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Abstract By using the weight functions, the idea of introducing parameters,
and Hermite-Hadamard’s inequality, a more accurate half-discrete Hilbert’s
inequality with the nonhomogeneous kernel and its equivalent form are given.
The equivalent statements of the best possible constant factor related to pa-
rameters, the operator expressions and some particular cases are considered.
The cases of the relating homogeneous kernel are also deduced.

Keywords Weight function, half-discrete Hilbert’s inequality, equivalent state-
ment, Hermite-Hadamard’s inequality, operator expression.

MSC(2010) 26D15.
1. Introduction

Assuming that 0 < > a2, < coand 0 < Yo7 b2 < 0o, we have the following
Hilbert’s inequality with the best possible constant factor 7 (cf. [3], Theorem 315):

0o o 1/2
sz+n 7r<zla$nzlbi> . (1.1)

If 0 < [;° f2(z)de < oo and 0 < [;~ g?(y)dy < oo, then we still have the following
Hilbert’s 1ntegra1 inequality:

//f dxdy<7r</ f(a da:/OOQQ(y)dy>2, (1.2)

with the same best possible constant factor 7 (cf. [3], Theorem 316). Inequalities
(1), (2) and their extensions with (p,q)(p > 1, % + % = 1) are important in analysis
and its applications (cf. [1,2,7,11-17,20]).

We still have the following half-discrete Hilbert-type mequahtles (cf. [3], Theo-
rem 351): If K(x)(z > 0) is a decreasing function, p > 1,1 5 =1,0 < ¢(s) =
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Jo° K(z)z*"tdx < oo, then

/Ooo P2 <§:1 K(nx)an>p < qﬁp(é) iaﬁ, (1.3)
i”pz (/OOO K(nff)f(x)dx>p < ¢”($) /OOO fP(x)da. (1.4)

In the last years, some new extensions of (1.3) and (1.4) with their applications
were provided by [8-10,18,19].

In 2016, by the use of the technique of real analysis, Hong [4] and [5] consid-
ered some equivalent statements of the extensions of (1.1) and (1.2) with a few
parameters.

In this paper, following the way of [4] and [5], by the use of the weight functions,
the idea of introducing parameters and Hermite-Hadamard’s inequality, a more
accurate half-discrete Hilbert’s inequality with the nonhomogeneous kernel and its
equivalent form are given. The equivalent statements of the best possible constant
factor related to a few parameters, the operator expressions and some particular
cases are considered. The cases of the relating homogeneous kernel are also deduced.

2. Some Lemmas

In what follows, we assume that p > 1,% + % =1,¢£ € [0, %LO <A< 10,01 €

(0,A), f(z) is a nonnegative measurable function in Ry = (0,00), a, >0 (n € N =
{1,2,---}), such that

oo (o)
0< / xp[lf(%Jr%)]flfp(x)dx < 00,0 < Z(n _ g)q[lf(%+%)]*1a%.
0

n=1

Lemma 2.1. Define the following weight functions:

e o] 1‘01—1
we(o1,n) 1 = (n— 5)‘7/0 mdm (n € N), (2.1)
. o1 - (’I’l B 5)0_1
wal(a,x) =2 ;m ($€R+) (22)
We have the following equality and inequalities:
™ o—01
T _ [Ji(l _g)}o‘ xa'l—o
Asin(wo/N) o
< We, (0,7) T 7177 (x € Ry). (2.4)

< Xsin(mo/N)
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Proof. Setting u = 2*(n — &)*, we find

1 [ 1 =D/ ,1/n-1
= — 7 _ d
wo’(alan) (n g) )\/0 1+u(n—§)"1*1 n_g u
0'1/)\
— n _ O’ g1
A / R
— T g—01
B )\sm(mfl/)\)( -9 ’
and then (2.3) follows.
In view of the fact that fi—;i > 0,
i ua—l _ (0._ 1)u0'—2 B AUU+>\_2 - 0
dul+u> 1T+ ur (14 u?)2 ’
? uwt (o—1)(c—2u?  (0— 1M
du? 1+ur 1+ u? (14 u?)?
(0 + A= 2))\u0+)\73 )\2u0+2)\73 -
(14 u?)? (1+u)3 ’

by Hemite-Hadamard’s inequality (cf. [6]), we find

o [T (=97
we, (0,2) <z /; mdt

< xolfai

1 u(o’/)\) 1 T
< / du = — %179,
Ao 14w Asin(mo/A)

In view of the decreasingness property, we obtain

o [T (=97
We, (0,2) > @ /1 mdt

1 00 u((r/)\)fl
= g% "f/ ——du
A [z(1—&)]> 1+’LL

1 [=(1-)]* Lo/
> 010 o d
=7 X | Asin( 7ra/)\ /0 “

[Asmgw/m - )]U]

Hence, (2.4) follows.
The lemma is proved. O

Lemma 2.2. Setting kx(n) := W(n = 0,01), we have the following inequal-
ity:

I:/o Z1+anf Z/ 1+anf op

P \Le (271 ’
< K} (o) (0n) / 2P () g
0
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x {im g } (2.5)

n=1

Proof. By Holder’s inequality (cf. [6]), we have

oo 2 1 z(=o)/af(z)] [(n—€)A-o)/p

y 2 TH G —oP [<n - s><1—v>/p] [ E ] “
oo & 1 x(1=o0)p/a fp(g) v

{/ DB e S dm}

o oo ! (n—g)=our 7

) {Z /o L+fzn-9P 2 a"dx}

[ / B (0, 2)a? 1= f7(z) dxHZwU o1,m)(n — )10~ ]

n=1

IN

Then by (2.3) and (2.4), we have (2.5).
The lemma is proved. O
By (2.5), for o1 = o, we find 0 < [;° gP1=) =1 fP(3)dx < 00,0 < 300 (n —
€)11=9)=1g8 < 00, and

/0 ZHM o

< k(o) [Ammp(l—“>—1fp<x>dx];[im—s)q“-”—laz .26

Q=

n=1

Lemma 2.3. The constant factor ky(o) = in (2.6) is the best possible.

A sin(jro’/)\)

Proof. For 0 < € < qo, we set

T 5_1,0<x§1,

0, x> 1.

If there exists a constant M < kx (o), such that (2.6) is valid when replacing k(o)
by M, then for a,, = a,, f = f, we have

anfla
= ZH e
< M[/ pp(1=0)— 1fp } li q(l o)— 1~q
0

n=1

=
Q=
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‘We obtain

1 3 [ %
f<MU xp(l—o)—lxp(wr;l)dm] Z(n_g)qu—w—l(n_g)q(az1)1

n=1

(/01 z 1dac> [ (1—¢—=! +§:2(n—5)—8—1r
( ze” 1da:> [(1—£)€1+/100(t—§)51dt];
[

+(1-67°]

I
<

<

Q=

m\i i

In view of (2.4) (for o1 = o), we find

il e 0o
—5[’“( -9+

Then we have

e el-gE
N A P

<el < M[e(1-€) =14 (1-6) 7.

For ¢ — 07, in view of the continuous property of the sine function, we find k(o) <
M. Hence, M = ky(o) is the best possible constant factor of (2.6).
The lemma is proved. O
Note. Setting ¢ = 2 4+ Z(0,01 € (0,A) C (0,1)), we may rewrite (2.5) as
follows:

g
p

Q=

>l

I <k (o)k

(1) [ /Ooozp(mlfp(x)dxrlf]nf)‘“”’“] X))

n=1

By Holder’s inequality (cf. [6]), the parameter & in (2.7) also satisfies

~ o 01 o0 1 o—1 op—1
0<k =kx(—+—)= — (u'» 7 )d
@ =h G+ D) = [ T

— K (0)k] (1) < o0, (2.8)
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and for 0 < 7 < % + % = ), it follows that

() — M <™y % < k(3.

1 1
Lemma 2.4. If the constant factor k{ (o)kj (o1) in (2.7) is the best possible, then
we have o1 = 0.

1

1
Proof. If the constant factor kf (O')kg (o1) in (2.7) is the best possible, then by
(2.6), the unique best possible constant factor must be kx(d)(€ Ry), namely,
1 1

kx(5) = kf (0)ky (01). We observe that (2.8) keeps the form of equality if and only if
there exist constants A and B, such that they are not all zero and Au®~! = Bu®~!
a.e. in Ry (cf. [6]). Assuming that A # 0, it follows that u”~7* = B/A a.e. in R,
and then o — o7 = 0, namely, 07 = 0.

The lemma is proved. O

3. Main results and some corollaries
Theorem 3.1. Inequality (2.5) is equivalent to the following inequalities:

Ji = {i(n_g)P(g+?)1 UO“ H[xf((;)—g)]kdxr};

n=1
1

@it { [t G payanf (3.)

Jg = {/o 2+ lz SR r—=Y [33(7:—5)]’\] dx}

n=1

<k

> |

n=1

< K (o) (o) {Zm—g)q[”i*?”laz}q : (3.2)

If the constant factor in (2.5) is the best possible, then, so is the constant factor in
(3.1) and (3.2).

Proof. Suppose that (3.1) ((3.2)) is valid. By Holder’s inequality (cf. [6]), we have

=3 {(n —F D OOO %] [(n 75)%—(%#71)%}

1
o) q
<J {Z(n —5)q“<2+?”1az} , (3.3)

S—
3
8
3
ey
A
S lq
+
T
-
“~
S
—~
8
S~—
IS
5
—
S
o

(3.4)
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Then by (3.1) ((3.2)), we have (2.5). On the other hand, assuming that (2.5) is
valid, we set

p—1

an = (n — 5)’7(%*%)*1 {/Ooc mmda: (n € N).

If J; = 0, then (3.1) is naturally valid; if J; = oo, then it is impossible to make
(3.1) valid. Suppose that 0 < J; < co. By (2.5) we have

Z(n _ f)q[lf(%Jr%l)]*laZ

n=1

1 1 o0 P P
=J7 =1<k{(o)ki(o1) {/ Ip[l_(P+‘11)]_1fp(gj)d;lj}
0

- {im - 5)‘1“*‘5*?”‘1“3}

o=

=J1 < kf(a)kf(ol) {/ xp[l—((;""?)]—lfp(x)dx}p ,
0

namely, (3.1) follows.
In the same way, assuming that (2.5) is valid, we set

o0

T —sw] (r e R

n=1

fla) = G+ [

If J, = 0, then (3.2) is naturally valid; if Jo = oo, then it is impossible to make
(3.2) valid. Suppose that 0 < Jo < co. By (2.5), we have

/m PG ()
0

1 1 o0 s, 0
=Jl=1I< kL (0)ky (o1) {/ zP[l—(p+;)]—1fp(z)dI}
0

1

% {Z(n g)q[l—(;-l-”;)]—la%} 7
n=1

1
0
1

= Jo <k} (0)kj (01) {Z(“ _ 5)4[1—(‘;+“;)]—1a%} 7

n=1

namely, (3.2) follows. Hence, inequalities (2.5), (3.1) and (3.2) are equivalent.
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If the constant factor in (2.5) is the best possible, then so is constant factor in
(3.1) ((3.2)). Otherwise, by (3.3) ((3.4)), we would reach a contradiction that the
constant factor in (2.5) is not the best possible.

The theorem is proved. O

Theorem 3.2. The following statements (i), (i), (iii) and (iv) are equivalent:
1 1
(1) k{ (0)k{ (01) is independent of p, q;
(i%) k‘E( )ka(ol) is expressible as a single integral;

(iii) ki (0)ky (01) in (2.5) is the best possible constant;

(iv) o1 = 0.

If the statement (iv) follows, then we have the following equivalent inequalities
with the best possible constant factor m

[ ZHM o
<o | } lfj (1_")_1air, 55)

n=1

{if” o [ s apdx]p}p
< m [/000 xp(l_”)_lfp(x)dm]é , (3.6)

{/ . L;l+[x<§—w] d””}

< To M/A [Z q(1-0)— %] ‘ (3.7)

Proof. (i) => (ii). By (i) we have

Q=

()i (o1) = lim K (0)k} (1) = kn(0),

p—1t

>

k

1 1
namely, k7 (o)ky (o1) is expres&ble as a single integral.

(ii) => (iv). In (2.8), 1fk (o )k (01) is expressible as a single integral kx(%+"),
then (2.8) keeps the form of equality. In view of the proof of Lemma 4, We have
g1 =20. . L

(iv) => (i). If o1 = o, then kJ (0)k{ (01) = kx(c), which is independent of p, g.
Hence, we have (i) <=> (i1) <=> (iv).

(#i7) => (iv). By Lemma 4, we have o1 = 0.
1 1

(iv) => (iii). By Lemma 3, k{ (0)k{ (01) = kx(c) in (2.5) (for o1 = o) is the
best possible constant. Therefore, we have (iii) <=> (iv).
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Hence, the statements (i), (ii), (iii) and (iv) are equivalent.

The theorem is proved. O

Replacing « by 2and then #*~2f(1) by f(x) in Theorem 3.1 and Theorem 3.2,
setting o7 = A — u, we have

Corollary 3.1. The following inequalities with the homogeneous kernel are equiv-
alent:

/0 Z e a"f P o < ()R] (0~ ) { /0 ) xp““?”“é)“ff?(x)dx}p
X {i(n g)q[l (2+224) } (3.8)

n=1

(e[ el
<k§<a>k§<x—u>{ [ )dx} , (3.9)

[e'e) oo q é
a(352+%L)—1 Gn
U St )

o0

< KF @)k (A - ) {Z(n - &)q[”‘é“i“”laz}q : (3.10)

n=1

If the constant factor in (3.8) is the best possible, then so is the constant factor
in (3.9) and (5.10).

Corollary 3. 2 The following statements (I), (II), (III) and (IV) are equivalent:
(1) k% (o)ky ()\ w) is independent of p, q;
l
(1I) k3 (o)ky (A — p) is expressible as a single integral;
1 1

(II) k% (0)ki (A — ) in (3.8) is the best possible constant;

(IV) p+o=A

If the statement (IV) follows, then we have the following equivalent inequalities
with the best possible constant factor:

/O Z o “"f S -

<m[/0°°xm e[S

e ]

n=1

< m [/OOO xp(l_“)_lfp(x)dx] : (3.12)

1
q
1a‘4 , (3.11)

M

=
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{/0 o [ZIA+(;§)A] d:c}

n=1

1

)\bm 7m/)\ [2 (n—¢g)1t-o)-1 n] . (3.13)

4. Operator expressions and a remark
(1) We set functions: ¢(z) := xp[lf(%Jr%)]*l,w(n) = (n—f)q[lf(%Jr%l)]*l, where-
from,

P U(z) = 27D PP (n) = (n— PG (z € Ry,n € N).

Define the following real normed spaces:

Lgpr-a(Ry) := {h;hh(x),x€R+,|lh|lq,wlq(/0 wlq(x)lh(x)lqu)Q<OO},

q

low = qaa={an};2y, llallgy = (Z w(n)lan|q> <000,
n=1

lpapr-r = b0 = {bn 32y, |[Bllppr—» = (Z w1p<n)|bn|p> < o0

n=1

Assuming that f € Ly, ,(R4), setting b = {b, }32,, b, == [ 1+[Tda: n €
N, we can rewrite (3.1) as
1 1
[0l lp,pr-» < k3 (0)k3 (1) f]lp.e < 00,
namely, b € [, y1-».

Definition 4.1. Define a half-discrete Hilbert’s operator with the nonhomogeneous
kernel T : Ly ,(Ry) — 1, y1-» as follows: For any f € L, ,(Ry), there exists a
unique representation Ty f = b € I, y1-». Define the formal inner product of 71 f
and a € lg 4, and the norm of T} as follows:

iy = S [ o

n=1
[Ty £ pgr—»

T3] - =
f(#0)eLy o (Ry) ||f‘|mo

Assuming that a € Iy, setting h = h(z), h(z) ==, m,x ceR,, we
can rewrite (3.2) as

1 1
Pllgpr-a < kX (0)kx (a1)]]allgw < oo,

namely, h € L, ,1-a(R4).
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Definition 4.2. Define a half-discrete Hilbert’s operator with the nonhomogeneous
kernel Ty : lg.y — Lg ,1-a(Ry) as follows: For any a € I, 4, there exists a unique
representation Toa = h € L, ,1-4. Define the formal inner product of f € L, ,(Ry)
and Tsa, and the norm of Ty as follows:

(f, Tza) : :/0 {Z M}f@)d%

n=1

Tsa _

[|T5]| : =  sup M
a#0)ely,  lallgy

By Theorem 3.1 and Theorem 3.2, we have

Theorem 4.1. If f = f(2)(= 0) € Lypu(Ri) a = {an};21(2 0) € Ly, [[fllpe,
l|allg,s > 0, then we have the following equivalent inequalities:

(T1f,a) = (f,Tza) < k3 (0)k3 (00)[|f|lp.ellallq.w, (4.1)
1711 1lppr-» < B (0)E5 (01)[ flp.os (4.2)
1 T2allgpr-0 < &3 (0)k3 (01)]]allg,u- (4.3)

1 1
Moreover, if and only if o1 = o, the constant factor kJ (o)ky (01) in the above

inequalities is the best possible, namely,

™

Il = 11Tall = kx(0) =y e 7oy

(2) We set functions: ®(x) := xp[l_(%+%)]_l,\11(n) = (n— 5)‘1[1_(%"'%)]_1,
wherefrom,

P(x) = xq(k%““%)*l, U P(n) = (n — E)p(%Jquu)*l (x € Ry,n € N).

Define the following real normed spaces:

Lya(Ry) = {f;f — @) € R lfllpa = [ o@lrPan)” < oo} ,

Lyans(R:) = {h;h=h<x>7xeR+, Moo= ([ @) e’ <oo},
0

q

v = (Z ‘I’(n)lanlq> <00,

a;a = {an};ly, |lal

lq"p :

1
Lpion = bib = {5}, ([l pyr—r = (Z \Ill_p(n)|bn|”> < o0

n=1

Assuming that f € Ly ¢(Ry), setting b = {b,}02,,bp := [ %dw,n €

N, we can rewrite (3.9) as

[1bllp,w1-» < k5 (@) (A = mlIf[]p.0 < o0,

namely, b € [, g1-».



Equivalent property of a more accurate half-discrete Hilbert’s inequality 931

Definition 4.3. Define a half-discrete Hilbert’s operator with the homogeneous
kernel T3 : L, o(Ry) — [, y1-» as follows: For any f € L, s(Ry), there exists a
unique representation T3f = b € [, y1-». Define the formal inner product of T3f
and a € [, v, and the norm of 73 as follows:

R ()N
(T3f7a).—;{/o J;A—!—(n—g)kdm n,
o= s Sl

F#0el, o®Ry)  fllpa
Assuming that a € ly v, setting h = h(x), h(z) == >~ T~ T € Ry, we

can rewrite (3.10) as
1 1
hllg@1-0 <k (0)k3 (A = pllallqw < oo,
namely, h € L, g1-4(R4).

Definition 4.4. Define a half-discrete Hilbert’s operator with the homogeneous
kernel Ty : lg.9 — Lg ¢1-4(Ry) as follows: For any a € I, y, there exists a unique
representation Tya = h € L, g1-4. Define the formal inner product of f € L, ¢ (Ry)
and Tya, and the norm of Ty as follows:

o0 oo an
e ::/ S, ey | f(@)dz,
( ) 0 ;x’\+(n_§),\ (z)
T. _
= sup A Fallaore
a(#0)elyw  |lallgw

By Corollary 3.1 and Corollary 3.2, we have

Corollary 4.1. If f = f(z)(= 0) € Lys(Ry),a = {an}32,(= 0) € lgu,[|fllp.e,
llallg,w > 0, then we have the following equivalent inequalities:

(Tsf.a) = (f, Taa) < k3 (0)k3 (A = )l fIp.0llallq.v, (4.4)
15 llpwr-r < B (0)k5 (A = )l fllp,, (4.5)
1 Tsallgpr-a < K3 (0)k3 (A= p)llallg,e- (4.6)

1 1
Moreover, if and only if 41+ o = A, the constant factor k} (o)ky{ (A — ) in the
above inequalities is the best possible, namely,

T
T3 = ||Tu|| = k =\
0] = 1174l = bs0) = 5o

Remark 4.1. (i) For ¢ = 1(< \) in (3.5), (3.6) and (3.7), we have the follow-

P
ing equivalent inequalities with the nonhomogeneous kernel and the best possible

constant factor 3
/ Z %)/\dx
0o = 1+z(n-9)]

< m (/OOO xp—2fp(a:)dx)’l’ <§:1 ag> E, (4.7)

-
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{i Uooo H[f((mdxr}p S vmemy ( / i x’"zfp(w)dw) s
([ ] ) s (59) o

(ii) For o = %(< A) in (3.5), (3.6) and (3.7), we have the following equivalent
inequalities with the best possible constant factor

/00 i Tl anf ——ndr
<o ([ f”(x)daﬁf [im - oq—%zl L aw

{2(” o Uow Hpcf((f)_g)pdx]} Srromy ( s fp(x)dx>; ,

(4.11)

{/0 lZH[m(;S)P] d”’} <Asm(ﬂ/qA)LZ(n—€)"‘2ag] . (412)

1

(iif) For A =1,u = <,0 = < in (3.11), (3.12) and (3.13), we have the following
equivalent inequalities Wlth the homogeneous kernel and the best possible constant

faCtOr m .

/°° i xajj; - Sin(jr/p) (/OOO fp(x)dm); (g:l a%)é : (4.13)

[Z (/ fo(n)—§dx>p] E < m (/OOO fp(:v)d:r) 0 (4.14)

1
00 00 q q 0o q
a T
— | dz| < ——7 al | . 4.15
l/o (;x—i—n—f) ] sin(r/p) (7; > (4.15)

(iv) For A= 1,u = },0 = ¢ in (3.11), (3.12) and (3.13), we have the following
equivalent inequalities with the homogeneous kernel and the best possible constant
factor

Q=

ST

/ mai‘i_ @ < T (/Oww”f%)da:);[i(no“azr,

3
HM8
N
—
3
o
T
[V}
/~
N
8
8
+ =
=2
I N~—
7axY
jsW
S
~_
5
b
A
2]
=
3
\
=
I/~
N
8
=
S
&
&h
<
&
SN—
jsW
=2
N——
5=

Ooqf2 ooai"q‘r% L Ooni q72aq%
l/o ‘ (,ga:—&-n—E) d] <Sin(7r/p) lz( €) n] . (4.18)
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