggregation
Inspired by the notions of metric aggregation functions due to Massanet and Valero
[11] and quasi partial metric due to Karapinar [8], the new notion of quasi partial
metric aggregation functions is presented in this section.

Definition 2.1. A function Ψ : Rn
+ → R+ is said to be a quasi partial metric

aggregation function provided that the function QΨ : X ×X → [0,+∞[ is a quasi
partial metric for every collection of Quasi partial metric spaces {(Xi, qi)}ni=1, where
X = X1 ×X2...×Xn and

QΨ(x, y) = Ψ(q1(x1, y1), ..., qn(xn, yn))

for all x = (x1, ...xn) ∈ X, y = (y1, ...yn) ∈ X.

Following results will help us to characterize quasi partial metric aggregation
functions.

Proposition 2.1. Let Ψ : Rn
+ → R+ be a quasi partial metric aggregation function,

then Ψ is monotone.

Proof. Consider the quasi partial metric q : R+ × R+ → R+ defined as q(x, y) =
max{(x−y), (y−x)}+x ∀ x, y ∈ R+. Since Ψ is a quasi partial metric aggregation
function, therefore the function QΨ : Rn

+ × Rn
+ → R+ defined by

QΨ(x, y) = Ψ(q(x1, y1), ..., q(xn, yn))

for all x = (x1, ...xn), y = (y1, ...yn) ∈ Rn
+ is a quasi partial metric.
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Consider x, y ∈ Rn
+ where x ⪯ y. Then

Ψ(x) = Ψ(x1, ..., xn)

= Ψ(q(x1, x1), ..., q(xn, xn))

= QΨ(x, x)

≤ QΨ(x, y)

= Ψ(q(x1, y1), ..., q(xn, yn))

= Ψ(y1, ..., yn)

= Ψ(y)

⇒ Ψ(x) ≤ Ψ(y).

Proposition 2.2. Let Ψ : Rn
+ → R+ be a quasi partial metric aggregation function,

If Ψ(x) = 0 for some x ∈ Rn
+, then x = 0̄ where 0̄ = (0, ..., 0) ∈ Rn

+.

Proof. Let us assume that Ψ(x) = 0 for some x ∈ Rn
+. Since Ψ is a quasi partial

metric aggregation function, therefore, by Proposition 2.1, Ψ is monotone and thus
Ψ
(
x
3

)
≤ Ψ(x) which implies that Ψ

(
x
3

)
= 0.

Consider the quasi partial metric QΨ : Rn
+×Rn

+ → R+ introduced in Proposition
2.1. Now

QΨ

(x
3
, x

)
= Ψ

(
q
(x1
3
, x1

)
, ..., q

(xn
3
, xn

))
= Ψ(x) = 0,

QΨ(x, x) = Ψ(q(x1, x1), ..., q(xn, xn))

= Ψ(x) = 0,

QΨ

(x
3
,
x

3

)
= Ψ

(
q
(x1
3
,
x1
3

)
, ..., q

(xn
3
,
xn
3

))
= Ψ

(x
3

)
= 0.

Thus, by definition of quasi partial metric, x
3 = x and therefore, x = 0̄.

Lemma 2.1. For every u, v, w, t ∈ R+ such that u ≤ w + t − v where v ≤ w
and v ≤ t, there exists x, y, z ∈ R2

+ for which q̃(x, y) = w + t − v, q̃(x, z) =
w, q̃(z, y) = t and q̃(z, z) = v where q̃ : R2

+ × R2
+ → R+ is the quasi partial

metric defined by q̃(x, y) = max{x1, y1} + max{x2, y2} + max{(y1 − x1), 0} for
every x = (x1, x2), y = (y1, y2) ∈ R2

+.

Proof. It can be easily seen that q̃ is the quasi partial metric defined on R2
+.

Furthermore, the following points of R2
+ satisfy the required conditions:

x =
(
w − v

2
,
v

2

)
, y =

(v
2
, t− v

2

)
, z =

(v
2
,
v

2

)
.

Lemma 2.2. For every u, v, w ∈ R+ such that u ≥ v and u ≥ w , there exists x, y ∈
I(R) for which q̂(x, y) = u, q̂(x, x) = v and q̂(y, y) = w where q̂ : I(R) × I(R) →
R+ is the quasi partial metric defined as q̂(x, y) = max{x2, y2} − min{x1, y1} +
max{(y1 −x1), 0} for every x = [x1, x2], y = [y1, y2] ∈ I(R) where I(R) denotes an
interval in R+.
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Proof. It can be easily seen that q̂ is the quasi partial metric defined on I(R).
Furthermore, the following elements of I(R) fulfill the required conditions:

x = [−v, 0], y = [−u,−u+ w].

Theorem 2.1. Ψ : Rn
+ → R+ is a quasi partial metric aggregation function if and

only if for each x, y, z, w ∈ Rn
+, we have

(1) Ψ(x) + Ψ(y) ≤ Ψ(z) + Ψ(w) whenever x+ y ⪯ z + w, y ⪯ z, y ⪯ w.

(2) Ψ(x) = Ψ(y) = Ψ(z) ⇒ x = y = z whenever y ⪯ x, z ⪯ x.

Proof. Suppose that Ψ is a quasi partial metric aggregation function. Let x, y, z,
w ∈ Rn

+ where x + y ⪯ z + w, y ⪯ z, y ⪯ w. Then by Lemma 2.1, there exists
x̂i, ŷi, ẑi ∈ R2

+ such that q̃(x̂i, ŷi) = zi + wi − yi, q̃(x̂i, ẑi) = zi, q̃(ẑi, ŷi) = wi and
q̃(ẑi, ẑi) = yi for all i = 1, ..., n.

Let X =
∏n

i=1 R2
+ and x̂ = (x̂1, ..., x̂n), ŷ = (ŷ1, ..., ŷn), ẑ = (ẑ1, ..., ẑn). Then

x̂, ŷ, ẑ ∈ X. Consider the quasi partial metric QΨ defined on X by

QΨ(x̂, ŷ) = Ψ(q̃(x̂1, ŷ1), ..., q̃(x̂n, ŷn))

for every x̂, ŷ ∈ X. Then

Ψ(z + w − y) = QΨ(x̂, ŷ) ≤ QΨ(x̂, ẑ) +QΨ(ẑ, ŷ)−QΨ(ẑ, ẑ)

= Ψ(z) + Ψ(w)−Ψ(y)

⇒Ψ(z + w − y) ≤ Ψ(z) + Ψ(w)−Ψ(y).

Also, monotonicity of Ψ implies that

Ψ(x) ≤ Ψ(z + w − y) ≤ Ψ(z) + Ψ(w)−Ψ(y)

⇒Ψ(x) + Ψ(y) ≤ Ψ(z) + Ψ(w).

Thus, condition (1) is proved.
Now, let x, y, z ∈ Rn

+ where y ⪯ x, z ⪯ x. Then by Lemma 2.2, there exists
x̂, ŷ ∈ I(R) such that q̂(x̂i, x̂i) = yi, q̂(ŷi, ŷi) = zi, and q̂(x̂i, ŷi) = xi for each
i = 1, ..., n. Let X =

∏n
i=1 I(R) and x̂ = (x̂1, ..., x̂n), ŷ = (ŷ1, ..., ŷn), ẑ = (ẑ1, ..., ẑn).

Then x̂, ŷ, ẑ ∈ X.
Consider the quasi partial metric QΨ on X defined by

QΨ(x̂, ŷ) = Ψ(q̃(x̂1, ŷ1), ..., q̃(x̂n, ŷn))

for every x̂, ŷ ∈ X.
Let Ψ(x̂) = Ψ(ŷ) = Ψ(ẑ) for x̂, ŷ, ẑ ∈ Rn

+. It is easy to see that QΨ(x̂, ŷ) =
QΨ(x̂, x̂) = QΨ(ŷ, ŷ) and therefore, by definition of quasi partial metric, x̂ = ŷ. By
Lemma 2.2, x̂ = [−y, 0] and ŷ = [−x,−x+ z] and Consequently, x = y = z. Hence,
condition (2) is proved.

Conversely, let us assume that conditions (1) and (2) hold. We will show that Ψ
is a quasi partial metric aggregation function. Let {(Xi, qi)}ni=1 be a family of quasi
partial metric spaces and X =

∏n
i=1Xi. Let x, y ∈ X and QΨ(x, y) = QΨ(x, x) =

QΨ(y, y). Then, by condition (2) and Lemma 2.1, we have qi(xi, yi) = qi(xi, xi) =
qi(yi, yi) ∀ i = 1, ..., n. It follows that xi = yi ∀ i = 1, ..., n and thus, x = y.
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Now, set y = w = 0̄ in condition (1). Since Ψ is monotone and qi(xi, xi) ≤
qi(xi, yi), qi(xi, xi) ≤ qi(yi, xi) ∀ i = 1, ..., n, we obtain

QΨ(x, x) = Ψ(q1(x1, x1), ..., qn(xn, xn))

≤ Ψ(q1(x1, y1), ..., qn(xn, yn))

= QΨ(x, y).

Similarly, QΨ(x, x) ≤ QΨ(y, x).
Also, by (1), for each x, y, z ∈ X,

QΨ(x, z) = Ψ(qi(xi, zi))

≤ Ψ(qi(xi, yi)) + Ψ(qi(yi, zi))−Ψ(qi(yi, yi))

= QΨ(x, y) +QΨ(y, z)−QΨ(y, y).

Thus, all the axioms are satisfied for quasi partial metric QΨ induced through
aggregation of quasi partial metrics qi where i = 1, ..., n.

3. Projective expansion and Quasi Partial Metric
Aggregation

This section presents some fixed point theorems in quasi partial metric spaces
through aggregation. For this, the notions of expansion and completeness in the
aforesaid context are firstly introduced.

Remark 3.1. Let {Xi}ni=1 be a collection of nonempty sets and X =
∏n

i=1Xi. Let
D be a self mapping defined on X with coordinate functions Di : X → Xi, i = 1, ...n
such that

D(x) = (D1(x), ...,Dn(x)) for all x ∈ X.

Definition 3.1. Let {(Xi, qi)}ni=1 be a family of quasi partial metric spaces and
X =

∏n
i=1Xi. Let Ψ : Rn

+ → R+ be a quasi partial metric aggregation function.
Then the mapping D : X → X is called a projective Ψ-expansion from (X,QΨ)
into itself, if there exists n constants λ1, ..., λn > 1 such that

qi(Di(x),Di(y)) ≥ λiΨ(q1(x1, y1), ...qn(xn, yn))

for all x, y ∈ X, where QΨ is the quasi partial metric induced by aggregation of the
collection of quasi partial metric spaces {(Xi, qi)}ni=1 through aggregation function
Ψ.

Note that if we put n = 1 and Ψ an identity function in Definition 3.1, then, the
notion given by Wang et al. becomes a particular case of Ψ-projective expansion
(see Theorem 1.1).

Example 3.1. Let Xi = [0, 1]; i = 1, 2 and q be the quasi partial metric defined
as q(x, y) = max{(x− y), (y−x)}+x for all (x, y) ∈ [0, 1]× [0, 1]. Let {(Xi, qi)}2i=1

be the complete quasi partial metric spaces where q1 = q2 = q and Ψ : R2
+ → R+

be the function defined as Ψ((x1, x2)) =
x1+x2

2 + 1
2 for all x ∈ R2

+.
It can be easily verified that conditions (1) and (2) hold in the statement of

Theorem 2.1 and therefore, it is a quasi partial metric aggregation function.
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Define the mapping D : R2
+ → R2

+ by D(x) = (2, 2) for each x = (x1, x2) ∈ R2
+.

It is not hard to see that D is a projective Ψ- expansion as for x = (1, 0), y = (0, 0),
we obtain by definition of q,

q(Di(x),Di(y)) = q(2, 2)

= 2 ≥ 4

3
Ψ(q1(1, 0), q2(0, 0))

for all x, y ∈ R2
+.

Example 3.2. Let Xi = R+; i = 1, 2 and q be the quasi partial metric defined as
q(x, y) = max{(x − y), (y − x)} + x for all (x, y) ∈ R+ × R+. Let {(Xi, qi)}2i=1 be
the complete quasi partial metric spaces where q1 = q2 = q and Ψ : R2

+ → R+ be
the function defined as Ψ((x1, x2)) = (x1 + x2) for all x ∈ R2

+.
It can be easily verified that conditions (1) and (2) hold in the statement of

Theorem 2.1 and therefore, it is a quasi partial metric aggregation function.
Define the mapping D : R2

+ → R2
+ by D(x) = (4(x1 + x2), 4(x1 + x2)) for each

x = (x1, x2) ∈ R2
+. It is not hard to see that D is a projective Ψ- expansion as

Case I: For x ⪰ y, we obtain by definition of q,

q(Di(x),Di(y)) = q(4(x1 + x2), 4(y1 + y2))

= 8(x1 + x2)− 4(y1 + y2)

≥ 3[2(x1 + x2)− (y1 + y2)]

= λΨ(q1(x1, y1)q2(x2, y2))

for all x, y ∈ R2
+ where λ = 3 > 1.

Case II: For x ⪯ y, we obtain by definition of q,

q(Di(x),Di(y)) = q(4(x1 + x2), 4(y1 + y2))

= 4(y1 + y2)

≥ 3(y1 + y2)

= λΨ(q1(x1, y1)q2(x2, y2))

for all x, y ∈ R2
+ where λ = 3 > 1.

The next result will be crucial in order to prove the existence and uniqueness of
fixed point in quasi partial metric spaces considered via aggregation.

We will set 1i = (0, ..., 0,

i︷︸︸︷
1 , 0, ..., 0) for all i = 1, ..., n.

Lemma 3.1. Let Ψ : Rn
+ → R+ be a homogeneous quasi partial metric aggregation

function such that Ψ(1, ..., 1) = 1 = Ψ(1i) for all i = 1, ...n. Let {(Xi, qi)}ni=1

be a family of complete quasi partial metric spaces and X =
∏n

i=1Xi. Then the
quasi partial metric space (X,QΨ) is complete, where QΨ is quasi partial metric
aggregation induced by Ψ.

Proof. Let {xp}p∈N be a Cauchy sequence in (X,QΨ). Then there exists l ∈ R+

such that limp,r QΨ(x
p, xr) = l and for given ε > 0, there exists p0 ∈ N such that

QΨ(x
p, xr) < ε+ l for all p, r ≥ p0.

This implies that
Ψ(q1(x

p
1, x

r
1), ..., q1(x

p
n, x

r
n)) < ε+ l.
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Since Ψ is a quasi partial metric aggregation, therefore Ψ is monotone and thus we
have

Ψ(qi(x
p
i , x

r
i ).1i) ≤ Ψ(qi(x

p
i , x

r
i )) < ε+ l for all i = 1, ...n,

and as Ψ is homogeneous, it follows that

qi(x
p
i , x

r
i ) = qi(x

p
i , x

r
i )Ψ(1i) = Ψ(qi(x

p
i , x

r
i ).1i) < ε+ l

for all i = 1, ...n and for all p, r ≥ p0.
This shows that there exists xi ∈ Xi such that limp x

p
i = xi and limp,r qi(x

p
i , x

r
i ) =

qi(xi, xi) = limp qi(xi, x
p
i ) = limp qi(x

p
i , xi) = l for all i = 1, ...n. Also, since (Xi, qi)

is complete quasi partial metric space for all i = 1, ...n; therefore for given ε > 0,
there exists m0 ∈ N such that qi(xj , xmj )− qi(xj , xj) <

ε
3 for all m ≥ m0 and for all

i = 1, ..., n.
By Theorem 2.1, we obtain

QΨ(x, x
m)−QΨ(x, x) = Ψ(q1(x1, x

m
1 ), ..., q1(xn, x

m
n ))−Ψ(q1(x1, x1), ..., q1(xn, xn))

≤ Ψ
(ε
3
, ...,

ε

3

)
=
ε

3
Ψ(1, ..., 1) < ε,

as Ψ is homogeneous and Ψ(1, ...1) = 1.
Thus, QΨ(x, xm)−QΨ(x, x) < ε for all m ≥ m0 and limmQΨ(x, xm) = QΨ(x, x).

Similarly, we can show that limmQΨ(xm, x) = QΨ(x, x).
Also, QΨ(x, x) = Ψ(q1(x1, x1), ..., q1(xn, xn)) = Ψ(l, ...l) = lΨ(1, ...1) = l.

Hence the quasi partial metric space (X,QΨ) is complete.
In the next theorem, we shall show that every projective Ψ-expansion satisfying

the condition Ψ(1, ..., 1) ≥ 1, is an expansion.

Theorem 3.1. Let {(Xi, qi)}ni=1 be a family of quasi partial metric spaces with
X =

∏n
i=1Xi. Let Ψ be a homogeneous quasi partial metric aggregation function

such that Ψ(1, ..., 1) ≥ 1 and D is a projective Ψ-expansion. Then, D is an expansion
from the quasi partial metric space (X,QΨ) to itself where QΨ is the quasi partial
metric induced by aggregation.

Proof. It follows from Proposition 2.1 that Ψ is monotone. For x, y ∈ X, mono-
tonicity of Ψ and nature of mapping D implies

QΨ(D(x),D(y)) = Ψ(q1(D1(x),D1(y)), ..., qn(Dn(x),Dn(y)))

≥ Ψ(λ1Ψ(q1(x1, y1), ..., qn(xn, yn)),

... λnΨ(q1(x1, y1), ..., qn(xn, yn)))

≥ Ψ(λΨ(q1(x1, y1), ..., qn(xn, yn)), ...λΨ(q1(x1, y1), ..., qn(xn, yn)))

where λ = min{λ1, ..., λn}. Homogeneity of Ψ yields

Ψ(λΨ(q1(x1, y1), ..., qn(xn, yn)), ...λΨ(q1(x1, y1), ..., qn(xn, yn)))

= λΨ(1, ..., 1)Ψ(q1(x1, y1), ..., qn(xn, yn)).

Thus, above inequality becomes

QΨ(D(x),D(y)) ≥ λΨ(1, ..., 1)QΨ(x, y)

≥ λQΨ(x, y).
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Hence, the mapping D is an expansion from the quasi partial metric space (X,QΨ)
to itself.

Next we shall show the existence and uniqueness of fixed point.

Corollary 3.1. Let {(Xi, qi)}ni=1 be a family of quasi partial metric spaces with
complete metrics qi; i = 1, ..., n and X =

∏n
i=1Xi. Let Ψ be a homogeneous quasi

partial metric aggregation function such that Ψ(1, ..., 1) = Ψ(1i) = 1; i = 1, ..., n
and D is an onto projective Ψ-expansion. Then D has a unique fixed point x∗.

Proof. By Lemma 3.1, it follows that the quasi partial metric space (X,QΨ) is
complete and by Theorem 3.1 shows that D is an expansion from the quasi partial
metric space (X,QΨ) to itself. By Corollary 1.1, we see that D has a unique fixed
point x∗ in X.

According to these results, every projective Ψ-expansion is an expansion but
does the converse hold? Example 4.1 gives an answer to this query i.e. every
expansion mapping need not be a Ψ-projective expansion.

4. Examples
Example 4.1. Let Xi = R+; i = 1, 2 and q be the quasi partial metric defined
as q(x, y) = max{(x − y), (y − x)} + x for all (x, y) ∈ R+ × R+. Let {(Xi, qi)}2i=1

be the collection of complete quasi partial metric spaces where q1 = q2 = q and
Ψ : R2

+ → R+ be the function defined as Ψ((x1, x2)) = (x1 + x2) for all x ∈ R2
+.

It can be easily verified that conditions (1) and (2) hold in the statement
of Theorem 2.1 and therefore, it is a quasi partial metric aggregation function.
Moreover, Ψ(1, 1) = 2 ≥ 1. Define the mapping D : R2

+ → R2
+ by D(x) =

(2(x1 + x2), 2(x1 + x2)) for each x = (x1, x2) ∈ R2
+. It is not hard to see that

D is an expansion as

QΨ(D(x),D(y)) = QΨ((2(x1 + x2), 2(x1 + x2)), (2(y1 + y2), 2(y1 + y2)))

= Ψ(q1(2(x1 + x2), 2(y1 + y2)), q2(2(x1 + x2), 2(y1 + y2))).

Case I: For x ⪰ y, we obtain by definition of q,

QΨ(D(x),D(y)) = 8(x1 + x2)− 4(y1 + y2)

≥ 2[2(x1 + x2)− (y1 + y2)]

= 2Ψ(2x1 − y1, 2x2 − y2)

= 2Ψ(q1(x1, y1), q2(x2, y2))

⇒ QΨ(D(x),D(y)) ≥ λQΨ(x, y)

for all x, y ∈ R2
+ where λ = 2 > 1.

Case II: For x ⪯ y, we obtain by definition of q,

QΨ(D(x),D(y)) = 4(y1 + y2)

≥ 2(y1 + y2)

= 2Ψ(q1(x1, y1), q2(x2, y2))

⇒ QΨ(D(x),D(y)) ≥ λQΨ(x, y)

for all x, y ∈ R2
+ where λ = 2 > 1.
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It follows that D is an expansion from quasi partial metric space (R2
+, QΨ) into

itself. Next we show that D is not a projective Ψ-expansion.
Consider x, y ∈ R2

+ with x = (0, 1) and y = (1, 0). Then q(Di(x),Di(y)) =
q(2, 2) = max{0, 0}+2 = 2 and λΨ(q1(x1, y1), q2(x2, y2)) = λΨ(q1(0, 1), q2(1, 0)) =
λΨ(1, 2) = 3λ.

Thus, q(Di(x),Di(y)) ≱ λΨ(q1(x1, y1), q2(x2, y2)) as λ > 1.

The next example shows that the assumption ‘Ψ is homogeneous’ cannot be
omitted in the statement of Theorem 3.1.

Example 4.2. Let ([0, 1], q) be the complete quasi partial metric space such that q
denotes the restriction of the quasi partial metric introduced in Proposition 2.1 to
[0, 1]. Consider the family of complete quasi partial metric spaces {([0, 1], qi)}i=1,2

such that q1 = q2 = q. Define the function Ψ : R2
+ → R+ by Ψ(x) = x1 + x2 +

1
4

for all x ∈ R2
+. It is easy to see that for the function Ψ assertions (1) and (2) hold

in the statement of Theorem 2.1 and, thus, it is a quasi partial metric aggregation
function. Moreover, it is clear that Ψ(1, 1) ≥ 1. However, Ψ is not homogeneous.
Indeed,

Ψ(2, 2) =
17

4
̸= 18

4
= 2Ψ(1, 1).

Next, consider the mapping D : [0, 1]2 → [0, 1]2 defined by D(x) = (0, 0) for all
x ∈ [0, 1]2. It is clear that D is a projective Ψ-expansion. Nevertheless, D is not an
expansion from ([0, 1]2, QΨ) into itself, where QΨ is the quasi partial metric induced
by aggregation of the family of quasi partial metric spaces {([0, 1], qi)}i=1,2.,�through
Ψ. Indeed,

QΨ(D(0, 0),D(0, 0)) = QΨ((0, 0), (0, 0)) = Ψ(0, 0) =
1

4
.

Therefore, there does not exist λ > 1 such that

QΨ(D(0, 0),D(0, 0)) ≥ λQΨ((0, 0), (0, 0)).

In the next example, we show that the assumption Ψ(1, ..., 1) ≥ 1 cannot be
omitted in the statement of Theorem 3.1 in order to guarantee that a projective
Ψ-expansion is also an expansion from (X,QΨ) into itself.

Example 4.3. Let {([0, 1], qi)}i = 1, 2. be the family of complete quasi partial
metric spaces such that q1 = q2 = q. Define the function Ψ : R2

+ → R+ by
Ψ(x) = x1+x2

3 for all x ∈ R2
+. It is easy to see that Ψ is a homogeneous quasi

partial metric aggregation function. Nevertheless, Ψ(1, 1) = 2
3 < 1.

Next, consider the mapping D : [0, 1]2 → [0, 1]2 defined by D(x) = (2(x1 +
x2), 2(x1 + x2)) for all x ∈ [0, 1]2. Then we have for x ⪰ y,

q(Di(x),Di(y)) = q(2(x1 + x2), 2(y1 + y2))

= 4(x1 + x2)− 2(y1 + y2)

≥ 3

(
2

3
(x1 + x2)−

1

3
(y1 + y2)

)
= λΨ(q(x1, y1), q(x2, y2)) with λ = 3 > 1

for all x, y ∈ [0, 1]2 and for i = 1, 2. Similar is the case for x ⪯ y. So, D is a
projective Ψ-expansion. However, D is not an expansion from the quasi partial
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metric space ([0, 1]2, QΨ) into itself where QΨ is the quasi partial metric induced by
aggregation of the family of quasi partial metric spaces {([0, 1], qi)}i=1,2.,�through
Ψ. Indeed, take x, y ∈ [0, 1]2 given by x = (0, 0) and y = (0, 1). Then there does
not exist λ > 1 such that

QΨ(D(0, 0),D(0, 1)) ≥ λQΨ((0, 0), (2, 2))

Since

QΨ(D(0, 0),D(0, 1)) = QΨ((0, 0), (2, 2)) = Ψ(2, 2) =
4

3
.

5. Application
In the field of computer science, the objective of complexity analysis is to assess
which of the algorithm is most suitable or in other words, the algorithm which
takes minimum running time with minimum space even with large inputs and other
suitable resources. This is usually done by means of asymptotic analysis where the
running time of an algorithm A is denoted by a mapping TA : N → (0,∞). The
time or space taken by an algorithm to solve the problem under consideration is
denoted by TA(n) where n ∈ N represents the size of input data to be processed.
Let S(TA) denotes the set of all functions from N to (0,∞).

When the complexity analysis of an algorithm has to be determined, one ap-
proaches to asymptotic complexity analysis rather than exact analysis. So, they
try to find such an algorithm that takes ”approximately” minimum running time,
minimum space even with large inputs and other suitable resources.

Let f ∈ S(TA) denote the running time or space taken by an algorithm. Then,
we can define an asymptotic upper bound for f in the following way:

If there exists n0 ∈ N, k ∈ R+ and a function g ∈ S(TA) such that f(n) ≤ kg(n)
for all n ∈ N such that n0 ≤ n. Then, g gives an asymptotic upper bound of f , and
represents an ”approximate” information of the algorithm. We write it as f ∈ U(g).
Similarly, we can also define an asymptotic lower bound for the algorithm. The
notation f ∈ L(g) means that there exists n0 ∈ N, k ∈ R+ and a function g ∈ S(TA)
such that kg(n) ≤ f(n) for all n ∈ N such that n0 ≤ n. The best situation is the
case when we can find such a function f which satisfy the condition f ∈ ℧(g) where
℧(g) = U(g) ∩ L(g). In this case, the function f represents a ’tight’ asymptotic
bound of algorithm i.e. it represents the total asymptotic information about the
most suitable resources to solve the problem under consideration.

Let the pair (C, dc) represents the complexity space, where

C =

{
f ∈ S(TA) :

∞∑
n=1

2−n 1

f(n)
<∞

}

and dc is the complete quasi partial metric on C defined by

dc(f, g) =

∞∑
n=1

2−nmax

{
1

f(n)
− 1

g(n)
,

1

g(n)
− 1

f(n)

}
+

1

f(n)
.

The members of C are called complexity functions and dc(f, g) represents the com-
plexity distance from f to g. Then dc(f, g) = 0 means ’f is as efficient as g’.
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We will solve the problem by using Divide and Conquer method given in [16]. In
this procedure, we will split the problem into subproblems (depending upon different
resources) and solving them separately using same algorithm to find the suitable
solution. After obtaining the solutions of the subproblems, we will aggregate all
subproblems to obtain a global solution to the original problem which will represent
an algorithm with all approximately suitable resources.

The next result explores the significance of above theory.

Proposition 5.1. Let D be an onto self mapping defined on C with coordinate
functions Di : C → Ci, i = 1, ...n such that

D(f)(n) = (D1(f)(n), ...,Dn(f)(n)) for each f ∈ C and n ∈ N.

satisfying the expansion inequality

dci (Di(f)(n),Di(g)(n)) ≥ λiΨ(dc1(f1, g1), ...d
c
n(fn, gn))

for all fi, gi ∈ C, i = 1, 2, ..., n and λ1, ..., λn > 1. Then D ∈ ℧(g).

Proof. We construct the members Ci, i = 1, 2, ...n; n ∈ N of complexity class
C in such a way that they will be based on different resources such as time, space,
data etc. and C =

∏n
i=1 Ci. It is easy to see that (Ci, dci ) is a collection of complete

quasi partial metric spaces. Let Ψ : Rn
+ → R+ be the function used to aggregate

these members and it is defined in such a way that Ψ(1, 1, ..., 1) ≥ 1. Let D be an
onto self mapping defined on C with coordinate functions Di : C → Ci, i = 1, ...n
such that

D(f)(n) = (D1(f)(n), ...,Dn(f)(n)) for each f ∈ C and n ∈ N.

satisfying the expansion inequality

dci (Di(f)(n),Di(g)(n)) ≥ λiΨ(dc1(f1, g1), ...d
c
n(fn, gn))

for all fi, gi ∈ C, i = 1, 2, ..., n and λ1, ..., λn > 1.
Thus, all the conditions of Corollary 3.1 are fulfilled and therefore, D has a fixed

point f∗ i.e. D ∈ L(g) ∩ U(g). It follows that D ∈ ℧(g).
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