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1. Introduction

The Riemann-Hilbert boundary value problem is also called Riemann type problem
and is a boundary value problem for analytic functions in plane which was first
formulated by Hilbert during his investigations of a set of problems mentioned by
Riemann in his dissertation. The results of linear Riemann-Hilbert type problems
on the complex plane in the classical sense were studied. What is the nonlinear
Riemann-Hilbert approach in higher dimensional space? Is this nonlinear approach
exists? Clifford algebras were introduced over one hundred years ago in attempt by
William Kingdon Clifford to develop higher dimensional number system analogous
to the real and complex numbers. Clifford analysis generalized complex analysis to
a higher dimension in a natural and elegant way is systematically studied, see [4,7].
Thus, it is natural to consider Riemann-Hilbert problems within the frame work
of Clifford analysis setting. We refer to [1–3, 8–12, 14]. From pure mathematics,
mathematical physics and engineering applications, we need to research the theory
of nonlinear Riemann type problems in higher dimensional spaces. The nonlinear
problems are not easy to be solved. Due to the Hilbert transform which plays an
important role in Riemann-Hilbert problems in Clifford analysis is not a compact
operator, the classical method of functional analysis fail to solve the problems. To
solve the nonlinear Riemann type problems, we use Clifford analysis and Newton
embedding method.

The structure of this article is the following. In Section 2 some basic notations
of Clifford algebras and Clifford analysis need in the sequel are introduced. Section
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3 is dedicated to our main result, where the nonlinear Riemann-Hilbert problem is
investigated in Clifford Hölder spaces. Section 4 gives an error estimation for the
approximate solutions in the Newton embedding procedure.

2. Preliminaries

LetA := R(e1, . . . , en) denote the free R-algebra with n indeterminants {e1, . . . , en}.
Let J be the two-sided ideal in A generated by the elements

{e2
i − 1, i = 1, . . . , s; e2

i + 1, i = s+ 1, . . . , n; eiej + ejei, 1 ≤ i < j ≤ n}.

The quotient algebra Cl(Vn,s) := A/J is called the Clifford algebra with parameters
n, s. Without risk of ambiguity, we take the usual practice of using the same symbol
to denote an indeterminant ei in A and its equivalent class in A/J . Therefore,
e1, · · · , en considered as elements of A/J have the following relations:

e2
i = 1, i = 1, . . . , s,

e2
i = −1, i = s+ 1, . . . , n,

eiej + ejei = 0, i 6= j.

(2.1)

Set
el1...lr := el1 · · · elr , while 1 ≤ l1 < · · · < lr ≤ n.

For more information on Cl(Vn,s), we refer to [4–7]. In this article, we only consider
s = n. Thus Cl(Vn,n) is a real linear non-commutative algebra. An involution is
defined by 

eA = (−1)
n(A)(n(A)+3)

2 eA, if A ∈ PN,

λ =
∑

A∈PN
λAeA, if λ =

∑
A∈PN

λAeA,
(2.2)

where

{eA, A = {l1, . . . , lr} ∈ PN, 1 ≤ l1 < · · · < lr ≤ n},

n(A) is the cardinal number of the set A, N stands for the set {1, 2, · · · , n} and
PN denotes the family of all order-preserving subsets of N in the above way. The
Cl(Vn,n)-value n-1-differential form

dσ =

n∑
i=1

(−1)i−1eidx̂
N
i

is exact, where

dx̂Ni = dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn.

If dS stands for the classical surface element and

n =

n∑
i=1

eini,
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where ni is the i-th component of the outward pointing normal, then the Clifford-
valued surface element dσ can be written as

dσ = ndS. (2.3)

The norm of λ is defined by |λ| = (
∑

A∈PN
|λA|2)

1
2 .

Suppose Ω be an open non-empty subset of Rn (n ≥ 3), denote Ω+ = Ω and

Ω− = Rn \ Ω. We introduce the Dirac operator D =
n∑
i=1

ei
∂
∂xi

. In particular, we

have that DD = ∆ where ∆ is the Laplacian over Rn. A function u : Ω 7→ Cl(Vn,n)
is said to be left monogenic if it satisfies the equation D[u](x) = 0 for each x ∈ Ω. A
similar definition can be given for right monogenic functions. For more information
as regards the Clifford algebra can be found in [4, 7].

3. The Clifford Hölder spaces and a non-linear Rie-
mann type Problems

In order to solve nonlinear Riemann type boundary value problem, we need to
introduce the theory of Clifford Hölder space and define a new function space.

Let Ω be an nonempty subset of Rn, u(x) =
∑
A

eAuA(x), where uA(x) are

real functions. u(x) is called a Hölder continuous functions on Ω if the following
condition is satisfied

|u(x1)− u(x2)| =

[∑
A

|uA(x1)− uA(x2)|2
] 1

2

≤ C|x1 − x2|α,

where for any x1, x2 ∈ Ω, x1 6= x2, 0 < α ≤ 1, C is a positive constant independent
of x1, x2. Denote by Hα(Ω) the set of Hölder continuous functions with values in
Cl(Vn,n) on Ω (the Hölder exponent is α, 0 < α ≤ 1). Define the norm of u in
Hα(Ω) as

‖u‖Hα(Ω) = ‖u‖∞ + ‖u‖hα (3.1)

where ‖u‖∞ := sup
x∈Ω
|u(x)|, ‖u‖hα := sup

x1,x2∈Ω
x1 6=x2

|u(x1)−u(x2)|
|x1−x2|α . It is clear that Hα(Ω) is

a Banach space with norm (3.1).
We study the following Riemann type problems with respect to a given boundary

∂Ω which is a Lyapunov surface of an open bounded nonempty subset Ω in Rn.
In what follows, we denote

u±(x) = lim
y→x∈∂Ω

y∈Ω±

u(y).

For u ∈ Hα(∂Ω), 0 < α ≤ 1. Its Cauchy transform Cu and Hilbert transform
Hu by

Cu(x) :=
1

ωn

∫
∂Ω

y − x

|y − x|n
dσyu(y), x ∈ Rn \ ∂Ω, (3.2)
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and

Hu(x) :=
1

ωn

∫
∂Ω

y − x

|y − x|n
dσyu(y), x ∈ ∂Ω, (3.3)

respectively. Here ωn is the area of the unit sphere in Rn. In the articles [13, 15],
the authors established the relationship between the Cauchy transform (3.2) and
the Hilbert transform (3.3).

Lemma 3.1 ( [13,15]). For u ∈ Hα(∂Ω), 0 < α ≤ 1. Then

Cu±(x) = ±u(x)

2
+

1

2
Hu(x). (3.4)

Furthermore, the Cauchy transform Cu can be Hölder continuously extended from
Ω into Ω and from Rn \Ω into Rn \Ω with limiting values in (3.4) and we have the
inequalities

‖Cu‖Hα(Ω) ≤ C̃‖u‖Hα(∂Ω) (3.5)

and

‖Cu‖Hα(Rn\Ω) ≤ C̃‖u‖Hα(∂Ω), (3.6)

for some constant C̃ depending on α and ∂Ω.

Theorem 3.1. Let u be the solution of the following Riemann type problem:
D[u] = 0, in Rn \ ∂Ω,

u+(x) = u−(x) + g(x), x ∈ ∂Ω,

lim
|x|→∞

u(x) = 0,

where g(x) is Clifford value function in Hα(∂Ω) 0 < α ≤ 1. Then

‖u‖Hα(Ω) ≤ C̃‖g‖Hα(∂Ω) (3.7)

and

‖u‖Hα(Rn\Ω) ≤ C̃‖g‖Hα(∂Ω). (3.8)

Proof. In view of Lemma 3.1, we can directly prove the result.

Remark 3.1. If a bounded u in Hα(Ω)
⋂
Hα(Rn \ Ω), we define the norm

‖u‖α := ‖u‖Hα(Ω) + ‖u‖Hα(Rn\Ω),

then (3.7) and (3.8) in Theorem 3.1 can be written in the form

‖u‖α ≤ C‖g‖Hα(∂Ω)

where C = 2C̃.
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In this sequence, we consider the following nonlinear Riemann type problem
now: 

D[u] = 0, in Rn \ ∂Ω,

u+(x) = u−(x) + g(x, u+, u−), x ∈ ∂Ω,

lim
|x|→∞

u(x) = 0,

(3.9)

we assume the following conditions to be fulfilled:
(C1) For each u1, u2 in Hα(∂Ω) 0 < α ≤ 1, the function

g(x, u1, u2) = g(x, u1(x), u2(x))

is in Hα(∂Ω) as a function of x. Moreover there exists a nonnegative constant N
such that CN < 1 where C is the same as in Remark 3.1, and for all u1, ũ1, u2, ũ2

in Hα(∂Ω) we have

‖g(·, u1, u2)− g(·, ũ1, ũ2)‖Hα(∂Ω)

≤N [‖u1 − ũ1‖Hα(∂Ω) + ‖u2 − ũ2‖Hα(∂Ω)].

We shall prove the existence of solution for the boundary value problem (3.9).

Theorem 3.2. Suppose g satisfies the above conditions (C1). Then the problem
(3.9) has exactly one solution provided that the constant N in (C1).

Proof. Firstly, for each t(0 ≤ t ≤ 1), we consider the problem
D[ut] = 0, in Rn \ ∂Ω,

u+
t (x) = u−t (x) + tg(x, u+, u−), x ∈ ∂Ω,

lim
|x|→∞

ut(x) = 0.

(3.10)

When t = 1, the problem (3.10) is just (3.9). For t = 0, u0(x) is a monogenic in
Rn vanishing at infinity so that u0(x) ≡ 0 is the unique solution. We now assume
ut0(x) to be a solution of (3.10) for a given t0 with 0 ≤ t0 < 1. With the help of
a combination an imbedding method with a Newton’s method, we will show the
existence of a solution of (3.10) for all t in t0 ≤ t ≤ t0 + δ for some δ > 0 that is
independent of t0. Then we can conclude there is a solution for t = 1.

We denote u0
t (x) , ut0(x) and let uk+1

t (x) to be the solution of the linear
problem 

D[uk+1
t ] = 0, in Rn \ ∂Ω,

(uk+1
t )+(x) = (uk+1

t )−(x) + tg(x, (ukt )+, (ukt )−), x ∈ ∂Ω,

lim
|x|→∞

ut(x) = 0.

(3.11)

Thus the linear problem (3.11) is uniquely solvable. The differences

fkt (x) , uk+1
t (x)− ukt (x), k ∈ N,
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fulfill 
D[fkt ] = 0, in Rn \ ∂Ω,

(fkt )+(x) = (fkt )−(x) + hk(x), x ∈ ∂Ω,

lim
|x|→∞

fnt (x) = 0,

where
h0(x) , (t− t0)g(x, (u0

t )
+, (u0

t )
−)

and

hk(x) , t[g(x, (ukt )+, (ukt )−)− g(x, (uk−1
t )+, (uk−1

t )−)], k ∈ N \ {0}.

In view of Theorem 3.1, we obtain that

‖fkt ‖α ≤ C‖hk‖Hα(∂Ω) k ∈ N \ {0}. (3.12)

From the condition (C1), it is easy to check that

‖h0‖Hα(∂Ω) ≤(t− t0)N‖(u0
t )

+‖Hα(∂Ω) + (t− t0)N‖(u0
t )
−‖Hα(∂Ω)

+ (t− t0)‖g(·, 0, 0)‖Hα(∂Ω)

≤(t− t0)N‖u0
t‖α + (t− t0)‖g(·, 0, 0)‖Hα(∂Ω)

(3.13)

and

‖hk‖Hα(∂Ω) ≤tN‖(fk−1
t )+‖Hα(∂Ω) + tN‖(fk−1

t )−‖Hα(∂Ω)

≤tN‖fk−1
t ‖α.

(3.14)

Combining (3.12), (3.13) with (3.14), we have the following inequalities

‖f0
t ‖α ≤ C(t− t0)N‖u0

t‖α + C(t− t0)‖g(·, 0, 0)‖Hα(∂Ω) (3.15)

and

‖fkt ‖α ≤ CtN‖fk−1
t ‖α, (3.16)

where k ∈ N \ {0}.
Since u0

t (x) is a solution of (3.11) for t = t0, applying Theorem 3.1, the apriori
estimate gives

‖u0
t‖α ≤ t0C‖g(·, (u0

t )
+, (u0

t )
−)‖Hα(∂Ω),

using the condition (C1), we obtain that

‖u0
t‖α ≤ t0CN‖u0

t‖α + t0C‖g(·, 0, 0)‖Hα(∂Ω). (3.17)

Denote
κ , CN

and
κ0 , C‖g(·, 0, 0)‖Hα(∂Ω).
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We then have

‖u0
t‖α ≤

t0κ0

1− t0κ
, (3.18)

and rewrite (3.15) as

‖f0
t ‖α ≤ (t− t0)(

t0κ0

1− t0κ
+ κ0). (3.19)

We have

k∑
j=0

(‖uj+1
t ‖α − ‖ujt‖α) ≤

n∑
k=0

‖fkt ‖α

and use the inequalities (3.15), (3.16), (3.17) and CN < 1, when n tend to +∞,
these imply the convergence of {ukt }+∞k=0 in the ‖ · ‖α.

Secondly, we now prove that the limit function ut(x) satisfies (3.11). To do so
we let n tend to +∞ in (3.11). Due to convergence is with respect to the ‖ · ‖α
norm it follows that ut(x) belongs to Hα(Ω)

⋂
Hα(Rn \ Ω), and that the trans-

mission condition of (3.10) is satisfied. Moreover, ‖ukt ‖α are uniformly bounded,
by Weierstrass’ Theorem (See [4, 7]), we conclude that D[uk+1

t ] converge to D[uk]
uniformly on compact subsets of Rn \ ∂Ω such that D[ut] = 0 in Rn \ ∂Ω. It is
clear that lim

|x|→∞
ut(x) = 0. Hence we have completed to show that ut(x) satisfies

all of (3.10). It follows that after finitely many steps one ends up with a solution of
(3.11) for t = 1, which is the problem (3.10).

Finally, to finish the proof of Theorem 3.2, we need to show the uniqueness. Let
u1 and u2 be two solutions of (3.9). Then u = u1 − u2 is a solution of the linear

D[u] = 0, in Rn \ ∂Ω,

u+(x) = u−(x) + g̃(x), x ∈ ∂Ω,

lim
|x|→∞

u(x) = 0.

where

g̃(x) , g(x, u+
1 (x), u−1 (x))− g(x, u+

2 (x), u−2 (x)).

Using Theorem 3.1 and the condition (C1) again, we get

‖u‖α ≤ CN‖u‖α,

since CN < 1, we conclude that u1 = u2. The proof is done.

4. Error Estimation

In this section, we shall compute the difference of the solution of (3.9) and its
approximation ukt (x). Let

vk(x) , ut(x)− ukt (x), v(x) , u(x)− ut(x)
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where u(x) = u1(x).
In view of (3.10) and (3.11), we have

D[vk+1] = 0, in Rn \ ∂Ω,

v+
k+1(x) = v−k+1(x) + g̃k(x), x ∈ ∂Ω,

lim
|x|→∞

vk+1(x) = 0,

where

g̃k(x) , t[g(x, u+
t , u

−
t )− g(x, (ukt )+, (ukt )−)].

According to Theorem 3.1, we get

‖vn+1‖α ≤ C‖g̃k‖Hα(∂Ω)

≤ tCN‖u+
t − (ukt )+‖Hα(∂Ω) + tCN‖u−t − (unt )−‖Hα(∂Ω)

≤ tCN‖ut − ukt ‖α
≤ tCN [‖vk+1‖α + ‖uk+1

t − ukt ‖α]

= tκ[‖vk+1‖α + ‖fkt ‖α],

(4.1)

moreover we have

‖vk+1‖α ≤
tκ

1− tκ
‖fkt ‖α,

by (3.15) and (3.16), we deduce that

‖vk+1‖α ≤ c(tκ)k+1 (4.2)

where c = κ0
2−κ

(1−κ)2 .

On the other hand, the function v is a solution of
D[v] = 0, in Rn \ ∂Ω,

v+ = v− + ĝ, on ∂Ω,

lim
|x|→∞

v(x) = 0,

where
ĝ , g(x, u+, u−)− g(x, u+

t , u
−
t ) + (1− t)g(x, u+

t , u
−
t ).

Applying Theorem 3.1 and the condition (C1) again, we obtain that

‖v‖α ≤ κ‖v‖α + (1− t)κ‖ut‖α + (1− t)C‖g(·, 0, 0)‖Hα(∂Ω)

= κ‖v‖α + (1− t)κ‖ut‖α + (1− t)κ0,

furthermore

‖v‖α ≤
1− t
1− κ

(κ0 + κ‖ut‖α)

≤ (1− t) 2− κ
(1− κ)2

κ0

= (1− t)c.

(4.3)

Combining (4.2) with (4.3), we have the following result:
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Theorem 4.1. The error between the solution u(x) of (3.9) and its approximation
ukt (x) can be estimated by

‖u− ukt ‖α ≤ c[(tκ)k+1 + (1− t)],

where c = κ0
2−κ

(1−κ)2 .
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