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FRACTIONAL HAMILTONIAN SYSTEMS
WITH POSITIVE SEMI-DEFINITE MATRIX
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Abstract We study the existence of solutions for the following fractional
Hamiltonian systems

−tDα
∞(−∞D

α
t u(t))− λL(t)u(t) +∇W (t, u(t)) = 0,

u ∈ Hα(R,Rn),

(FHS)λ

where α ∈ (1/2, 1), t ∈ R, u ∈ Rn, λ > 0 is a parameter, L ∈ C(R,Rn
2

) is
a symmetric matrix, W ∈ C1(R × Rn,R). Assuming that L(t) is a positive
semi-definite symmetric matrix, that is, L(t) ≡ 0 is allowed to occur in some
finite interval T of R, W (t, u) satisfies some superquadratic conditions weaker
than Ambrosetti-Rabinowitz condition, we show that (FHS)λ has a solution
which vanishes on R \ T as λ → ∞, and converges to some ũ ∈ Hα(R,Rn).
Here, ũ ∈ Eα0 is a solution of the Dirichlet BVP for fractional systems on
the finite interval T . Our results are new and improve recent results in the
literature even in the case α = 1.

Keywords Fractional Hamiltonian systems, fractional Sobolev space, critical
point theory, concentration phenomena.
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1. Introduction

Fractional derivatives are nonlocal operators and are historically applied in the
study of nonlocal time-dependent processes. The first and well established applica-
tion of fractional calculus in physics was in the framework of anomalous diffusion,
which is related to features observed in many physical systems, for example; in dis-
persive transport in amorphous semiconductor, liquid crystals, polymers, proteins,
etc. [6, 10–12].

The fractional calculus of variations is a beautiful and useful field of mathematics
that deals with the problems of determining extrema (maxima or minima) of func-
tionals whose Lagrangians contain fractional integrals and/or derivatives. It was
born in 1996-1997, when Riewe derived Euler-Lagrange fractional differential equa-
tions and showed how nonconservative systems in mechanics can be described using
fractional derivatives [22]. More precisely, for y : [a, b] → Rn and αj , βj ∈ [0, 1],
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2Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387,
China

http://jaac.ijournal.cn
http://dx.doi.org/10.11948/20190157


fractional Hamiltonian systems with positive semi-definite matrix 2437

i = 1 · · ·N , j = 1, · · · , Ñ , he considered the energy functional

J(y) =

∫ b

a

F (aD
α1
t y(t), · · · , aDαN

t y(t), tD
β1

b y(t), · · · , tD
βÑ
b y(t), y(t), t)dt,

with n,N, Ñ ∈ N. Using the fractional variational principle he obtained the follow-
ing Euler-Lagrange equation

N∑
i=1

tD
αi
b [∂iF ] +

Ñ∑
i=1

aD
βi
t [∂i+NF ] + ∂Ñ+N+1F = 0. (1.1)

In particular, if

F =
1

2
mẏ2 − V (y) +

1

2
γi
(
aD

1
2
t [y]

)2

, (1.2)

he got the Euler-Lagrange equation

mÿ = −γi
(
tD

1
2

b ◦ aD
1
2
t

)
[y]− ∂V (y)

∂y
. (1.3)

Recently, several different approaches have been developed to generalize the least
action principle and the Euler-Lagrange equations to include fractional derivatives,
for more details see [14,15].

On the other hand, it should be noted that critical point theory and variational
methods have also turned out to be very effective tools in determining the exis-
tence of solutions for integer order differential equations. The idea behind them
is try to find solutions of a given boundary value problem by looking for critical
points of a suitable energy functional defined on an appropriate function space.
In the last years, the critical point theory has become a wonderful tool in study-
ing the existence of solutions to differential equations with variational structures
(see Ekeland [5], Mawhin and Willem [16], Rabinowitz [20], Schechter [23], and the
references therein).

Motivated by the aforementioned classical works and equation (1.3), Jiao and
Zhou [9], for the first time, showed that the critical point theory is an effective
approach to tackle the existence of nontrivial solutions for the following fractional
boundary value problem

tD
α
T (0D

α
t u(t)) = ∇F (t, u(t)), t ∈ [0, T ], (1.4)

u(0) = u(T ) = 0.

From then on, there is growing interest in using this wonderful tool to study fraction-
al differential equations with variational structure. Recently, Torres [25], considered
the following fractional systems

tD
α
∞(−∞D

α
t u(t)) + L(t)u(t) = ∇W (t, u(t)),

u ∈ Hα(R,Rn),
(1.5)

where α ∈ (1/2, 1), t ∈ R, u ∈ Rn, L ∈ C(R,Rn2

) is a symmetric and positive
definite matrix, W ∈ C1(R × Rn,R). Assuming that L(t) satisfied the following
condition
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(L) there exists an l ∈ C(R, (0,∞)) with l(t)→∞ as |t| → ∞ such that

(L(t)u, u) ≥ l(t)|u|2 for all t ∈ R and u ∈ Rn (1.6)

and W (t, u) satisfies the following conditions:

(FHS1) There is a constant θ > 2 such that

0 < θW (t, u) ≤ (∇W (t, u), u) for all t ∈ R and u ∈ Rn\{0},

(FHS2) |∇W (t, u)| = o(|u|) as |u| → 0 uniformly with respect to t ∈ R.

(FHS3) There exists W ∈ C(Rn,R) such that

|W (t, u)|+ |∇W (t, u)| ≤ |W (u)| for every t ∈ R and u ∈ Rn,

the author showed that (1.5) possesses at least one nontrivial solution via Moun-
tain Pass Theorem. After these interesting works, many researchers deal with the
existence and multiplicity of solutions for (1.4) and (1.5) via different tools from
critical point theory; see for instance [13, 17, 18, 27–29, 31, 33, 34, 36]. In addition,
some perturbed fractional systems are discussed in [26,31].

In this work we deal with the following fractional Hamiltonian systems

tD
α
∞(−∞D

α
t u(t)) + λL(t)u(t) = ∇W (t, u(t)),

u ∈ Hα(R,Rn),
(FHS)λ

where α ∈ (1/2, 1), t ∈ R, u ∈ Rn, λ > 0 is a parameter, W ∈ C1(R × Rn,R) and
L satisfies the following conditions

(L)1 L ∈ C(R,Rn×n) is a symmetric matrix and there exists a nonnegative contin-
uous function l : R→ R and a constant c > 0 such that

(L(t)u, u) ≥ l(t)|u|2.

The set {l < c} := {t ∈ R | l(t) < c} is nonempty with |{l < c}| < 1
C2
∞

, where

| · | is the Lebesgue measure and C∞ is the best Sobolev constant for the
embedding of Xα into L∞(R);

(L)2 J = int(l−1(0)) is a nonempty finite interval and J = l−1(0);

(L)3 there exists an open interval T ⊂ J such that L(t) ≡ 0 for all t ∈ T .

When α = 1, (FHS)λ reduces to the following well-known second order Hamiltonian
systems

ü− λL(t)u+∇W (t, u) = 0. (HS)

Recently a second order Hamiltonian systems like (HS) with positive semi-definite
matrix was considered in [24]. Assuming that W ∈ C1(R × Rn,R) is an indefinite
potential satisfying asymptotically quadratic condition at infinity on u, Sun and
Wu, have proved the existence of two homoclinic solutions of (HS). For more related
works, we refer the reader to [2, 4, 7, 8, 19,21] and the references therein.

Here we must point out that, to obtain the existence or multiplicity of solutions
for Hamiltonian systems, all the papers mentioned above need the assumption that
the symmetric matrix L(t) be positive definite. Recently this condition was removed
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in [1, 27, 30, 35], that is, the authors considered the case that L(t) is positive semi-
definite symmetry matrix satisfying (L)1. In [1], the author dealt with (FHS)λ for
the case that (L)1 is satisfied and W (t, u) involves a combination of superquadratic
and subquadratic terms and is allowed to be sign-changing. In [27], the author
has considered the existence, multiplicity and concentration of solutions of (FHS)λ
when (L)1-(L)3 are satisfied with T = (0,T) and W (t, u) satisfies the following
subquadratic assumptions as |u| → ∞:

(FHS)4 W ∈ C1(R × Rn,R) and there exist a constant p ∈ (1, 2) and a positive

function ξ ∈ L
2

2−p (R) such that

|∇W (t, u)| ≤ ξ(t)|u|p−1, ∀(t, u) ∈ R× Rn.

(FHS)5 There exist three constant η, δ > 0 and ν ∈ (1, 2) such that

|W (t, u)| ≥ η|u|ν ∀t ∈ I and |u| ≤ δ.

Furthermore in [35], the authors have complemented the previous work by consid-
ering the superquadratic potential when |u| → ∞, namely they considered (FHS)λ
when (L)1-(L)3 are satisfied and W (t, u) satisfies (FHS)1 and

(FHS)5 There is a positive continuous function a : R→ R with

lim
|t|→∞

a(t) = 0

such that
|∇W (t, u)| ≤ a(t)|u|θ−1 ∀(t, u) ∈ R× Rn.

By using mountain pass theorem, the authors have proved the existence of at least
one nontrivial weak solution uλ for (FHS)λ. Moreover, they analyzed the behavior
of uλ when λ → +∞. We also mention the recent work [30], where the authors
have considered (FHS)λ when W (t, u) satisfies (FHS)1-(FHS)3 and

(FHS)6 The function s→ 〈∇W (t,su),u〉
sθ−1 is strictly increasing for all u 6= 0 and s > 0,

θ is given by (FHS)λ.

By combining mountain pass arguments and Nehari manifold method, the authors
have proved the existence of a ground state solution uλ for (FHS)λ and analyzed
the behavior when λ→ +∞.

It is worth pointing out that (FHS)1 is the well-known Ambrosetti-Rabinowitz
condition. This condition play a key role to ensure the boundedness of the Palais-
Smale sequences of the energy functional. This is very crucial in applying the critical
point theory. However, there are many functions that are superquadratic at infinity
but do not satisfy (FHS)1 for any θ > 2. In fact, (FHS)1 implies that

lim
|u|→∞

W (t, u)

|u|2
= +∞.

Thus, for example the superquadratic function

W(t, u) = g(t)(|u|p + (p− 2)|u|p−ε sin2(
|u|ε

ε
)),
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where g(t) > 0 is periodic in t, 0 < ε < p − 2 and p > 2, does not satisfy (FHS)1,
for more details see [3].

Motivated by these previous results and the functionW, the main purpose of this
paper is to investigate (FHS)λ without Ambrosetti-Rabinowitz condition (FHS1),
more precisely, we consider functions W that satisfy the following assumptions

(W1) |∇W (t, u)| = o(|u|) as |u| → 0 uniformly in t ∈ R.

(W2) W (t, u) ≥ 0 for all (t, u) ∈ R × RN and H(t, u) ≥ 0 for all (t, u) ∈ R × RN ,
where

H(t, u) :=
1

2
〈∇W (t, u), u〉 −W (t, u).

(W3) W (t,u)
|u|2 → +∞ as |u| → +∞ uniformly in t ∈ R.

(W4) There exist C0, R > 0, and σ > 1 such that

|∇W (t, u)|σ

|u|σ
≤ C0H(t, u) if |u| ≥ R.

Note that W is an example of function satisfying (W1)− (W4).
Now we are in the position to state our main existence result.

Theorem 1.1. Suppose that (L)1-(L)3 and (W1) − (W4) hold. Then, there exists
Λ∗ > 0 such that for every λ > Λ∗, (FHS)λ has at least one nontrivial solution.

To state our second result considering the concentration phenomena of the so-
lution obtained by Theorem 1.1, we consider T = [−%, %] for some 0 < % < +∞,
where T is given by (L)3, then we have.

Theorem 1.2. Let uλ be a solution of problem (FHS)λ given by Theorem 1.1, then
uλ → ũ strongly in Hα(R) as λ → ∞, where ũ is a nontrivial solution of the
following boundary value problem

tD
α
% (−%D

α
t )u = ∇W (t, u), t ∈ (−%, %),

u(−%) = u(%) = 0,
(1.7)

where −%D
α
t and tD

α
% are left and right Riemann-Liouville fractional derivatives of

order α on [−%, %] respectively.

Remark 1.1. In Theorems 1.1, 1.2, we give some new superquadratic conditions
on W (t, u) to guarantee the existence and concentration of solutions of (FHS)λ.
However, we must point out that the ideas used in [1, 27, 30, 35] are not applicable
for our new assumptions. To overcome this difficulty we apply the Mountain Pass
Theorem with Cerami condition, however, the direct application of the mountain
pass theorem is not enough since the Cerami sequences might lose compactness in
the whole space R. Then it is necessary to introduce a new compactness result
to recover the convergence of Cerami sequence, for more details see Lemma 3.2.
Moreover, the main difficulty to proof Theorem 1.2, is to show that cλ is bounded
from above independent of λ. In the process to overcome this difficulty, we note
that, the election of T = [−%, %] play a key role which is very different from the
previous works, where was enough to consider T = [0,T], for more details see section
3.

The remaining part of this paper is organized as follows. Some preliminary
results are presented in Section 2. In Section 3, we are devoted to accomplishing
the proof of Theorem 1.1 and in Section 4 we present the proof of Theorem 1.2.
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2. Preliminary Results

In this section, for the reader’s convenience, firstly we introduce some basic defini-
tions of fractional calculus, for more details see [11]. The Liouville-Weyl fractional
derivatives of order 0 < α < 1 are defined as

−∞D
α
xu(x) =

d

dx
−∞I

1−α
x u(x) and xD

α
∞u(x) = − d

dx
xI

1−α
∞ u(x), (2.1)

where −∞I
α
x and xI

α
∞ are the left and right Liouville-Weyl fractional integrals of

order 0 < α < 1 defined as

−∞I
α
x u(x)=

1

Γ(α)

∫ x

−∞
(x−ξ)α−1u(ξ)dξ and xI

α
∞u(x)=

1

Γ(α)

∫ ∞
x

(ξ−x)α−1u(ξ)dξ.

Furthermore, for u ∈ Lp(R), p ≥ 1, we have

F(−∞I
α
x u(x)) = (iω)−αû(ω) and F(xI

α
∞u(x)) = (−iω)−αû(ω),

and for u ∈ C∞0 (R), we have

F(−∞D
α
xu(x)) = (iω)αû(ω) and F(xD

α
∞u(x)) = (−iω)αû(ω).

In order to establish the variational structure which enables us to reduce the exis-
tence of solutions of (FHS)λ to find critical points of the corresponding functional,
it is necessary to consider some appropriate function spaces. Denote by Lp(R,Rn)
(1 ≤ p < ∞) the Banach spaces of functions on R with values in Rn under the
norms

‖u‖Lp =
(∫

R
|u(t)|pdt

)1/p

,

and L∞(R,Rn) is the Banach space of essentially bounded functions from R into
Rn equipped with the norm

‖u‖∞ = ess supt∈R|u(t)|.

Let −∞ < a < b < +∞, 0 < α ≤ 1 and 1 < p <∞. The fractional derivative space
Eα,p0 is defined by the closure of C∞0 ([a, b],Rn) with respect to the norm

‖u‖α,p =

(∫ b

a

|u(t)|pdt+

∫ b

a

|aDα
t u(t)|pdt

)1/p

. (2.2)

Next (Eα,p0 , ‖.‖α,p) is a reflexive and separable Banach space and for α ∈ ( 1
2 , 1],

Eα,p0 can be characterized as

Eα,p0 = {u ∈ Lp([a, b],Rn)|aDα
t u ∈ Lp([a, b],Rn) and u(a) = u(b) = 0}.

Proposition 2.1 ( [9]). Let 0 < α ≤ 1 and 1 < p <∞. For all u ∈ Eα,p0 , we have

‖u‖Lp ≤
(b− a)α

Γ(α+ 1)
‖aDα

t u‖Lp . (2.3)

If α > 1/p and 1
p + 1

q = 1, then

‖u‖∞ ≤
(b− a)α−1/p

Γ(α)((α− 1)q + 1)1/q
‖aDα

t u‖Lp . (2.4)
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By (2.3), we can consider in Eα,p0 the following norm

‖u‖α,p = ‖aDα
t u‖Lp , (2.5)

which is equivalent to (2.2).

Proposition 2.2 ( [9]). Let 0 < α ≤ 1 and 1 < p < ∞. Assume that α > 1
p and

{uk}⇀ u in Eα,p0 . Then uk → u in C[a, b], i.e.

‖uk − u‖∞ → 0, k →∞.

For α > 0, consider the Liouville-Weyl fractional spaces

Iα−∞ = C∞0 (R,Rn)
‖·‖Iα−∞ ,

where

‖u‖Iα−∞ =
(∫

R
u2(x)dx+

∫
R
|−∞Dα

xu(x)|2dx
)1/2

. (2.6)

Furthermore, the classical fractional Sobolev space Hα(R,Rn) is defined as

Hα = C∞0 (R,Rn)
‖·‖α

, (2.7)

where

‖u‖α =
(∫

R
u2(x)dx+

∫
R
|w|2αû2(w)dw

)1/2

.

Note that, a function u ∈ L2(R,Rn) belongs to Iα−∞ if and only if

|w|αû ∈ L2(R,Rn).

Therefore, Iα−∞ and Hα are equivalent with equivalent norm, for more details see
[25].

Lemma 2.1 ( [25, Theorem 2.1]). If α > 1/2, then Hα ⊂ C(R,Rn) and there is a
constant C∞ = Cα,∞ such that

‖u‖∞ = sup
x∈R
|u(x)| ≤ C∞‖u‖α. (2.8)

Remark 2.1. From Lemma 2.1, we know that if u ∈ Hα with 1/2 < α < 1, then
u ∈ Lp(R,Rn) for all p ∈ [2,∞), since∫

R
|u(x)|pdx ≤ ‖u‖p−2

∞ ‖u‖2L2 .

For λ > 0, consider the fractional space Xα,λ given by

Xα,λ =
{
u ∈ Hα :

∫
R

[|−∞Dα
t u(t)|2 + λ(L(t)u(t), u(t))]dt <∞

}
.

Xα,λ is a reflexive and separable Hilbert space with the inner product

〈u, v〉Xα =

∫
R

[−∞D
α
t u(t) ·−∞ Dα

t v(t) + λ(L(t)u(t), v(t))]dt

and the corresponding norm is

‖u‖2Xα = 〈u, u〉Xα,λ .
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Remark 2.2. Suppose L(t) satisfies (L)1 and (L)2, then, for all λ ≥ 1
cC2
∞ |{l<c}|

,
we get ∫

R
|u(t)|2dt ≤ C2

∞ |{l < c}|
1− C2

∞ |{l < c}|
‖u‖Xα,λ =

1

Θ
‖u‖2Xα,λ (2.9)

and

‖u‖2α ≤
(

1 +
C2
∞ |{l < c}|

1− C2
∞ |{l < c}|

)
‖u‖2Xα = (1 +

1

Θ
)‖u‖2Xα,λ . (2.10)

Then Xα,λ is continuously embedded in Hα. Furthermore, for every λ ≥ 1
cC2
∞ |{l<c}|

and p ∈ (2,∞), we have ∫
R
|u(t)|pdt ≤ Kpp‖u‖

p
Xα,λ

. (2.11)

where Kpp = 1

Θ
p
2 |{l<c}|

p−2
2

. For more details, see [27,35].

3. Proof of Theorem 1.1

The aim of this section is to establish the proof of Theorem 1.1. Consider the
functional I : Xα,λ → R defined as

Iλ(u) =
1

2
‖u‖2Xα,λ −

∫
R
W (t, u(t))dt. (3.1)

Under the conditions of Theorem 1.1, we can show that I ∈ C1(Xα,λ,R), and

I ′λ(u)v =

∫
R

[
(−∞D

α
t u(t),−∞Dα

t v(t)) + (λL(t)u(t), v(t))− (∇W (t, u(t)), v(t))
]
dt

(3.2)
for all u, v ∈ Xα. In particular we have

I ′λ(u)u = ‖u‖2Xα,λ −
∫
R

(∇W (t, u(t)), u(t))dt. (3.3)

Remark 3.1. By (W1) and (W4), for any ε > 0, there is Cε > 0 such that

|∇W (t, u)| ≤ ε|u|+ Cε|u|p−1, ∀(t, u) ∈ R× RN (3.4)

and

|W (t, u)| ≤ ε

2
|u|2 +

Cε
p
|u|p ∀(t, u) ∈ R× RN , (3.5)

where p = 2σ
σ−1 > 2.

We start our analysis by considering the following compactness results which is
important to recover the Cerami condition for Iλ.

Lemma 3.1. Suppose that (L)1 − (L)3 and (W1)− (W4) hold. If un ⇀ u in Xα,λ,
then

Iλ(un − u) = Iλ(un)− Iλ(u) + o(1) as n→ +∞ (3.6)

and
I ′λ(un − u) = I ′λ(un)− I ′λ(u) + o(1) as n→ +∞. (3.7)

In particular, if Iλ(un)→ c and I ′λ(un)→ 0, then, up to a subsequence I ′λ(u) = 0.
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Proof. To show (3.6) and (3.7) it suffices to check that∫
R

[W (t, un)−W (t, un − u)−W (t, u)]dt = o(1) (3.8)

and

sup
ϕ∈Xα,λ,‖ϕ‖α,λ=1

∫
R
〈∇W (t, un)−∇W (t, un − u)−∇W (t, u), ϕ〉dt = o(1), (3.9)

because the weak convergence of un to u in Xα,λ implies that

‖un‖2Xα,λ = ‖un − u‖2Xα,λ + ‖u‖2Xα,λ + o(1).

We are going to prove (3.9), since (3.8) is proved in a similar way. In fact, let

Π := lim
n→∞

sup
ϕ∈Xα,λ,‖ϕ‖α,λ=1

∫
R
〈∇W (t, un)−∇W (t, un−u)−∇W (t, u), ϕ〉dt. (3.10)

If Π > 0, then, there exists ϕ0 ∈ Xα,λ with ‖ϕ0‖Xα,λ = 1 such that∣∣∣∣∫
R
〈∇W (t, un)−∇W (t, un − u)−∇W (t, u), ϕ0〉dt

∣∣∣∣ ≥ Π

2
, for n large enough.

(3.11)
From (3.4) and Young’s inequality, there exist C1, C2 and C3 > 0 such that

|〈∇W (t, un)−∇W (t, un − u), ϕ0〉|
≤C1

(
ε|u|2 + ε|un − u|2 + ε|ϕ0|2 + C2|u|p + ε|un − u|p + C3|ϕ0|p

)
.

Hence, there exists C4, C5, C6 > 0 such that

|〈∇W (t, un)−∇W (t, un − u)−∇W (t, u), ϕ0〉|
≤C4

(
ε|u|2 + ε|un − u|2 + ε|ϕ0|2 + C5|u|p + ε|un − u|p + C6|ϕ0|p

)
.

Let

hn(t)=max{|〈∇W (t, un)−∇W (t, un−u)−∇W (t, u), ϕ0〉|−C4ε(|un−u|2+|un−u|p), 0}.

So
0 ≤ hn(t) ≤ C4(ε|u|2 + ε|ϕ0|2 + C5|u|p + C6|ϕ0|p).

By the Lebesgue dominated convergence theorem and the fact un → u a.e. in R,
we obtain ∫

R
hn(t)dt→ 0 as n→∞.

From where∫
R
|〈∇W (t, un(t))−∇W (t, un(t)− u(t))−∇W (t, u(t)), ϕ0(t)〉|dt→ 0 as n→∞,

which contradict (3.11).
On the other hand, if Iλ(un)→ c and I ′λ(un)→ 0 as n→∞, by (3.6) and (3.7),

we get
Iλ(un − u)→ c− Iλ(u) + o(1)
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and
I ′λ(un − u) = −I ′λ(u) as n→ +∞.

So, for every ϕ ∈ C∞0 (R,Rn) we have

I ′λ(u)ϕ = lim
n→∞

I ′λ(un)ϕ = 0.

Consequently, I ′λ(u) = 0.

Lemma 3.2. Suppose that (L)1 − (L)3 and (W1) − (W4) hold. Let c ∈ R+, then
each (Ce)c-sequence of Iλ is bounded in Xα,λ.

Proof. Let (un)n∈N ⊂ Xα,λ a sequence such that

Iλ(un)→ c, (1 + ‖un‖Xα,λ)I ′λ(un)→ 0 as n→∞. (3.12)

Then

c− on(1) = Iλ(un)− 1

2
I ′λ(un)un =

∫
R
H(t, un(t))dt

=

∫
Ωn(0,a)

H(t, un)dt+

∫
Ωn(a,b)

H(t, un)dt+

∫
Ωn(b,+∞)

H(t, un)dt,

(3.13)
where

Ωn(a, b) := {t ∈ R : a ≤ |un(t)| < b}, with 0 ≤ a < b.

Suppose by contradiction, there is a subsequence, still denoted by (un), such that
‖un‖Xα,λ → +∞ as n → +∞. Taking vn = un

‖un‖Xα,λ
, then (vn)n∈N is bounded in

Xα,λ and ‖vn‖Xα,λ = 1. Moreover, if n→∞ we obtain

o(1) =
〈I ′λ(un), un〉
‖un‖2Xα,λ

= 1−
∫
R

〈∇W (t, un), un〉
‖un‖2Xα,λ

,

which implies ∫
R

〈∇W (t, un), vn〉
|un|

|vn|dt =

∫
R

〈∇W (t, un), un〉
‖un‖2Xα,λ

→ 1. (3.14)

For r ≥ 0, let
h(r) := inf{H(t, u) : t ∈ R, |u| ≥ r}.

From (W2) we have h(r) > 0 for all r > 0. Furthermore, by (W2) and (W4), for
|u| ≥ r,

C0H(t, u) ≥ |∇W (t, u)|σ

|u|σ
≥
(
〈∇W (t, u), u〉

|u|2

)σ
≥
(

2W (t, u)

|u|2

)σ
. (3.15)

By (W3), (3.15) and the definition of h(r) we obtain

h(r)→∞ as r →∞.

Let

Cba := inf

{
H(t, u)

|u|2
: t ∈ R and u ∈ RN with a ≤ |u| < b

}
.
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So
H(t, un) ≥ Cba|un|2 ∀t ∈ Ωn(a, b),

consequently, by (3.13) we get

c− on(1) ≥
∫

Ωn(0,a)

H(t, un)dt+ Cba

∫
Ωn(a,b)

|un|2dt+

∫
Ωn(b,+∞)

H(t, un)dt

=

∫
Ωn(0,a)

H(t, un)dt+ Cba

∫
Ωn(a,b)

|un|2dt+ h(b)meas(Ωn(b,+∞)).

(3.16)
Since h(r)→ +∞ as r → +∞, for 2 < 2σ

σ−1 = p < q <∞ it follows from (3.16) that

∫
Ωn(b,+∞)

|vn|pdt ≤

(∫
Ωn(b,+∞)

|vn|qdt

) p
q

meas(Ωn(b+∞))
q−p
q

≤ ‖vn‖pLq
(
c− on(1)

h(b)

) q−p
p

≤ Kpq
(
c− on(1)

h(b)

) q−p
p

→ 0

(3.17)

as b → +∞. Furthermore, by (W4) and the Hölder inequality, for any ε > 0, we
can choose R > 0 large enough such that∣∣∣∣∣

∫
Ωn(R,+∞)

〈∇W (t, un), un〉
‖un‖2Xα,λ

dt

∣∣∣∣∣
≤
∫

Ωn(R,+∞)

|∇W (t, un)|
|un|

|vn|2dt

≤

(∫
Ωn(R,+∞)

|∇W (t, un)|σ

|un|σ

)1/σ (∫
Ωn(R,+∞)

|vn|pdt

)σ−1
σ

≤

(∫
Ωn(R,+∞)

C0H(t, un)dt

)1/σ (∫
Ωn(R,+∞)

|vn|pdt

)σ−1
σ

≤ C1/σ
0 (c− on(1))1/σ

(∫
Ωn(R,+∞)

|vn|pdt

)σ−1
σ

< ε.

(3.18)

and by (W1), there is δ > 0 such that∫
Ωn(0,δ)

|∇W (t, un)|
|un|

|vn|2dt ≤
∫

Ωn(0,δ)

ε

K2
2

|vn|2dt ≤
ε

K2
2

‖vn‖2L2 ≤ ε, ∀n. (3.19)

Now, by using (3.16) again, we get∫
Ωn(δ,R)

|vn|2dt =
1

‖un‖2Xα,λ

∫
Ωn(δ,R)

|un|2dt ≤
c− on(1)

CRδ ‖un‖2Xα,λ
→ 0

as n→∞. Then, for n large enough, by the continuity of ∇W one has∫
Ωn(δ,R)

|∇W (t, un)|
|un|

|vn|2dt ≤ K
∫

Ωn(δ,R)

|vn|2dt < ε. (3.20)
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Hence, by (3.19), (3.18) and (3.20), for n large enough we have∫
R

〈∇W (t, un), vn〉
|un|

|vn|dt ≤
∫
R

|∇W (t, un)|
|un|

|vn|2dt ≤ 3ε < 1,

which is a contradiction with (3.14). Then (un)n∈N is bounded in Xα,λ.

Lemma 3.3. Suppose that (L)1−(L)3 and (W1)−(W4) hold. Then, for any C > 0,
there exists Λ1 = Λ(C) > 0 such that Iλ satisfies (Ce)c condition for all c ≤ C and
λ > Λ1.

Proof. For any C > 0, suppose that (un)n∈N ⊂ Xα,λ is a (Ce)c sequence for
c ≤ C, namely

Iλ(un)→ c and (1 + ‖un‖Xα,λ)I ′λ(un)→ 0 as n→∞.

By Lemma 3.2, (un)n∈N is bounded. Therefore, there exists u ∈ Xα,λ such that

un ⇀ u in Xα,λ and

un → u a.e. in R.

Let wn := un − u. By Lemma 3.1 we get

I ′λ(u) = 0, Iλ(wn)→ c− Iλ(u) and I ′λ(wn)→ 0 as n→∞.

Next

Iλ(u) = Iλ(u)− 1

2
I ′λ(u)u =

∫
R
H(t, u)dt ≥ 0, (3.21)

and ∫
R
H(t, wn)dt→ c− Iλ(u). (3.22)

Therefore, for c ≤ C, we get ∫
R
H(t, wn)dt ≤ C + on(1). (3.23)

On the other hand, by (L)1 and since wn → 0 in L2
loc(R,RN ), we have

‖wn‖2L2 ≤
1

λc

∫
{l≥c}

λ〈L(t)wn, wn〉dt+ on(1) ≤ 1

λc
‖wn‖2Xα,λ + on(1). (3.24)

Let p < q <∞, where p = 2σ
σ−1 . Using Remark 2.2 and Hölder inequality we obtain∫

R
|wn|pdt =

∫
R
|wn|

2(q−p)
q−2 |wn|

q(p−2)
q−2 dt ≤ ‖wn‖

2(q−p)
q−2

L2 ‖wn‖
q(p−2)
q−2

Lq

≤ K
q(p−2)
q−2

q

(
1

λc

) q−p
q−2

‖wn‖pXα,λ + on(1).

(3.25)

Furthermore, for |u| ≤ R (where R is defined in (W4)), from (3.4), we get

|∇W (t, u)| ≤ (ε+ CεR
p−2)|u| = C̃|u|.
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It follows from (3.24) that∫
{t∈R: |wn(t)|≤R}

〈∇W (t, wn), wn〉dt

≤
∫
{t∈R: |wn(t)|≤R}

|∇W (t, wn)||wn|dt

≤ C̃
∫
{t∈R: |wn(t)|≤R}

|wn|2dt ≤
C̃

λc
‖wn‖2Xα,λ + on(1).

On the other hand, from (3.25) and the Hölder inequality we obtain∫
{t∈R: |wn(t)|>R}

〈∇W (t, wn), wn〉dt ≤
∫
{t∈R: |wn(t)|>R}

|∇W (t, wn)||wn|dt

≤
∫
{t∈R: |wn(t)|>R}

|∇W (t, wn)|
|wn|

|wn|2dt

≤

(∫
{t∈R: |wn(t)|>R}

|∇W (t, wn)|σ

|wn|σ
dt

)1/σ (∫
{t∈R: |wn(t)|>A}

|wn|p
) 2
p

≤
(
C0

∫
R
H(t, wn)dt

)1/σ

‖wn‖2p

≤ (C0C)1/σK
2q(p−2)
p(q−2)
q

(
1

λc

) 2(q−p)
p(q−2)

‖wn‖2Xα,λ + on(1).

Therefore

on(1) = 〈I ′λ(wn), wn〉 = ‖wn‖2Xα,λ −
∫
R
〈∇W (t, wn), wn〉dt

= ‖wn‖2Xα,λ −
∫
{t∈R: |wn(t)|≤R}

〈∇W (t, wn), wn〉dt

−
∫
{t∈R: |wn(t)|>R}

〈∇W (t, wn), wn〉dt

≥

1− C̃

λc
− C∗

(
1

λc

) 2(q−p)
p(q−2)

 ‖wn‖2Xα,λ + on(1),

where C∗ = (C0C)1/σK
2q(q−p)
p(q−2)
q . Now, we choose Λ1 = Λ(C) > 0 large enough such

that

1− C̃

λc
− C∗

(
1

λc

) 2(q−p)
p(q−2)

> 0 for all λ > Λ1.

Then wn → 0 in Xα,λ for all λ > Λ1.

Proof of Theorem 1.1. By Lemma 3.3, Iλ satisfies the (Ce)c-condition. In order
to apply the mountain pass theorem with Cerami condition we just need to show
that Iλ has the mountain pass geometry. In fact, by (3.5) and Remark 2.2, we
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obtain

Iλ(u) ≥ 1

2
‖u‖2Xα,λ −

ε

2

∫
R
|u(t)|2dt− Cε

p

∫
R
|u(t)|pdt

≥ 1

2

(
1− ε

Θ

)
‖u‖2Xα,λ −

Cε

pΘ
p
2 (meas{l < c}) p−2

2

‖u‖p
Xα,λ

.

Let ε > 0 small enough such that 1− ε
Θ > 0 and ‖u‖Xα,λ = ρ. Since p > 2, taking

ρ small enough such that

1

2

(
1− ε

Θ

)
− Cε

pΘ
p
2 (meas{l < c}) p−2

2

ρp−2 > 0.

Then

Iλ(u) ≥ ρ2

[
1

2

(
1− ε

Θ

)
− Cε

pΘ
p
2 (meas{l < c}) p−2

2

ρp−2

]
:= η > 0.

On the other hand, let T = (−%, %) ⊂ J such that L(t) ≡ 0. Let ψ ∈ C∞0 (R,Rn)
such that supp(ψ) ⊂ (−τ, τ), for some τ < %. Hence

0 ≤
∫
R
〈L(t)ψ,ψ〉dt =

∫
supp(ψ)

〈L(t)ψ,ψ〉dt

≤
∫ τ

−τ
〈L(t)ψ,ψ〉dt ≤

∫
T

〈L(t)ψ,ψ〉dt = 0.

(3.26)

Furthermore, by (W3), for any ε > 0, there exists R > 0 such that

W (t, u) >
|u|2

ε
− R2

ε
for all |u| ≥ R.

Then, by taking ε→ 0 we get

lim
|σ|→∞

∫
supp(ψ)

W (t, σψ)

|σ|2
dt = +∞. (3.27)

Hence, by (3.26) and (3.27) we obtain

Iλ(σψ)

|σ|2
=

1

2

∫
R
|−∞Dα

t ψ(t)|2dt−
∫
R

W (t, σψ)

|σ|2
dt→ −∞, (3.28)

as |σ| → ∞. So, if σ0 is large enough and e = σ0ψ one gets Iλ(e) < 0. Therefore,
by using mountain pass lemma with Cerami condition [5], for any cλ > 0 defined as
follows

cλ = inf
g∈Γ

max
s∈[0,1]

Iλ(g(s)),

where
Γ = {g ∈ C([0, 1], Xα,λ) | g(0) = 0, g(1) = e},

there exists uλ ∈ Xα,λ such that

Iλ(uλ) = cλ and I ′λ(uλ) = 0. (3.29)

That is, (FHS)λ has at least one nontrivial solution for λ > Λ(cλ).
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4. Concentration phenomena

In this section, we study the concentration of solutions for problem (FHS)λ as λ→
∞. That is, we focus our attention on the proof of Theorem 1.2. The main difficulty
to proof Theorem 1.2, is to show that cλ is bounded form above independent of λ. To
overcome this problem, choose ψ as in the proof of Theorem 1.1, then by definition
of cλ, we have

cλ ≤ max
σ≥0

Iλ(σψ)

= max
σ≥0

(
σ2

2

∫
R
|−∞Dα

t ψ(t)|2 −
∫
R
W (t, σψ)dt

)
= c̃,

where c̃ < +∞ is independent of λ.
As a consequence of the above estimates, we have that Λ(cλ) is bounded from

below. That is, there exists Λ∗ > 0 such that the conclusion of Theorem 1.1 is
satisfied for λ > Λ∗.

Consider the following fractional boundary value problem tD
α
%−%D

α
t u = ∇W (t, u), t ∈ (−%, %),

u(−%) = u(%) = 0.
(4.1)

Associated to (4.1) we have the energy functional I : Eα0 → R given by

I(u) :=
1

2

∫ %

−%
|−%Dα

t u(t)|2dt−
∫ %

−%
W (t, u(t))dt

and we have that I ∈ C1(Eα0 ,R) with

I ′(u)v =

∫ %

−%
〈−%Dα

t u(t),−%D
α
t v(t)〉dt−

∫ %

−%
〈∇W (t, u(t)), v(t)〉dt.

Following the ideas of the proof of Theorem 1.1, we can get the following existence
result

Theorem 4.1. Suppose that W satisfies (W1)− (W4), then (4.1) has at least one
weak nontrivial solution.

Proof of Theorem 1.2. We follow the argument in [35]. For any sequence λk →
∞, let uk = uλk be the critical point of Iλk , namely

cλk = Iλk(uk) and I ′λk(uk) = 0,

and, by (3.5), we get

cλk = Iλk(uk) =
1

2
‖uk‖2Xα,λ −

∫
R
W (t, uk(t))dt

≥ 1

2
‖uk‖2Xα,λ −

ε

2

∫
R
|uk|2dt−

Cε
p

∫
R
|uk|pdt,
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which implies that (uk) is bounded, due to Remarks 2.1 and 2.2. Therefore, we may
assume that uk ⇀ ũ weakly in Xα,λk . Moreover, by Fatou’s lemma, we have∫

R
l(t)|ũ(t)|2dt ≤ lim inf

k→∞

∫
R
l(t)|uk(t)|2dt

≤ lim inf
k→∞

∫
R

(L(t)uk(t), uk(t))dt ≤ lim inf
k→∞

‖uk‖2Xα,λk
λk

= 0.

Thus, ũ = 0 a.e. in R \ J . Now, for any ϕ ∈ C∞0 ((−%, %),Rn), since I ′λk(uk)ϕ = 0,
it is easy to see that∫ %

−%
(−%D

α
t ũ(t),−%D

α
t ϕ(t))dt−

∫ %

−%
(∇W (t, ũ(t)), ϕ(t))dt = 0,

that is, ũ is a solution of (4.1) by the density of C∞0 (T,Rn) in Eα.
Now we show that uk → ũ in Xα. Since I ′λk(uk)uk = I ′λk(uk)ũ = 0, we have

‖uk‖2Xα,λk =

∫
R

(∇W (t, uk(t)), uk(t))dt (4.2)

and

〈uk, ũ〉λk =

∫
R
(∇W (t, uk(t)), ũ(t))dt, (4.3)

which implies that

lim
k→∞

‖uk‖2Xα,λk = lim
k→∞

〈uk, ũ〉Xα,λk = lim
k→∞

〈uk, ũ〉Xα = ‖ũ‖2Xα .

Furthermore, by the weak semi-continuity of norms we obtain

‖ũ‖2Xα ≤ lim inf
k→∞

‖uk‖2Xα ≤ lim sup
k→∞

‖uk‖2Xα ≤ lim
k→∞

‖uk‖2Xα,λk .

So uk → ũ in Xα, and uk → ũ in Hα(R,Rn) as k →∞.
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