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COMPACT FINITE DIFFERENCE SCHEMES
OF THE TIME FRACTIONAL

BLACK-SCHOLES MODEL∗

Zhaowei Tian1, Shuying Zhai1, Zhifeng Weng1,†

Abstract In this paper, three compact difference schemes for the time-fractio-
nal Black-Scholes model governing European option pricing are presented.
Firstly, in order to obtain the fourth-order accuracy in space by applying the
Padé approximation, we eliminate the convection term of the B-S equation by
an exponential transformation. Then the time fractional derivative is approx-
imated by L1 formula, L2− 1σ formula and L1− 2 formula respectively, and
three compact difference schemes with oders O(∆t2−α +h4), O(∆t2 +h4) and
O(∆t3−α + h4) are constructed. Finally, numerical example is carried out to
verify the accuracy and effectiveness of proposed methods, and the compar-
isons of various schemes are given. The paper also provides numerical studies
including the effect of fractional orders and the effect of different parameters
on option price in time-fractional B-S model.

Keywords Time-fractional Black-Scholes equation, European option, expo-
nential transformation, compact difference scheme.
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1. Introduction
Black and Scholes [2] proposed the famous option pricing formula in 1973 , the
classical Black-Schels model showed that the stock price changes must follow the
assumption of geometric Brownian motion. The Black-Scholes model has been in-
creasingly popular because it effectively models the option value and provides a
mechanism for extracting implied volatilities. However, one of the biggest draw-
backs of the classical B-S model is that it can’t capture large movements or jumps
over small time steps in the dynamic process of stock price changes. As early as
the 1960s, Mandelbrot [15] observed the long-tailed distribution of relative stock
price changes, and deduced that the use of α−stable Lévy motion was instead of
standard geometric Brownian motion. Because fractional derivatives can describe
the characteristics of memory and inheritance and are very close to Lévy processes,
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fractional differential equations have become powerful tools for studying fractal
geometry and fractal dynamics, and have been widely used to model anomalous
diffusion or α−stable Lévy processes.

There are mainly two types of B-S models which follow a fractal transmission
system: a spatial-fractional B-S model and a time-fractional B-S model. As for
a fractional derivative in space, Carr and Wu [3]introduced the FMLS (finite mo-
ment log stable) model. Cartea et al. [4] showed that the price of European options
satisfies the FPED (fractional partial differential equation) with spatial fractional
derivative under FMLS model. Chen et al. [5] derived an explicit closed-form ana-
lytical solution for the equation proposed by [4]. In [22] Zhang et al. proposed an
implicit discrete scheme for the tempered fractional B-S model governing a Euro-
pean double-knock-out barrier option. Regarding the option pricing with respect
to time-fractional derivative, Wyss [19] gave a time-fractional B-S equation for a
European vanilla options. Cartea [6] found the value of European-style derivatives
satisfies a FPDE with the Caputo time-fractional derivative in modeling stock price
by using tick-to-tick data. Applying fractional Taylor formula, Jumarie [11] deduced
a time and space fractional B-S equations. Liang et al. [13] established a model for
option pricing of two parameters-fractional Black-Scholes-Merton differential equa-
tion and obtained explicit option pricing formulas for European options. Chen et
al. [7] simplified the model of [13].

In this paper we consider the following time-fractional Black-Scholes model [7]

∂αU(S, τ)

∂τα
+

1

2
σ2S2 ∂

2U(S, τ)

∂S2
+ rS

∂U(S, τ)

∂S
− rU(S, τ) = 0,

(S, τ) ∈ (0,∞)× (0, T ),

U(S, T ) = z(S),

U(0, τ) = p(τ), U(∞, τ) = q(τ),

(1.1)

where U(S, τ) denotes the price of an option with S being the asset price and τ
being the current time, r > 0 is the risk-free interest rate, σ > 0 is the volatility of
underlying asset, T > 0 is the expiry time. ∂αU(S,τ)

∂τα (0 < α ≤ 1) is a modified right
Riemann-Liouville fractional derivative defined as

∂αU(S, τ)

∂τα
=


1

Γ(1− α)

d

dτ

∫ T

τ

U(S, ξ)− U(S, T )

(ξ − τ)α
dξ, 0 < α < 1,

∂U(S, τ)

∂τ
, α = 1.

When α = 1 the model (1.1) reduces the classical B-S model.
With a growing number of time-fractional B-S models being proposed, different

approaches to solve the fractional models have also been developed. Song et al. [16]
and Zhang et al. [23] gave different implicit difference schemes for time-fractional
B-S equation of European put options, and their convergence rates are respectively
O(∆t+ h2) and O(∆t2−α + h2) (Among them, ∆t denotes the temporal step size,
h denotes the spatial step size, 0 < α < 1 is the order of fractional derivative, the
same as below). Based on the work of [23], Staelen and Hendy [17] constructed
a fourth order implicit difference scheme in space and 2 − α order in time. Due
to the slow calculation speed of implicit difference method, Yang et al. proposed
the Explicit-Implicit scheme and Implicit-Explicit scheme with convergence rate
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O(∆t1+α + h2) in [20] and pure alternative segment explicit-implicit parallel dif-
ference scheme with convergence rate O(∆t2−α + h2) in [24], respectively. Chen
et al. [8] proposed the first-order upwind finite difference scheme with a uniform
mesh for American puts under the generalized mixed fractional Brownian motion
(GMFBM) model. Zhou and Gao [25] developed a Laplace transform method and a
boundary-searching finite difference method for a free-boundary time-fractional B-S
equation of American option pricing problem with convergence rate O(∆t2−α+h2).
Koleva and Vulkov [12] presented a weighted finite difference method for a time-
fractional B-S equation with convergenc rate O(∆t+h2). In [9], Cen et al. made an
integral discretization scheme in time coordinate direction and employed a central
difference scheme for the spatial discretization for a time-fractional B-S equation.
Numerical experiments show that their proposed scheme is more accurate and ro-
bust when α is close to 0. The convergence rate of the method is O(∆t + h2). By
employing the universal difference method, Yang et al. [21] solved the time-space
fractional B-S model with the boundary conditions satisfied by standard European
call options, and its convergence order is O(∆t+ h2).

From the previous work, we can see that there are many low order numerical
schemes to solve the time-fractional Black-Scholes model. In this paper, we will
propose three compact difference schemes for time-fractional B-S model governing
European options to improve numerical accuracy.

The remainder of the paper is organized as follows. In Section 2, eliminating
the convection term of the B-S equation by an exponential transformation, the
original equation is transformed into an equivalent form. In Section 3, three compact
finite difference schemes are presented for solving the time-fractional B-S model.
In Section 4, numerical examples are carried out to verify the high accuracy and
efficiency of our methods. A conclusion is given in Section 5.

2. Time fractional Black-Scholes model and its equiv-
alent model

In order to eliminate the variable coefficient S in the model (1.1), we introduce the
following transformations:

S = ex, τ = T − t, V (x, t) = U(ex, T − t).

Note that Zhang et al. [23] the modified right R-L fractional derivative can be
transformed the following Caputo’ form:

C
0 D

α
t V (x, t) =

1

Γ(1− α)

∫ t

0

∂V (x, ζ)

∂ζ
(t− ζ)−α dζ.

Model (1.1) can be rewritten as

C
0 D

α
t V (x, t)− 1

2
σ2Vxx(x, t)− (r − 1

2
σ2)Vx(x, t) + rV (x, t) = 0,

(x, t) ∈ (−∞,∞)× (0, T ],

V (x, 0) = z(x),

V (−∞, t) = p(t), V (+∞, t) = q(t).

(2.1)
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For solving the above model numerically, we need to truncate the original un-
bounded domain into a finite interval, and add a source term f(x, t) to the right-
hand side of the equation without loss of generality. The model (2.1) can be for-
mulated as the following form:

C
0 D

α
t V (x, t)− 1

2
σ2Vxx(x, t)− (r − 1

2
σ2)Vx(x, t) + rV (x, t) = f(x, t),

a < x < b, 0 < t ≤ T,

V (x, 0) = z(x), a < x < b,

V (a, t) = p(t), V (b, t) = q(t), 0 ≤ t ≤ T.

(2.2)

To obtain the forth-order accuracy in space of the scheme by utilizing the Padé
approximation, we first multiply 2

σ2 on the both sides of the equation in model (2.2)
as:

2

σ2
C
0 D

α
t V (x, t)− Vxx(x, t) + (1− 2r

σ2
)Vx(x, t) +

2r

σ2
V (x, t) =

2

σ2
f(x, t). (2.3)

Then let 1 − 2r
σ2 = β, by introducing the exponential transformation that is

similar to Liao [14]:

V (x, t) = e
1
2

∫ x
0

βds · v(x, t) = e
1
2βx · v(x, t),

we can eliminate the convection term in Eq. (2.3) and transform it into

C
0 D

α
t v(x, t)−

σ2

2

∂2v(x, t)

∂x2
+ [

1

2σ2
(r − σ2

2
)2 + r]v(x, t) = f(x, t) · e− 1

2βx.

For convenience, let σ2

2 = s and 1
2σ2 (r − σ2

2 )2 + r = w, it is easy to see that
s > 0, w > 0. Therefore the model (2.2) can be represented as the following
time-fractional diffusion equation

C
0 D

α
t v(x, t)− s

∂2v(x, t)

∂x2
+ wv(x, t) = g(x, t), a < x < b, 0 < t ≤ T, (2.4)

with the initial and boundary conditions:

v(x, 0) = z(x) · e− 1
2βx, a < x < b, (2.5)

v(a, t) = p(t) · e− 1
2βa, v(b, t) = q(t) · e− 1

2βb, 0 ≤ t ≤ T, (2.6)

where g(x, t) = f(x, t) · e− 1
2βx .

3. Three new fourth-order compact finite difference
schemes

The main purpose of this section is to construct new fourth-order compact difference
schemes for problem (2.4)-(2.6). We start to introduce some definitions.

Let tn = n ·∆t, n = 0, 1, 2, · · · , N ;xi = a+ i ·h, i = 0, 1, 2, · · · ,M be the uniform
time and space mesh, where ∆t = T

N and h = b−a
M are time step size and spatial

step size respectively.
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Set Ω = {(xi, tn) |0 ≤ i ≤ M, 0 ≤ n ≤ N}, and define the grid function spaces
as:

Φh = {ϕ |ϕ = (ϕ0, ϕ1, · · · , ϕM )}, Φ̄h = {ϕ |ϕ ∈ Φh, ϕ0 = 0, ϕM = 0}.

For any ϕ ∈ Φh, δ2x denotes the second-order central difference operator, that is

δ2xϕi =
1

h2
(ϕi−1 − 2ϕi + ϕi+1).

For any ϕ ∈ Φ̄h, define the operator A as

Aϕi =
1

12
(ϕi−1 + 10ϕi + ϕi+1).

3.1. Algorithm 1
Eq. (2.4) at point (xi, tn) can be formulated as:

C
0 D

α
t v(xi, tn)− s

∂2v(xi, tn)

∂x2
+ wv(xi, tn) = g(xi, tn), 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N.

(3.1)

Applying L1 formula (see [18]), the Caputo time-fractional derivative C
0 D

α
t v(xi, tn)

is approximated as:

C
0 D

α
t v(xi, tn) =

∆t−α

Γ(2− α)

[
c
(α)
0 v(xi, tn)

−
n−1∑
k=1

(c
(α)
n−k−1 − c

(α)
n−k)v(xi, tk)− c

(α)
n−1v(xi, t0)

]
+O(∆t2−α), (3.2)

where c
(α)
l = (l + 1)1−α − l1−α, l ≥ 0. As for the second-order spacial derivatives,

using Padé scheme, we have

∂2v(xi, tn)

∂x2
=

δ2x
I + h2

12 δ
2
x

v(xi, tn) +O(h4). (3.3)

Let A = I + h2

12 δ
2
x. Substituting (3.2) and (3.3) into (3.1) and then multiplying the

operator A on both sides of (3.1), we get

A

{
∆t−α

Γ(2− α)

[
c
(α)
0 v(xi, tn)−

n−1∑
k=1

(c
(α)
n−k−1 − c

(α)
n−k)v(xi, tk)−c

(α)
n−1v(xi, t0)

]}
=sδ2xv(xi, tn)− wAv(xi, tn) +Ag(xi, tn) + (r1)

n
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N.

(3.4)

There exists a positive constant C1 such that

|(r1)ni | ≤ C1(∆t2−α + h4), 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N.
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In Eq.(3.4), denoting vni as the approximate solution of v(xi, tn) and omitting
the higher term (r1)

n
i , the implicit compact finite difference scheme (3.5) for problem

(2.4)-(2.6) with initial and boundary discretizations is given as follows:

A
{

∆t−α

Γ(2− α)

[
c
(α)
0 vni −

n−1∑
k=1

(c
(α)
n−k−1 − c

(α)
n−k)v

k
i − c

(α)
n−1v

0
i

]}
= sδ2xv

n
i − wAvni +Agni , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,

v0i = z(xi) · e−
1
2βxi , 1 ≤ i ≤ M − 1,

vn0 = p(tn) · e−
1
2βa, vnM = q(tn) · e−

1
2βb, 0 ≤ n ≤ N

(3.5)

3.2. Algorithm 2
At point (xi, tn−1+η) Eq.(2.4) can be written as

C
0 D

α
t v(xi, tn−1+η)− s

∂2v(xi, tn−1+η)

∂x2
+ wv(xi, tn−1+η) = g(xi, tn−1+η),

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N, (3.6)

where η = 1− α
2 . Using the L2−1σ formula (see [1]), C

0 D
α
t v(xi, tn−1+η) is estimated

by

C
0 D

α
t v(xi, tn−1+η) =

∆t−α

Γ(2− α)

[
ĉ
(n,α)
0 v(xi, tn) +

n−1∑
k=1

(ĉ
(n,α)
k − ĉ

(n,α)
k−1 )

v(xi, tn−k)− ĉ
(n,α)
n−1 v(xi, t0)

]
+O(∆t3−α). (3.7)

In Eq.(3.7), when n = 1,
ĉ
(n,α)
0 = â

(α)
0 ,

and when n ≥ 2,

ĉ
(n,α)
k =


â
(α)
0 + b̂

(α)
1 , k = 0,

â
(α)
k + b̂

(α)
k+1 − b̂

(α)
k , 1 ≤ k ≤ n− 2,

â
(α)
k − b̂

(α)
k , k = n− 1,

in which

â
(α)
0 = η1−α,

â
(α)
l = (l + η)1−α − (l + η − 1)1−α, l ≥ 1,

b̂
(α)
l =

1

2− α
[(l + η)2−α − (l + η − 1)2−α]− 1

2
[(l + η)1−α + (l + η − 1)1−α], l ≥ 1.

Employing linear interpolation between tn−1 and tn for terms ∂2v(xi,tn−1+η)
∂x2 and

v(xi, tn−1+η) in Eq.(3.6) respectively, we have

∂2v(xi, tn−1+η)

∂x2
= η

∂2v(xi, tn)

∂x2
+ (1− η)

∂2v(xi, tn−1)

∂x2
+O(∆t2),

v(xi, tn−1+η) = ηv(xi, tn) + (1− η)v(xi, tn−1) +O(∆t2).
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Using Padé scheme for the second-order derivatives in space, we obtain

∂2v(xi, tn)

∂x2
=

δ2x
I + h2

12 δ
2
x

v(xi, tn) +O(h4),

∂2v(xi, tn−1)

∂x2
=

δ2x
I + h2

12 δ
2
x

v(xi, tn−1) +O(h4),

and let A = I + h2

12 δ
2
x. Eq.(3.6) is reformulated as the following form

A

{
∆t−α

Γ(2−α)

[
ĉ
(n,α)
0 v(xi, tn)+

n−1∑
k=1

(ĉ
(n,α)
k −ĉ

(n,α)
k−1 )v(xi, tn−k)−ĉ

(n,α)
n−1 v(xi, t0)

]}
=sηδ2xv(xi, tn) + s(1− η)δ2xv(xi, tn−1)− wηAv(xi, tn)− w(1− η)Av(xi, tn−1)

+Ag(xi, tn−1+η) + (r2)
n
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N. (3.8)

There exists a positive constant C2 such that

|(r2)ni | ≤ C2(∆t2 + h4), 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N.

In Eq.(3.8), denoting vni as the approximate solution of v(xi, tn) and omitting
the higher term (r2)

n
i , we construct the following implicit discretization scheme

(3.9) for problem (2.4)-(2.6) equipped with initial and boundary discretizations:

A
{

∆t−α

Γ(2− α)

[
ĉ
(n,α)
0 vni +

n−1∑
k=1

(ĉ
(n,α)
k − ĉ

(n,α)
k−1 )vn−k

i − ĉ
(n,α)
n−1 v0i

]}
= sηδ2xv

n
i + s(1− η)δ2xv

n−1
i − wηAvni − w(1− η)Avn−1

i +Agn−1+η
i ,

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,

v0i = z(xi) · e−
1
2βxi , 1 ≤ i ≤ M − 1,

vn0 = p(tn) · e−
1
2βa, vnM = q(tn) · e−

1
2βb, 0 ≤ n ≤ N,

(3.9)

3.3. Algorithm 3
Eq.(2.4) at point (xi, tn) can be represented as the following form

C
0 D

α
t v(xi, tn)− s

∂2v(xi, tn)

∂x2
+ wv(xi, tn) = g(xi, tn), 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N.

(3.10)

Using the L1 − 2 formula (see [10]), we discretize the Caputo time-fractional
derivative C

0 D
α
t v(xi, tn) as

C
0 D

α
t v(xi, tn) =

∆t−α

Γ(2− α)

[
c̃
(n,α)
0 v(xi, tn)

−
n−1∑
k=1

(c̃
(n,α)
n−k−1 − c̃

(n,α)
n−k )v(xi, tk)− c̃

(n,α)
n−1 v(xi, t0)

]
+O(∆t3−α),

where
c̃
(n,α)
0 = ã

(α)
0 = 1
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for n = 1, and when n ≥ 2

c̃
(n,α)
k =


ã
(α)
0 + b̃

(α)
0 , k = 0,

ã
(α)
k + b̃

(α)
k − b̃

(α)
k−1, 1 ≤ k ≤ n− 2,

ã
(α)
k − b̃

(α)
k−1, k = n− 1,

in which

ã
(α)
l = (l + 1)1−α − l1−α, 0 ≤ l ≤ n− 1

b̃
(α)
l =

1

2− α
[(l + 1)2−α − l2−α]− 1

2
[(l + 1)1−α + l1−α], l ≥ 0.

As for the spacial derivatives, using Padé scheme, we have

∂2v(xi, tn)

∂x2
=

δ2x
I + h2

12 δ
2
x

v(xi, tn) +O(h4).

Let I + h2

12 δ
2
x = A, Eq.(3.10) is transformed to

A

{
∆t−α

Γ(2−α)

[
c̃
(n,α)
0 v(xi, tn)−

n−1∑
k=1

(c̃
(n,α)
n−k−1−c̃

(n,α)
n−k )v(xi, tk)−c̃

(n,α)
n−1 v(xi, t0)

]}
=sδ2xv(xi, tn)− wAv(xi, tn) +Ag(xi, tn) + (r3)

n
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N.

(3.11)

There exists a positive constant C3 such that

|(r3)ni | ≤ C3(∆t3−α + h4), 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N.

In Eq.(3.11), denoting vni as the approximate solution of v(xi, tn) and omitting
the higher term (r3)

n
i , we obtain the following implicit discrete scheme (3.12) for

problem (2.4)-(2.6) with initial and boundary discretizations as follows:

A
{

∆t−α

Γ(2− α)

[
c̃
(n,α)
0 vni −

n−1∑
k=1

(c̃
(n,α)
n−k−1 − c̃

(n,α)
n−k )vki − c̃

(n,α)
n−1 v0i

]}
= sδ2xv

n
i − wAvni +Agni , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N,

v0i = z(xi) · e−
1
2βxi , 1 ≤ i ≤ M − 1,

vn0 = p(tn) · e−
1
2βa, vnM = q(tn) · e−

1
2βb, 0 ≤ n ≤ N.

(3.12)

4. Numerical experiments
In this section, an example with an exact solution is presented to demonstrate the
high accuracy of the new schemes proposed in Section 3. Moreover the numerical
results on the three schemes are compared. After that, we show the effectiveness of
the method by applying Algorithm 3 to several different European option pricing
problems.
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Example 4.1. Consider the following time-fractional model with nonhomogeneous
boundary conditions

C
0 D

α
t V (x, t)− σ2

2

∂2V (x, t)

∂x2
− (r − σ2

2
)
∂V (x, t)

∂x
+ rV (x, t) = f(x, t),

0 < x < 1, 0 < t ≤ 1,

V (x, 0) = sinπx+ 1, 0 < x < 1,

V (0, t) = t3 + 1, V (1, t) = t3 + 1, 0 ≤ t ≤ 1,

with 0 < α < 1, r = 0.06 and σ = 0.2, where

f(x, t) =
6t3−α

Γ(4− α)
(sinπx+ 1)− (t3 + 1) · [σ

2

2
(−π2 sinπx) + (r − σ2

2
)π cosπx

− r(sinπx+ 1)]

is chosen such that the exact solution is V (x, t) = (t3 + 1)(sinπx+ 1).
To verify the temporal numerical accuracy, with different time steps ∆t =

1/10, 1/20, 1/40, 1/80, 1/160, 1/320, 1/640, 1/1280, 1/2560, and a fixed and suffi-
ciently small space step h = 1/5000, we compute Example 4.1 by implicit difference
schemes (3.5), (3.9) and (3.12) respectively. Table 1 lists the computational errors
and numerical convergence orders with different parameters α = 0.2, 0.5, 0.8, where
the Max-error denotes Maximum-norm error and the temporal convergence order
is given by the formula Rate = log2

Max−error(∆t)
Max−error(∆t/2) .

Table 1 shows that the numerical errors by Algorithm 2 and Algorithm 3 are
obviously much smaller than that by Algorithm 1, and the computational errors by
Algorithm 3 are smaller than that by Algorithm 2. The corresponding temporal
convergence orders of the three schemes are 2−α order in Algorithm 1, second-order
in Algorithm 2 and 3− α order in Algorithm 3 separately.

Taking different space steps h = 1/4, 1/8, 1/16, 1/32 and different parame-
ters α = 0.2, 0.5, 0.8, the computational results of Example 4.1 using schemes
(3.5), (3.9) and (3.12) are shown in Table 2, in which the Max-error denotes
Maximum-norm error and the space convergence order is given by the formula
Rate = log2

Max−error(h)
Max−error(h/2) . In order to eliminate the influence of the temporal

approximation, the time step is used by 1/10000 in Algorithm 2 and Algorithm 3,
whereas in Algorithm 1 the temporal stepsize is very very small to obtain its spatial
convergence order.

Table 2 shows that the spatial convergence orders of the three difference schemes
are all indeed 4.

All of these are agree with theoretical analysis in references [23-25], which
demonstrates the three compact difference schemes obtained in Section 3 are ef-
fective and accuracy.

Due to Staelen and Hendy have studied the numerical solution of the time
fractional Black-Scholes model of order 0 < α < 1 in [17], where they constructed a
numerical scheme of fourth order in space and 2−α order in time. So it is necessary
to compare that scheme with Algorithm 1 in this paper.

Example 4.2. Consider the following time-fractional B-S model with nonhomo-
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Table 1. Numerical errors and convergence orders with different ∆t when h = 1/5000

Algorithm 1 Algorithm 2 Algorithm 3
∆t Max-error Rate Max-error Rate Max-error Rate

α = 0.2 1/10 1.0741e-02 9.6937e-04 7.9674e-04
1/20 3.4206e-03 1.6508 2.1961e-04 2.1421 1.2221e-04 2.7047
1/40 1.0646e-03 1.6840 5.0706e-05 2.1147 1.8518e-05 2.7223
1/80 3.2601e-04 1.7073 1.1957e-05 2.0843 2.7798e-06 2.7359
1/160 9.8655e-05 1.7245 2.8713e-06 2.0581 4.1422e-07 2.7465
1/320 2.9583e-05 1.7376 6.9904e-07 2.0383 6.1359e-08 2.7551
1/640 8.8076e-06 1.7479 1.7183e-07 2.0244 9.0414e-09 2.7627
1/1280 2.6072e-06 1.7562 4.2502e-08 2.0154 1.1234e-09 2.7612

α = 0.5 1/10 5.0472e-02 2.3575e-03 4.5916e-03
1/20 1.8850e-02 1.4209 5.2682e-04 2.1619 8.3438e-04 2.4602
1/40 6.9137e-03 1.4470 1.1833e-04 2.1545 1.5029e-04 2.4730
1/80 2.5057e-03 1.4642 2.6918e-05 2.1362 2.6911e-05 2.4815
1/160 9.0100e-04 1.4756 6.2209e-06 2.1134 4.7997e-06 2.4872
1/320 3.2227e-04 1.4832 1.4606e-06 2.0905 8.5374e-07 2.4911
1/640 1.1486e-04 1.4884 3.4786e-07 2.0700 1.5155e-07 2.4940
1/1280 4.0838e-05 1.4919 8.3835e-08 2.0529 2.6864e-08 2.4960
1/2560 1.4494e-05 1.4945 2.0396e-08 2.0393 4.7570e-09 2.4976

α = 0.8 1/10 1.5235e-01 4.0895e-03 1.7111e-02
1/20 6.7532e-02 1.1737 9.5415e-04 2.0996 3.7640e-03 2.1846
1/40 2.9750e-02 1.1827 2.2122e-04 2.1087 8.2405e-04 2.1915
1/80 1.3047e-02 1.1892 5.1193e-05 2.1115 1.7995e-04 2.1951
1/160 5.7054e-03 1.1934 1.1857e-05 2.1102 3.9238e-05 2.1972
1/320 2.4902e-03 1.1960 2.7535e-06 2.1064 8.5489e-06 2.1984
1/640 1.0857e-03 1.1976 6.4173e-07 2.1012 1.8617e-06 2.1944
1/1280 4.7301e-04 1.1987 1.5019e-07 2.0952 4.0533e-07 2.1995
1/2560 2.0600e-04 1.1992 3.5310e-08 2.0886 8.8208e-08 2.2001

Table 2. Numerical errors and convergence orders with different h

Algorithm 1 Algorithm 2 Algorithm 3
h Max-error Rate Max-error Rate Max-error Rate

α = 0.2 1/4 4.6745e-04 4.0033e-04 4.6746e-04
1/8 2.8342e-05 4.0438 2.5591e-05 3.9675 2.8350e-05 4.0434
1/16 1.7779e-06 3.9947 1.6030e-06 3.9968 1.7850e-06 3.9894
1/32 1.0433e-07 4.0909 1.0019e-07 4.0000 1.1207e-07 3.9935

α = 0.5 1/4 4.3822e-04 3.7111e-04 4.3836e-04
1/8 2.6429e-05 4.0514 2.3362e-05 3.9896 2.6572e-05 4.0441
1/16 1.6631e-06 3.9902 1.4723e-06 3.9880 1.6786e-06 3.9846
1/32 8.9177e-08 4.2211 9.1522e-08 4.0078 1.0508e-07 3.9977

α = 0.8 1/4 4.0822e-04 4.0880e-04 4.0879e-04
1/8 2.4196e-05 4.0765 2.4774e-05 4.0445 2.4769e-05 4.0448
1/16 1.4247e-06 4.0860 1.5729e-06 3.9773 1.5686e-06 3.9810
1/32 9.9475e-08 3.9829 9.4885e-08 4.0472
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Table 3. Numerical errors and convergence orders with different ∆t when h = 1/150

Algorithm in [17] Our Algorithm 1
∆t Max-error Rate Max-error Rate
1/10 4.2333e-04 4.2333e-04
1/20 1.2996e-04 1.7037 1.2995e-04 1.7038
1/40 3.9415e-05 1.7213 3.9415e-05 1.7211
1/80 1.1842e-05 1.7348 1.1842e-05 1.7348
1/160 3.5316e-06 1.7455 3.5316e-06 1.7455
1/320 1.0469e-06 1.7542 1.0468e-06 1.7543
1/640 3.0879e-07 1.7614 3.0876e-07 1.7614

Table 4. Numerical errors and convergence orders with different h when ∆t = 1/15000

Algorithm in [17] Our Algorithm 1
h Max-error Rate Max-error Rate
1/4 6.9714e-05 1.3327e-04
1/8 4.3560e-06 4.0004 8.3331e-06 3.9994
1/16 2.7120e-07 4.0056 5.1984e-07 4.0027
1/32 1.5904e-08 4.0919 3.1443e-08 4.0473

geneous boundary conditions



C
0 D

α
t V (x, t)− σ2

2

∂2V (x, t)

∂x2
− (r − σ2

2
)
∂V (x, t)

∂x
+ rV (x, t) = f(x, t),

0 < x < 1, 0 < t ≤ 1,

V (x, 0) = x4 + x2 + 1, 0 < x < 1,

V (0, t) = (t+ 1)2, V (1, t) = 3(t+ 1)2, 0 ≤ t ≤ 1,

with the parameters : r = 0.5 and σ =
√
2, α = 0.2, where

f(x, t) =(
2t2−α

Γ(3− α)
+

2t1−α

Γ(2− α)
)(x4 + x2 + 1)− (t+ 1)2 · [σ

2

2
(12x2 + 2) + (r − σ2

2
)

(4x3 + 2x)− r(x4 + x2 + 1)]

is chosen such that the exact solution is V (x, t) = (t+1)2(x4 +x2 +1). The results
are shown in Table 3 and Table 4.

In order to compare the two schemes, we use the same machine equipped with
AMD 3.6-GHZ 4 Core processor and the codes are written in Matlab software. From
Table 3 and Table 4, we can see that the two methods are both 2 − α order con-
vergence in time and 4 order convergence in space. In addition, the computational
errors of the two difference schemes are similar.
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Example 4.3. Consider the time-fractional B-S model

∂αU(S, τ)

∂τα
+

1

2
σ2S2 ∂

2U(S, τ)

∂S2
+ rS

∂U(S, τ)

∂S
− rU(S, τ) = 0,

(S, τ) ∈ (Sa, Sb)× (0, T ),

U(S, T ) = z(S),

U(Sa, τ) = p(τ), U(Sb, τ) = q(τ).

For the European put option, the initial and boundary conditions are z(S) =
max{K − S, 0}, p(τ) = Ke−r(T−τ) and q(τ) = 0, in which parameter K denotes
the exercise price and here K = 20. Correspondingly for the European call option,
they are z(S) = max{S − K, 0}, p(τ) = 0 and q(τ) = Sb − Ke−r(T−τ). Applying
Algorithm 3, the curves of the European put option and the European call option
with different values of α are plotted in Figures 1-2. The two figures illustrate
the effect of different time-fractional derivative order α on option prices. From the
two figures, we can observe that the time-fractional derivatives have little effect on
option price for the cases of deep-in-the-money( S ≪ K) and deep-out-the-money
(S ≫ K) and have significant effect near on-the-money (S ≈ K).
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Figure 1. Curves of European put option with different α.

Let’s take European put option as an example to illustrate the effect of different
parameters on option price in time-fractional B-S model.
Example 4.4. Consider the time fractional B-S model governing European put
option
∂αU(S, τ)

∂τα
+
1

2
σ2S2 ∂

2U(S, τ)

∂S2
+rS

∂U(S, τ)

∂S
−rU(S, τ)=0,(S, t)∈(Sa, Sb)×(0, T ),

U(S, T ) = max{K − S, 0},

U(Sa, τ) = Ke−r(T−τ), U(Sb, τ) = 0,

with α = 0.5, and Sa, Sb are same as Example 4.3.
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Figure 2. Curves of European call option with different α

Using Algorithm 3, the curves of the European put option pricing to different
values of parameters are shown in Figures 3(a)∼(d).
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(b) T = 1, K = 20, σ = 0.3
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(c) r = 0.05, T = 1, σ = 0.3
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Figure 3. Curves of European put option with different values of parameters
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When r = 0.05, T = 1, K = 20 and σ = 0.1, 0.2, 0.3, 0.4 respectively, Figure
3(a) illustrates the effect of volatility of the stock price movement on option price.
It can be seen that when the stock price is near the exercise price, the higher the
volatility is, the higher the option price, which confirms a well-known statement in
the real financial world: high risk, high return.

Figure 3(b) shows the effect of risk-free interest rate on option price, here the
parameters are T = 1, K = 20, σ = 0.3 and r = 0.005, 0.05, 0.1, 0.2, separately.
From Figure 3(b) we can see that the higher the interest rate is, the lower the option
will be.

Take r = 0.05, T = 1, σ = 0.3, K = 15, 20, 25 and 30, Figure 3(c) examines
the effect of exercise price on the option price. As we can see, when the exercise
price increases, the option price goes up too.

Finally, we analyse the effect of expiration date on the option price. The results
are plotted in Figure 3(d), and the parameters are r = 0.05, K = 20, σ = 0.3, and
T = 0.5, 1, 2, 3 years respectively. Figure 3(d) shows that when the stock price
is low enough, an option with shorter expiration date is more profitable than an
option with longer expiration date. While the stock price is high, the curve with
longer expiration date is above the curve with shorter expiration date.

The above results match what happens in the real market very well.

5. Conclusion
In this work, the numerical approximation of the time-fractional Black-Scholes
model has been studied. We firstly transformed the time-fractional B-S equation
to a time-fractional diffusion equation by an exponential transformation. By using
fourth-order Padé approximation to the second-order spatial derivatives, the spatial
accuracy has been improved to 4. Then the time-fractional derivative was approxi-
mated by the L1 formula, L2− 1σ formula and L1− 2 formula respectively, and we
constructed three compact difference schemes with convergence rates O(∆t2−α+h4),
O(∆t2 +h4) and O(∆t3−α +h4). Finally, numerical examples showed the accuracy
and effectiveness of the proposed methods. The extension of the method to the
Black-Scholes model with multiple degrees of freedom will be the future work for
us. In addition, it will be also interesting to price other fractional models.

Acknowledgements. The authors would like to thank the reviewers for their
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