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LUMP AND MIXED ROGUE-SOLITON
SOLUTIONS TO THE 2+1 DIMENSIONAL
ABLOWITZ-KAUP-NEWELL-SEGUR
EQUATION*

Asma Issasfal’ and Ji Lin®t

Abstract In this paper, the 241 dimensional Ablowitz-Kaup-Newell-Segur
(AKNS) equation which obtained from the potential Boiti-Leon-Manna-Pempi
nelli (pBLMP) equation, is introduced. Through the bilinear method and
ansatz technique, the rational solutions comnsisting of rogue wave and lump
soliton solutions are constructed, where we discuss the condition of guar-
anteeing the positiveness and analyticity of the lump solutions. The collec-
tion of a quadratic function with an exponential function describing rational-
exponential solutions is proved, the interaction consisting of one lump and
one soliton with fission and fusion phenomena. The second kind of interaction
comprises the line rogue wave and soliton solution, which is inelastic. With the
usage of the extended homoclinic test approach, the homoclinic breather-wave
solution is derived. The characteristics of these various solutions are exhibited
and illustrated graphically.

Keywords (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation (AKN-
S), lump solution, rogue wave, Hirota bilinear method, homoclinic breather
solution.
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1. Introduction

In nonlinear science, the integrable nonlinear partial differential equation (PDE) has
attracted much attention to mathematicians, as well as physicists. Mathematicians
have been improving their capacities to find methods for solving integrable nonlin-
ear PDE. While physicists observe and analyze the dynamical behaviors of physical
systems. The analytical solutions such as rational solutions and exponential so-
lutions of integrable nonlinear PDE play an essential role in nonlinear science and
engineering [4,8,29]. Many methods have been used to get various types of solutions
for the nonlinear evolution equation, for example, the inverse scattering transforma-
tion [6,11], the Darboux transformation [13,19], Hirota bilinear method [9,26], the
Wronskian technique [5,22], source generation procedure [10], nonlocal symmetry
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method [14,15] and so on. Lump soliton solutions expressed by the rational function-
s are real, analytic and localized in all space direction; it has been studied for many
(N+1) dimensional equations. In 1979, Satsuma and Ablowitz obtained lump solu-
tion for Kadomtsev-Petviashvili (KP) and two dimensional nonlinear Schrodinger
(NLS) type equations via a long wave limit of N-soliton solutions [27]. After that,
lump solutions have been constructed for the three-dimensional three-wave resonant
interaction equation [12]. Gilson and Nimmo presented N-lump solutions for the
BKP equation [7]. Recently, Ma introduced a new method to construct lump solu-
tions using Hirota bilinear method by taking the function in the bilinear equation
as a quadratic form, where it was first reported in the KP equation [20]. Later on,
this method has used for many integrable equations such as the (2+1)-dimensional
Boussinesq equation [21], the BKP equation [30], the (2 + 1) dimensional bSK equa-
tion [16], the (2+1)-dimensional fifth-order KdV-Like equation [2]. In addition to
lump solution, mixed lump-kink solutions have obtained by applying a combination
of exponential and quadratic functions in the bilinear form of several equations, such
as the KP equation [31], the BKP equation [32], the extended (2 4 1)-dimensional
shallow water wave model [24] and so on.

In this article, we consider the (2+1) dimensional AKNS equation as follows,

1.1
by + [0I2 =0, (L1)

where ¢ = ¢(x,y,t) is a complex function, while ¢ = ¢(z,y,t) is a real function.
It has derived from the pBLMP equation using an asymptotically exact reduction
method based on Fourier expansion and spatiotemporal rescaling [25]. The sym-
metry and the exact solutions of Eq. (1.1) was obtained by applying the modified
direct method [25]. The AKNS equation is one of the most dominant physical
models [1, 3], and was firstly obtained from the inner parameter dependent sym-
metry constraints of the KP equation around 20 years ago [17]. Later, Lou et al.
have proved the Painlevé integrability of the AKNS equation by using the standard
WTC and Kruskal approach [18]. N-soliton solutions and the generalized double
Wronskian solution of AKNS equation has been obtained with the Hirota bilinear
method and the Wronskian technique [28]. However, to the best of our knowledge,
there are no reports on the rational and rational-exponential solution for Eq. (1.1).

Based on the Hirota bilinear method, the rational, homoclinic breather and
interaction solutions of the (2+1)-dimensional AKNS equation via the ansatz tech-
nique and the extended homoclinic test approach will be derived. The organization
of the paper is as follows. In section 2, taking the function in the bilinear equation
as a quadratic form and with symbolic calculation in maple, the rational solutions
consisting of lump soliton and rogue wave solutions of Eq. (1.1) are obtained. In
section 3, by adding the exponential functions to the quadratic one, we derive two
kinds of a mixed solution consisting of lump-soliton and rogue-soliton solutions for
Eq. (1.1). In section 4, the extended homoclinic test approach is proposed to seek
the periodic wave solution of Eq. (1.1). The last section contains conclusions and
discussions.
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2. Rational solution of the (2+41)-dimensional AKN-
S equation

In this section, we transform the (2+1) dimensional AKNS equation (1.1) to the
bilinear form and derive the rational solutions. Using the following dependent
variable bilinear transformations

)= % ¢ =2(In f)., (2.1)

Eq. (1.1) can be transformed into the following bilinear form
(iDi + D3)g.f =0,
(DzDy —1)f.f +9.9" =0,

here, f is a real function, ¢ is a complex function, the asterisk denotes complex
conjugation, and the operator D is the Hirota’s bilinear differential operator [9],
defined by

P(D,,D,,D\)F(z,y,t,...).G(z,y,t,...) =P(0y — Oy, 0y — Oyr, O — Oy, ...)
X F(z,y,t,..).G(x,y,t,...) o=,y =y t'=t-

(2.2)

where P is a polynomial of Dy, Dy, Dy,....
In order to obtain rational solutions of Eq. (1.1), we put f and g in the following
quadratic function
f =A%+ B? + aq, (2.3)
g = (bo + iCo) + (bl + ’iCl)A + (bQ + iCQ)B + (b3 + ng)AQ + (b4 + 2'04)327 (24)
with
A(w,y,t) = a1z + azy + ast + aa, (25)
B(z,y,t) = asz + agy + art + as, .

where the parameters a;(1 < ¢ < 8),b;,¢;(0 < j < 4) are all real constants to be
determined. Substituting Eq.(2.3) and (2.4) with (2.5) into Eq. (2.2) and vanishing
all the coefficients of different polynomials of x,y,t, we get a set of algebraic equa-
tions. After symbolic computation with Maple, we obtain two classes of solutions.
Casel:

dasaar 2a3 (a2 — a7? ad
a1 =0, ay=—75 "5, a6:—5(23722)7 ag = —,
(a3 + a?) (a3 +a37) ag
b — azbs(3a2 — a2) _ 4aZhag _ daZazh
0= a%(a3 + a?) ’ e a2 +a?’ 2 a% +a?’ (2.6)
h bs bs
b:b’ C:_ibv C:_ibv C:_*bv
1= b3, co b0 5 oL c2 7, b2

c3=h, c4=c3,

where h = \/—b% + 1, and the other parameters not expressed in the set are arbi-
trary constants with restricting conditions

az —ary
as 7& 07 b?ﬁ <1
a7 as
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Figure 1. Lump solution of Eq. (1.1) for casel, with the parameters a3z = %,(M =0,a5 = l,a7 =
—1,a8 = 3,b3 = %, at t =0, (a) |¢|?,(b) Density plot of |4|? at t = 0.

which makes the solutions well defined, with ag > 0 indicates that function f is
positive and guarantees analyticity and rational localization of solutions for Eq.

(1.1).

4 4
Note that ajag — asas = —225T

@ rad)?
independent, which makes the solutions decay in all directions and ¢ — 0 when
2% 4+ y? — oo at any fixed time ¢, so that the rational solution of Eq. (1.1) presents
a lump solution. We calculate the critical points of the lump waves by solving the

first order derivative equations (¢, ¢y) = 0 as follows:

# 0 mean that functions A and B are linearly

lf(t) _1 (a§73a$)t + la§a472a3a7agfa4a$+2a§a7
P, 2  asar 2 azasar ’
B o 1@ | 1 eatadrad)?
y( ) ~ 4 afar + 4" alasar
) — l(a§—3a$)t la§a4—2a3a7a8—a4a$—2aga7
x 2  asa + 2 asasa ’
P, 5a7 3a5a7
y(t) = 1 (@itan)® | 1as(aitar)”
4 a§a7 4 aga3a7

In order to illustrate the dynamical behavior of solutions, we take two different
choices for the parameters.
Choicel as = %,a4 = O,a5 = 1,a7 = —1,&8 = 3,[)3 = %
When ¢t = 0, the graphical behavior of solution ¢ exhibits a pattern with one
maximal point at P; with the coordinates (—1,0), and one minimal point at P, with
the coordinates (—5,0), whereas the source term |¢)|* owns two maximal points and

one minimal point as shown in Fig. 1.

Choice2 a3 =1,a4 = 2,a5 = 2,a7 = —1,a8 = 3,b3 = %
When ¢t = 0, the graphical behavior of solution ¢ is similar with different co-
ordinates (3, —1) in the maximum and (—Z,—1) in the minimum, but the source

term |1|? exhibits different and diverse dynamics from the choicel, it owns two peak
points and two minimal points as shown in Fig. 2.

Case2:
2
ap =ay, a2 =——, a3:0a a4 = Qy4, a5:07
aj
2.7
ag =0, ay=ai, as=as, by=—3bs, b =0, (2.7)

b2 = 4h, b4 = b3, Cop = —3]’L, C1 = O7 Cy = —4b3, C3 = ]’L, Cqy = h,
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Figure 2. Lump solution of Eq. (1.1) for casel, with the parameters a3 = 1,a4 = 2,a5 =
2,a7 = —1l,ag = 3,b3 = %, (a) ¢,(b) Density plot of ¢ at t = 0, (c) Contour plots of ¢ at
t = —80,t = 0,t = 80, (d) |[¥|?, (e) Density plot of ||? at t = 0, (f) Contour plots of |1|? at
t=-35,t=0,t =235

where h = \/—b% + 1, and satisfy the following conditions

The corresponding solution possesses different and diverse dynamical behaviors from
casel; this rational solution describes a line rogue wave, which has a line profile with
varying height. When |¢| >> 0, this line rogue wave tends to the constant background
1 everywhere in the (x, y)-plane, however in the intermediate times, |¢)| approaches
a maximum amplitude at time ¢ = 4 (i.e., three times the background amplitude),
this line wave is the fundamental (simplest) line rogue wave, which was precisely
presented in Ref [23], Fig. 1.

3. Rational-exponential solution of the (2+1)- di-
mensional AKNS equation

In this section, by combining an exponential function with a quadratic function,
we will derive the interaction solutions consisting of mixed rogue-soliton and lump-
soliton solutions to the (2+41)-dimensional AKNS equation. Therefore, we assume
functions f and g as follows

f=ag+ (pp* +k)e", (3.1)
g = (di +idz2) + ((p+1)(p* — 1) + k)e",
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Figure 3. Perspective view of rational-exponential solution 1|2 for Eq. (1.1), with the parameter
as =1,a9 = 2,a5 = 0.25,a8 = 5, k1 = 1.25(a)t = —30(b)t = —6(c)t = 20, in the (z,y)-plane.

(@ ®) ©

Figure 4. Perspective view of rational-exponential solution ¢ for Eq. (1.1), with the parameter
as =1,a9 =2,a5 = 0.25,a8 = 5, k1 = 1.25(a)t = —30(b)t = —6(c)t = 20, in the (z, y)-plane.

with
p=A+iB,

A(x,y,t) = a17 + agy + ast + ag,

B(x,y,t) = asz + agy + art + as,

n(w,y,t) = k1x + kay + kst,
where the parameters a;(1 < ¢ < 8),d;(i = 1,2), k and k;(¢ = 1,2, 3) are all real
constants to be determined. By substituting Eq.(3.1), (3.2) with (3.3) into Eq.(2.2)
and vanishing all the coefficients of the exponential functions and the variables x, y

and t, we obtain more algebraic equations on the undetermined parameters. After
careful calculations, we get two classes of solutions.

(3.3)

Casel:
1 kl 2(15 2 1 2
=+—k =t—- = +2a5k =—" = -2 -k
a1 9 1, a2 40% + k%’ as aski, G 40% + k%’ ar a5 + 2 1
a9(4a§ — k‘%) 4(19](710,5 4(1% + k%
di=——5>—5—=, do=——%5, bk=—"5—, ko=-2 ks = —2ask
1 4@% + k‘% ) 2 40% + k%’ 4]€% ) 2 a2, 3 aski,

which need to satisfy the conditions dy # 0,4a2 + k3 # 0, and the other parameters
not expressed in the set are arbitrary constants, with ag,k > 0 the function f is
well-defined. In this situation, a mixed lump-soliton solution is shown for the Eq.
(1.1) in Fig. 3 and Fig. 4, in which there exist two kinds of phenomena: fission and
fusion.

Assuming k3 < 0, when ¢t < 0, the solution is a mixture of one-lump and
one-dark soliton (see Fig.3(a)) or one-lump and one-kink soliton (see Fig.4(a)). In



320 A. Issasfa & J. Lin

Figure 5. Perspective view of rational-exponential solution 1|2 for Eq. (1.1), with the parameter
as =1,a9 = 2,a5 = 0.25,a8 = 5,k1 = —1(a)t = —30(b)t = —10(c)t = 20, in the (z,y)-plane.

(@ ®) ©

Figure 6. Perspective view of rational-exponential solution ¢ for Eq. (1.1), with the parameter
as =1,a9 =2,a5 = 0.25,a8 = 5,k1 = —1(a)t = —30(b)t = —10(c)t = 20, in the (z, y)-plane.

the intermediate time the lump comes into interaction with the dark soliton (see
Fig.3(b)) or with the kink soliton (see Fig.4(b)), then the solution only consists of
one-dark soliton (see Fig.3(c)) or one-kink soliton (see Fig.4(c)), when ¢ > 0. This
process describes a fusion phenomenon. In contrast, k3 > 0 leads to the fission
phenomenon. When ¢ < 0, the solution is a dark soliton (see Fig.5(a)) or a kink
soliton (see Fig.6(a)). Whereas in the intermediate time, the one-soliton splits into
one-dark soliton and one-lump soliton (see Fig.5(b)) or one-kink soliton and one-
lump soliton (see Fig.6(b)), then the lump goes away from the dark or the kink
solitons (see Fig.5(c) and Fig. 6(c) respectively), when ¢ > 0.

Case2:

1
ki’
and as, as, ag, k3 are all zero, and a4, ag, ag, k1 are arbitrary constants, which need
to satisfy the conditions dy = 0, k1 # 0. The corresponding solution takes different
dynamical behaviors from casel; this type of solution depicts the interaction be-
tween a rogue wave and soliton-type solution. A hybrid of W-shaped soliton type
of rogue wave and dark soliton is shown for the source term |¢|? in Fig. 7, whereas
the potential ¢ exhibits a mixed solution between the dipole-soliton type of rogue
wave and kink soliton as shown in Fig. 8.

When [t| > 0, it can be seen that the non-elastic rogue wave approaches to the
constant background in the entire (z,y)-plan, where the solution describes a dark
soliton (see Fig. 7(a,d)) or a kink soliton (see Fig. 8(a,d)). In the intermediate
time, a line rogue wave arises from the constant background and takes its bigger
amplitude with the dark soliton (see Fig. 7(c)) or with the kink soliton (see Fig.

1 2

1
a7:§kf, dy=—ag, k=7, kQ:k?

1
a1 :i§k17 a2::|:
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8(c)), then the amplitude of the line rogue wave decays back to the same background
at the larger time. Note that throughout the overall interaction, the line rouge wave
does not appear on the whole background, but only one side of the dark soliton or
the kink soliton, and the dark soliton or the kink soliton maintains its shape, size
and exhibits its elastic situation.

Figure 7. Perspective view of rational-exponential solution |1|? for Eq. (1.1), with the parameter
as =0.5,a9 = 2,a3 = —1.5,k1 = —1, (a)t = —30(b)t = 0(c)t = 3(d)t = 30, in the (z,y)-plane.

4. Homoclinic breather and kinky periodic-wave so-
lutions of the (241)-dimensional AKNS equation

In this section, we use the extended homoclinic test approach to investigate the
exact solutions of Eq. (1.1). Therefore, we assume functions f and g as follows
f=eT% 4 bycos(Pr&r) + brels, (4.1)
g = e T84 (by +ibs) cos(Py&;) + (by + ibs)els, (4.2)
with
=2+ a1y + ast,
§1 = o+ azy + aygt,
where P, P, a;(1 < i < 4),b;(0 < j < 5) are all real constants to be determined.
Substituting Eq.(4.1)-(4.2) into the bilinear form (2.2) and vanishing all the coeffi-
cients of e=F¢ cos(P1&1), eP¢ cos(Py&y), e e sin(Pi&y), el sin(P&y), cos(Py&1)?, e2F¢

and constant term, we obtain a set of algebraic equations on the undetermined pa-
rameters. Solving these equations, we obtain the following solutions

1 P? — P} 1

= - ::l:i —_—
P2+P127 as P , as P2+P127

(4.3)

a1 Ay = :|:2P, bo = bo7
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(@) ) fe)

(d)

Figure 8. Perspective view of rational-exponential solution ¢ for Eq. (1.1), with the parameter
as =0.5,a9 = 2,a8 = —1.5,k1 = —1, (a)t = —30(b)t = 0(c)t = 3(d)t = 30, in the (z, y)-plane.

b1 np
YT 2(P—P)(P+P)

, bo =0, b3 = %by, by = —b1, bs =0, P=P, P, = Py,

where P # +P;. Combining the above values of constants in Eqs. (4.1,4.2) then
substitute it to the Eq.(2.1), we get the following families of solutions

7,1} _ 2icos(M)bsp®eN —2i cos(M)bspielN +bipie®N +2p% —2p3
T —bZp7e2N +2cos(M)bop?eN —2 cos(M)bopZeN +2p2—2p3’ (4 4)
¢ _ 2(bgp§p€2N+2p1 sin(M)bop2eN—2p? sin(M)bgeN+2p3—2pp%)
- —b2p2e2N +2 cos(M)bop2eN —2 cos(M )bopseN +2p2 —2p?

where
M = Prleap’ttaipittp’etplo—y)
P24P? '

N = p(azp’t+asplt+p’z+pioty)
p2+p12 )

with ay = 2210 g, = £2P, by = by,

Solution (4.4) describes homoclinic breather-wave, which results from the in-
teraction between solitary and periodic wave; it has the features of breather wave
and periodic wave whose amplitude periodically oscillates with space variable x, y,
and evolution of time t, as shown in Fig. 9 for the source term |t)|? with three-
dimensional and contour plots.

The potential ¢ exhibits periodic wave with different graphical structure is called
kinky periodic-wave, which has periodic feature meanwhile takes on kinky feature
with space variable z,y, as shown in Fig. 10 for fixed time ¢t = 1.
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Figure 9. Periodic solitary-wave solution for |¢|? of Eq. (1.1), with the parameters P = 1, P} =
—1.5,bp = —2, at t = 1, (a) plot |%|2, (b) Contour plot of ||? at t = —10,¢ = 0,¢ = 10.

Figure 10. Kinky periodic-wave solution for ¢ of Eq. (1.1), with the parameters P = 1,P; =
—1.5,bp = —2, at t =1, (a) plot of ¢, (b) Density plot of ¢.

5. Conclusions

In this paper, the rational solutions to the (2+1)-dimensional AKNS equation were
presented through the Hirota bilinear method and ansatz technique. By assum-
ing the auxiliary functions as the purely quadratic functions, different classes of
solutions represented lump and rogue wave solutions are derived. With the com-
bination between the quadratic function and the exponential function, two cases
of rational-exponential solutions are classified: (i) The first case represents the in-
teraction between the lump and soliton-type solutions, which include fission and
fusion phenomena. (ii) The second case describes the mixed rogue-soliton solution;
it is shown that the fundamental rogue waves are line rogue waves, which occur
from a constant background with a line sketch and comes into interaction with one
stripe soliton, then retreat to the constant background again. Finally, using the
extended homoclinic test approach to the (2+1)-dimensional AKNS equation, we
obtained the homoclinic breather-wave and kinky periodic-wave solutions; it is a
superposition of the interaction between solitary and periodic wave.

Moreover, the homoclinic breather-wave solution can be reduced to a solitary
wave solution under certain limits. These results show that the (2+1)-dimensional
AKNS equation may have very rich dynamical behavior, and the direct method
used in this article is an effective means for seeking rational and mixed solutions to
nonlinear evolution equations. However, it will be interesting to find more mixed
solutions occurring different types of nonlinear evolution equations, which will be
studied in future works.
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