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with Crowley-Martin and modified Leslie-Gower schemes with stochastic per-
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1. Introduction

As we all know, functional response is one of the most important factors in the
dynamic relationship between predators and their preys [4,5,8,11,25]. The classical
types of functional response involve Holling types [9], Beddington-DeAngelis type
[3], ratio-dependence type [1], etc. In 1975, Crowley and Martin [20] proposed
the Crowley-Martin functional response, which considers the interaction between
predator and prey. Even assuming the prey density is enough large, the catches
still decline with the increase of predator density. In addition, whether or not a
predator search for prey, there always exists interference between predators. Hence
it’s more in line with the natural biological phenomenon.

Meanwhile, considering the fact that reduction in a predator population has a
reciprocal relationship with per capita availability of its preferred food, Leslie [13]
introduced a predator-prey model where the carrying capacity of the predator’s
environment is proportional to the number of prey. For this predator-prey model,
Leslie and Gower [14], Pielou [23] had discussed the predator dynamics which can
be written as follows

dy

dt
= ry

(
1− y

αx

)
,

in which the growth of the predator population is of logistic form if letting αx be
the carrying capacity. Here, the denominator αx measures the carrying capacity
set by the environmental resources and is proportional to prey abundance, α > 0
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is the conversion factor of prey into predator. The term y
αx is named the Leslie-

Gower term, which measures the loss of the predator population due to the rarity
of its favorite food. In real world, when the prey population is severely scarce,
the predator y can search for other food, but its growth will be limited because
it is the fact that its most favorite food, the prey x is not enough. So, it’s vital
to add a positive constant to the denominator, which is generally called modified
Leslie-Gower functional response, then the above equation becomes

dy

dt
= ry

(
1− y

αx+ d

)
.

In recent years, the predator-prey models with modified Leslie-Gower func-
tional response have received great attention and have been studied extensive-
ly [6, 11, 17, 24]. However, so far as our knowledge is concerned, no results related
to predator-prey models with Crowley-Martin and modified Leslie-Gower schemes
have been reported. Motivated by these, in this paper, we will concentrate on
the nonautonomous predator-prey model with Crowley-Martin and modified Leslie-
Gower schemes:


ẋ(t) = x(t)

[
a(t)− b(t)x(t)− c(t)y(t)

(1 + α(t)x(t))(1 + β(t)y(t))

]
,

ẏ(t) = y(t)

[
r(t)− h(t)y(t)− f(t)y(t)

x(t) +m(t)

]

with initial value x(0) = x0 > 0, y(0) = y0 > 0, where x(t) and y(t) stand for
the population density of prey and predator at time t respectively; a(t) and r(t)
are the growth rates of the prey and predator, respectively; b(t) and h(t) represent
density-dependent coefficients of x(t) and y(t); c(t) is the capturing rate of predator;
f(t) is the maximum value of the per capita reduction rate of y(t) due to x(t); m(t)
measures the extent to which the environment provides protection to predator y(t);
α(t) and β(t) represent the effects of handling time and magnitude of interference
among predators. Furthermore, c(t) ≥ 0, f(t) ≥ 0 and a(t), b(t), r(t), h(t), m(t),
α(t), β(t) are all continuous and bounded above and below by positive constants
on R+ = (0,+∞).

In realistic environment, population systems are often affected by noise, and
hence stochastic differential equation models play important roles in various branch-
es of applied sciences including biology and population dynamics, as they pro-
vide some additional degree of realism compared to their deterministic counterpart.
Moreover, due to continuous fluctuations in the environment, parameters involved
in models are not absolute constants, but they always fluctuate around some aver-
age value. As a result, the population density never attains a fixed value with the
advancement of time but rather exhibits continuous oscillation around some average
values. Based on these factors, stochastic population models have gotten more and
more attention [2,16,19,26]. In this paper, we add stochastic perturbations in this
way:

a(t)→ a(t) + σ1(t)Ḃ1(t), r(t)→ r(t) + σ2(t)Ḃ2(t).
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Then the stochastic model takes the following form:
dx(t) = x(t)

[
a(t)− b(t)x(t)− c(t)y(t)

(1 + α(t)x(t))(1 + β(t)y(t))

]
dt

+ σ1(t)x(t)dB1(t),

dy(t) = y(t)

[
r(t)− h(t)y(t)− f(t)y(t)

x(t) +m(t)

]
dt + σ2(t)y(t)dB2(t),

(1.1)

which is studied in this paper.
Throughout this paper, unless otherwise specified, let (Ω,F , {Ft}t≥0, P ) be a

complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions
(i.e., it is right continuous and F0 contains all P-null sets). Let σ1(t) and σ2(t) stand
for the intensities of the white noises, B1(t) and B2(t) denote the independent
standard Brownian motions defined on this probability space. We denote R2

+ =

{X(t) = (x(t), y(t))|x(t) > 0, y(t) > 0} and |X(t)| = (x(t)2 + y(t)2)
1
2 .

The paper is designed as follows. In Section 2, we make some preliminaries
and give some important results of stochastic equations. In Section 3, we use
comparison theorem of stochastic equations and Itô formula to obtain the global
existence of a unique positive solution of the system (1.1). Moreover, by using
Chebyshev inequality, we obtain the stochastically ultimate boundedness of the
system. In Sections 4 and 5, we investigate the long time behavior of the system
(1.1). The conditions of extinction, persistence in the mean, and the stochastic
permanence are established. Finally, simulations are carried out to support our
results.

2. Preliminaries

For convenience, we do some definitions and notations:

fu = sup
t≥0

f(t), f ` = inf
t≥0

f(t), 〈f(t)〉 =
1

t

∫ t

0

f(s)ds,

f∗ = lim sup
t→+∞

f(t), f∗ = lim inf
t→+∞

f(t).

Definition 2.1 ( [15]). Let X(t) = (x(t), y(t)) be the solution of system (1.1), if
for any ε ∈ (0, 1), there exists a constant χ > 0 such that

lim sup
t→+∞

P(|X(t)| > χ) < ε,

then we say system (1.1) is stochastically ultimately bounded.

Definition 2.2 ( [15]). Let X(t) = (x(t), y(t)) be the solution of system (1.1), if
for any ε ∈ (0, 1), there are constants δ > 0, χ > 0 such that

lim inf
t→+∞

P(|X(t)| ≥ δ) ≥ 1− ε and lim inf
t→+∞

P(|X(t)| ≤ χ) ≥ 1− ε,

then we say system (1.1) is stochastically permanent.

Definition 2.3 ( [27]). In the predator-prey system (1.1), we say the prey x(t) is

(1) Extinction, if limt→+∞x(t) = 0, a.s.
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(2) Non-persistence in the mean, if 〈x(t)〉∗ = 0.

(3) Weak-persistence in the mean, if 〈x(t)〉∗ > 0.

(4) Strong persistence in the mean, if 〈x(t)〉∗ > 0.

Lemma 2.1 ( [10], Stochastic comparison theorem). Considering the two one-
dimensional stochastic differential equations:

dx1(t) = f1(x1(t), t)dt+ g(x1(t), t)dB1(t), x1(0) = x̃1 ∈ R,

dx2(t) = f2(x2(t), t)dt+ g(x2(t), t)dB1(t), x2(0) = x̃2 ∈ R.

If the solutions of the two equations exist and at least one is unique, and satisfy:

x̃1 = x̃2, f1(x, t) ≤ f2(x, t), ∀t ≥ 0, x ∈ R,

then

x1(t) ≤ x2(t) a.s.

Lemma 2.2 ( [22], Existence and uniqueness of the local solutions). Consider the
d− dimensional stochastic differential equation:

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t).

Assume that for every integer n ≥ 1, there exists a positive constant Kn such that
for all t ∈ [t0, T ] and for all x, y ∈ Rd with |x| ∨ |y| ≤ n,

|f(x, t)− f(y, t)|2 ∨ |g(x, t)− g(y, t)|2 ≤ Kn|x− y|2,

then there exists a unique solution x(t) to the above equation and the solution belongs
to M2([t0, T ];Rd).

Lemma 2.3 ( [21], Strong law of large numbers). Let M = {Mt}t≥0 be a real-valued
continuous local martingale vanishing at t = 0. Then

lim
t→+∞

〈M,M〉t =∞ a.s. ⇒ lim
t→+∞

Mt

〈M,M〉 t
= 0 a.s.

and also

lim sup
t→+∞

〈M,M〉t
t

<∞ a.s. ⇒ lim
t→+∞

Mt

t
= 0 a.s.

Lemma 2.4 ( [21], Itô formula). Let x(t) be a d−dimensional Itô process on t ≥ 0
with the stochastic differential

dx(t) = f(t)dt+ g(t)dB(t),

where f ∈ L1(R+;Rd) and g ∈ L2(R+;Rd×m). Let V ∈ C2,1(Rd × R+;R). Then
V(x(t),t) is again an Itô process with the stochastic differential given by

dV (x(t), t) = [Vt(x(t), t) + Vx(x(t), t)f(t) +
1

2
trace(gT (t)Vxx(x(t), t)g(t))]dt

+ Vx(x(t), t)g(t)dB(t) a.s.
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Lemma 2.5 ( [21], Hölder inequality). If p > 1, 1
p + 1

q = 1, X ∈ Lp, Y ∈ Lq, then

|E(XTY )| ≤ (E|X|p)
1
p (E|Y |q)

1
q .

Lemma 2.6 ( [21], Chebyshev inequality). If p > 0, c > 0, X ∈ Lp, then

c−pE|X(t)|p ≥ P(|X(t)| ≥ c).

Lemma 2.7 ( [21], Burkholder-Davis-Gundy inequality). Let g ∈ L2(R+;Rn×m).
Define for t ≥ 0,

x(t) =

∫ t

0

g(s)dB(s) and A(t) =

∫ t

0

|g(s)|2ds.

Then for every p > 0, there exist universial positive constants cp, Cp, which are
only dependent on p, such that

cpE|A(t)|
p
2 ≤ E( sup

0≤s≤t
|x(s)|p) ≤ CpE|A(t)|

p
2

for all t > 0. In particular, one may take

cp =
(p

2

)p
, Cp =

(
32

p

) p
2

, if 0 < p < 2;

cp = 1, Cp = 4, if p = 2;

cp = (2p)−
p
2 , Cp =

[
pp+1

2(p− 1)p−1

] p
2

, if p > 2.

Lemma 2.8 ( [21], Borel-Cantelli’s lemma). (i) If {Ak} ⊂ F and
∑∞
k=1 P(Ak) <

∞, then
P(lim sup

k→∞
Ak) = 0.

That is, there exists a set Ω0 ∈ F with P(Ω0) = 1 and an integer-valued
random variable k0 such that for every ω ∈ Ω0 we have ω /∈ Ak whenever
k ≥ k0(ω).

(ii) If the sequence {Ak} ⊂ F is independent and
∑∞
k=1 P(Ak) =∞, then

P(lim sup
k→∞

Ak) = 1.

That is, there exists a set Ωθ ∈ F with P(Ωθ) = 1 such that for every ω ∈ Ωθ,
there exists a sub-sequence {Aki} such that the ω belongs to every Aki .

Lemma 2.9 ( [19]). Suppose x(t) ∈ C[Ω×R+,R0
+], where R0

+ := {a|a > 0, a ∈ R}.

(i) If there are positive constants λ0, T and λ ≥ 0 such that

lnx(t) ≤ λt− λ0

∫ t

0

x(t)ds+

n∑
i=1

βiBi(t)

for t ≥ T , where βi is a constant, 1 ≤ i ≤ n, then 〈x(t)〉∗ ≤ λ
λ0

a.s.



2414 Y. Liu & Z. Zeng

(ii) If there are positive constants λ0, T and λ ≥ 0 such that

lnx(t) ≥ λt− λ0

∫ t

0

x(t)ds+

n∑
i=1

βiBi(t)

for t ≥ T , where βi is a constant, 1 ≤ i ≤ n, then 〈x(t)〉∗ ≥ λ
λ0

a.s.

Lemma 2.10 ( [12]). For the logistic equation:

dx(t) = x(t) (a(t)− b(t)x(t)) dt+ α(t)x(t)dB(t)

with initial value x(0) = x0. Assume a(t), b(t), α(t) are continuous bounded func-
tions on R+ = [0,+∞) and a(t) > 0, b(t) > 0, then the equation has an explicit
solution of the form:

x(t) =
e
∫ t
0 [a(s)− 1

2α
2(s)]ds+

∫ t
0
α(s)dB(s)

1
x0

+
∫ t

0
b(s)e

∫ s
0

[a(τ)− 1
2α

2(τ)]dτ+
∫ s
0
α(τ)dB(τ)ds

.

3. Existence, uniqueness and stochastically ultimate
boundedness

In this section, taking into account the biological meanings, we are only interested
in the positive solutions. Here, by making the change of variables and comparison
theorem for stochastic equations, we show the existence and uniqueness of the posi-
tive solution. Moreover, by using Chebyshev inequality, we obtain the stochastically
ultimate boundedness of the system (1.1).

Here is our first result.

Lemma 3.1. There is a unique positive local solution (x(t), y(t)) for t ∈ [0, τ%) to
system (1.1) a.s. for the initial value x0 > 0, y0 > 0.

Proof. Consider the equation
du(t) =

[
a(t)− σ2

1(t)

2
− b(t)eu(t) − c(t)ev(t)

(1 + α(t)eu(t))(1 + β(t)ev(t))

]
dt

+ σ1(t)dB1(t),

dv(t) =

[
r(t)− σ2

2(t)

2
− h(t)ev(t) − f(t)ev(t)

eu(t) +m(t)

]
dt + σ2(t)dB2(t)

(3.1)

on t ≥ 0 with initial value u(0) = lnx0, v(0) = ln y0. Obviously, the coefficients of
system (3.1) satisfy the local Lipschitz condition, then there is unique local solution
(u(t), v(t)) on t ∈ [0, τ%), where τ% is the explosion time. By Itô’s formula, it is easy
to see x(t) = eu(t), y(t) = ev(t) is the unique positive local solution to system (1.1)
with initial value x0 > 0, y0 > 0.

Noting that Lemma 3.1 only tells us the unique positive solution is local. Next,
we will show a more important result, that is, the unique positive solution is global.
It suffices to prove τ% =∞. Since the solution is positive, we have

dx(t) ≤ x(t) (a(t)− b(t)x(t)) dt+ σ1(t)x(t)dB1(t).
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Let Φ(t) be the unique solution of equation{
dΦ(t) = Φ(t) (a(t)− b(t)Φ(t)) dt+ σ1(t)Φ(t)dB1(t),

Φ(0) = x0.

Then, by Lemma 2.10,

Φ(t) =
e

∫ t
0

[
a(s)−σ

2
1(s)

2

]
ds+

∫ t
0
σ1(s)dB1(s)

1
x0

+
∫ t

0
b(s)e

∫ s
0

[
a(τ)−σ

2
1(τ)

2

]
dτ+

∫ s
0
σ1(τ)dB1(τ)

ds

.

According to the comparison theorem of stochastic equations, we know

x(t) ≤ Φ(t), t ∈ [0, τ%), a.s. (3.2)

From the first equation of system (1.1), we have

dx(t) ≥ x(t)

[
a(t)− c(t)

β(t)
− b(t)x(t)

]
dt+ σ1(t)x(t)dB1(t).

By the comparison theorem of stochastic equations, we get

x(t) ≥ φ(t), t ∈ [0, τ%), a.s.

where φ(t) is the unique solution of equation dφ(t) = φ(t)

[
a(t)− c(t)

β(t)
− b(t)φ(t)

]
dt+ σ1(t)φ(t)dB1(t),

φ(0) = x0.

It follows from the second equation of system (1.1) that

dy(t) ≥ y(t)

[
r(t)− m(t)h(t) + f(t)

m(t)
y(t)

]
dt+ σ2(t)y(t)dB2(t).

Then by the comparison theorem of stochastic equations, we derive

y(t) ≥ ψ(t), t ∈ [0, τ%), a.s.

where ψ(t) is the unique solution of equationdψ(t) = ψ(t)

[
r(t)− m(t)h(t) + f(t)

m(t)
ψ(t)

]
dt+ σ2(t)ψ(t)dB2(t),

ψ(0) = y0.

(3.3)

By virtue of (3.2) and the second equation of system (1.1), we get

dy(t) ≤ y(t)

[
r(t)− f(t)y(t)

m(t) + Φ(t)

]
dt+ σ2(t)y(t)dB2(t).

Therefore, by the comparison theorem of stochastic equations, we also have

y(t) ≤ Ψ(t), t ∈ [0, τ%), a.s.
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Here, Ψ(t) is the unique solution of equation dΨ(t) = Ψ(t)

[
r(t)− f(t)

m(t) + Φ(t)
Ψ(t)

]
dt+ σ2(t)Ψ(t)dB2(t),

Ψ(0) = y0.

Noting that φ(t), ψ(t),Φ(t),Ψ(t) are existence on t ≥ 0. That is to say x(t), y(t)
are existence on t ≥ 0. Hence τ% =∞. Therefore, we get the following theorem

Theorem 3.1. There is a unique positive solution (x(t), y(t)) of system (1.1) a.s.
for any initial value x0 > 0, y0 > 0. Moreover, there exist φ(t), ψ(t), Φ(t), Ψ(t)
defined as above such that

φ(t) ≤ x(t) ≤ Φ(t), ψ(t) ≤ y(t) ≤ Ψ(t), t ≥ 0, a.s.

Theorem 3.2. The solution of system (1.1) is stochastically ultimately bounded for
any initial value X0 = (x0, y0) ∈ R2

+.

Proof. Now we need to show that for any ε ∈ (0, 1), there exists a positive constant
δ = δ(ε) such that for any initial value X0 = (x0, y0) ∈ R2

+, the solution X(t) of
system (1.1) satisfies

lim sup
t→+∞

P{|X(t)| > δ} < ε.

Let V1(x(t)) = xp(t), V2(y(t)) = yp(t) for (x(t), y(t)) ∈ R2
+ and p > 0. Then, we

obtain

d(xp(t)) = pxp−1(t)dx(t) +
p(p− 1)

2
xp−2(t)(dx(t))2

= pxp−1(t)x(t)

[
a(t)− b(t)x(t)− c(t)y(t)

(1 + α(t)x(t))(1 + β(t)y(t))

]
dt

+
p(p− 1)

2
xp(t)σ2

1(t)dt+ pxp−1(t)x(t)σ1(t)dB1(t)

= pxp(t)

[
a(t) +

p− 1

2
σ2

1(t)− c(t)y(t)

(1 + α(t)x(t))(1 + β(t)y(t))

]
dt

− pb(t)xp+1(t)dt+ pxp(t)σ1(t)dB1(t)

≤ pxp(t)
[
a(t) +

p

2
σ2

1(t)
]

dt− pb(t)xp+1(t)dt+ pxp(t)σ1(t)dB1(t)

≤ pxp(t)
[
au +

p

2
(σu1 )2

]
dt− pb`xp+1(t)dt+ pxp(t)σ1(t)dB1(t).

Integrating it from 0 to t and taking expectation, we have

E (xp(t)) ≤ xp0 +

∫ t

0

p
(
au +

p

2
(σu1 )2

)
E (xp(s)) ds−

∫ t

0

pb`E
(
xp+1(s)

)
ds.

Thus,
dE(xp(t))

dt
≤ p

[
au +

p

2
(σu1 )2

]
E (xp(t))− pb`E

(
xp+1(t)

)
≤ p

[
au +

p

2
(σu1 )2

]
E (xp(t))− pb`[E (xp(t))]1+ 1

p .
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By using the stochastic comparison theorem, we know

E(xp(t)) ≤
[
au + p

2 (σu1 )2

b`

]p
:= K1(p). (3.4)

In the same way, we obtain

d(yp(t)) = pyp−1(t)dy(t) +
p(p− 1)

2
yp−2(t)(dy(t))2

= pyp−1(t)y(t)

[
r(t)− h(t)y(t)− f(t)y(t)

m(t) + x(t)

]
dt+

p(p− 1)

2
yp(t)σ2

2(t)dt

+ pyp−1(t)y(t)σ2(t)dB2(t)

= pyp(t)

[
r(t) +

p− 1

2
σ2

2(t)− f(t)y(t)

m(t) + x(t))

]
dt− ph(t)yp+1(t)dt

+ pyp(t)σ2(t)dB2(t)

≤ pyp(t)
[
r(t) +

p

2
σ2

2(t)
]

dt− ph(t)yp+1(t)dt+ pyp(t)σ2(t)dB2(t)

≤ pyp(t)
[
ru +

p

2
(σu2 )2

]
dt− ph`yp+1(t)dt+ pyp(t)σ2(t)dB2(t).

Integrating it from 0 to t and taking expectation, we attain

E (yp(t)) ≤ yp0 +

∫ t

0

p
[
ru +

p

2
(σu2 )2

]
E (yp(s)) ds−

∫ t

0

ph`E
(
yp+1(s)

)
ds.

Therefore,

dE (yp(t))

dt
≤ p

[
ru +

p

2
(σu2 )2

]
E (yp(t))− ph`E

(
yp+1(t)

)
≤ p

[
ru +

p

2
(σu2 )2

]
E(yp(t))− ph`[E(yp(t))]1+ 1

p .

By employing the stochastic comparison theorem, we derive

E(yp(t)) ≤
[
ru + p

2 (σu2 )2

h`

]p
:= K2(p). (3.5)

Since (√
x2(t) + y2(t)

)p
≤
(√

2[x2(t) ∨ y2(t)]
)p

≤ 2
p
2

(√
x2(t)

p
+
√
y2(t)

p
)

= 2
p
2 (xp(t) + yp(t)) ,

then
|X(t)|p ≤ 2

p
2 (xp(t) + yp(t)), X(t) = (x(t), y(t)).

Consequently,

E|X(t)|p ≤ 2
p
2 [E(xp(t)) + E(yp(t))] ≤ 2

p
2 (K1(p) +K2(p)) := K(p).

By the Chebyshev inequality, the proof is completed.
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4. Persistence and extinction

To prove the persistence and extinction of the system, we first state an important
result which can be used in the sequel.

Lemma 4.1. If (x(t), y(t)) is the solution of system (1.1), then

lim sup
t→+∞

lnx(t)

t
≤ 0, lim sup

t→+∞

ln y(t)

t
≤ 0.

Proof. Define
V (X(t)) = V (x(t), y(t)) = x(t) + y(t).

By Itô’s formula, we get

dV (X(t))=dx(t) + dy(t) ≤ a(t)x(t) + r(t)y(t) + σ1(t)x(t)dB1(t) + σ2(t)y(t)dB2(t)

≤max{au, ru}(x(t) + y(t)) + σ1(t)x(t)dB1(t) + σ2(t)y(t)dB2(t).

Integrating it from t to r and taking expectation, yields

E
[

sup
t≤r≤t+1

V (X(r))

]
≤ EV (X(t)) + max{au, ru}

∫ t+1

t

EV (X(s))ds

+ E
[

sup
t≤r≤t+1

∫ r

t

(σ1(s)x(s)dB1(s) + σ2(s)y(s)dB2(s))

]
.

(4.1)
By (3.4) and (3.5), we obtain

lim sup
t→+∞

E (V (X(t))) = lim sup
t→+∞

E(x(t) + y(t))

≤ lim sup
t→+∞

E(x(t)) + lim sup
t→+∞

E(y(t))

≤ K1(1) +K2(1) := 2−
1
2K(1),

(4.2)

and

lim sup
t→+∞

E
∫ t+1

t

|X(s)|2ds ≤ K(2).

By the well-known Burkholder-Davis-Gundy inequality (Lemma 2.7) and Hölder
inequality (Lemma 2.5), we attain

E
[

sup
t≤r≤t+1

∫ r

t

(σ1(s)x(s)dB1(s) + σ2(s)y(s)dB2(s))

]
≤ max{σ1(s), σ2(s)}E

[
sup

t≤r≤t+1

∫ t+1

t

[x(s)dB1(s) + y(s)dB2(s)]

]
≤ max{σu1 , σu2 }E

[
sup

t≤r≤t+1

∫ t+1

t

X(s)dB(s)

]

≤ 3max{σu1 , σu2 }E
[∫ t+1

t

X2(s)ds

] 1
2

≤ 3max{σu1 , σu2 }
[
E
∫ t+1

t

X2(s)ds

] 1
2

≤ 3max{σu1 , σu2 } (K(2))
1
2 .
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Therefore,

E
[

sup
t≤r≤t+1

V (X(r))

]
≤ EV (X(t)) + max{au, ru}

∫ t+1

t

EV (X(s))ds+ 3max{σu1 , σu2 } (K(2))
1
2 ,

which combing with (4.2) leads to

lim sup
t→+∞

E
[

sup
t≤r≤t+1

V (X(r))

]
≤ (1 + max{au, ru})K(1)2−

1
2 + 3max{σu1 , σu2 }(K(2))

1
2 .

Since |X(t)| ≤ x(t) + y(t), then

lim sup
t→+∞

E
[

sup
t≤r≤t+1

|X(t)|
]
≤ (1 + max{au, ru})K(1)2−

1
2 + 3max{σu1 , σu2 }(K(2))

1
2 .

(4.3)
From (4.3), there exists a positive constant K̄ such that

E
[

sup
k≤t≤k+1

|X(t)|
]
≤ K̄, k = 1, 2, ...

Let ε > 0 be arbitrary. Then according to the Chebyshev inequality, we have

P
{

sup
k≤t≤k+1

|X(t)| > k1+ε

}
≤ K̄

k1+ε
, k = 1, 2, ...

Using the Borel-Cantelli lemma, we know that for almost all ω ∈ Ω,

sup
k≤t≤k+1

|X(t)| ≤ k1+ε
(4.4)

holds for all but finitely many k. Hence, there exists a k0(ω), for almost all ω ∈ Ω,
(4.4) holds whenever k ≥ k0. Consequently, for almost all ω ∈ Ω, if k ≥ k0 and
k ≤ t ≤ k + 1,

ln |X(t)|
ln t

≤ (1 + ε) ln k

ln k
= 1 + ε.

Therefore

lim sup
t→+∞

ln |X(t)|
ln t

≤ 1 + ε.

Letting ε→ 0, we get

lim sup
t→+∞

ln |X(t)|
ln t

≤ 1.

Consequently,

lim sup
t→+∞

lnx(t)

ln t
≤ 1, lim sup

t→+∞

ln y(t)

ln t
≤ 1.

Thus,

lim sup
t→+∞

lnx(t)

t
= lim sup

t→+∞

lnx(t)

ln t
× lim sup

t→+∞

ln t

t
≤ lim sup

t→+∞

ln t

t
= 0.
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In the same way, we get

lim sup
t→+∞

ln y(t)

t
≤ 0.

This completes the proof.

Theorem 4.1. For the prey population x(t) in system (1.1), the following conclu-
sions hold

(1) If 〈a(t)− σ2
1(t)
2 〉

∗ < 0, then lim
t→+∞

x(t) = 0.

(2) If 〈a(t)− σ2
1(t)
2 〉

∗ = 0, then 〈x(t)〉∗ = 0.

(3) If 〈a(t)− σ2
1(t)
2 〉

∗ > 0, then 〈x(t)〉∗ ≤Mx :=
〈a(t)−σ

2
1(t)

2 〉∗

b`
.

(4) If 〈a(t) − σ2
1(t)
2 〉

∗ > 0, 〈r(t) − σ2
2(t)
2 〉

∗ < (h` + f`

mu )〈ψ(t)〉∗, then 〈x(t)〉∗ > 0.
Here, ψ(t) is the solution of equation (3.3).

(5) If 〈a(t)− σ2
1(t)
2 〉∗ − 〈

c(t)
β(t) 〉

∗ > 0, then 〈x(t)〉∗ > 0.

Proof. (1) For the system (1.1), by using Itô’s formula, we have
d lnx(t)=

(
a(t)−b(t)x(t)− c(t)y(t)

(1+α(t)x(t))(1+β(t)y(t))
− σ

2
1(t)

2

)
dt+σ1(t)dB1(t),

d ln y(t)=
(
r(t)−h(t)y(t)− f(t)y(t)

m(t)+x(t)
− σ

2
2(t)

2

)
dt+σ2(t)dB2(t).

(4.5)
Integrating the first equation of (4.5), we have

lnx(t)− lnx0

t
=
〈
a(t)− σ2

1(t)

2

〉
− 〈b(t)x(t)〉

−
〈 c(t)y(t)

(1 + α(t)x(t))(1 + β(t)y(t))

〉
+

1

t

∫ t

0

σ1(t)dB1(t).

(4.6)

Let

M1(t) =

∫ t

0

σ1(s)dB1(s), M2(t) =

∫ t

0

σ2(s)dB2(s).

Then, Mi(t) (i = 1, 2) are local martingales, and the quadratic variations satisfy

〈M1,M1〉t =

∫ t

0

σ2
1(s)ds ≤ (σu1 )2t

and

〈M2,M2〉t =

∫ t

0

σ2
2(s)ds ≤ (σu2 )2t.

According to the strong law of large numbers for martingales, we have

lim sup
t→+∞

Mi(t)

t
= 0 a.s. (4.7)

For (4.6), it follows from (4.7) and the property of the superior limit( lnx(t)− lnx0

t

)∗
≤
〈
a(t)− σ2

1(t)

2

〉∗
< 0.
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Then
lim
t→∞

x(t) = 0.

(2) By virtue of the superior limit and (4.7), we can show that for any ε > 0,
there exists T > 0 such that〈

a(t)− σ2
1(t)

2

〉
<
〈
a(t)− σ2

1(t)

2

〉∗
+
ε

2
, and

M1(t)

t
<
ε

2
, for all t > T.

It follows from the first equation of (4.5), we achieve

lnx(t)− lnx0

t
≤
〈
a(t)− σ2

1(t)

2

〉∗
+ ε− b`〈x(t)〉 = ε− b`〈x(t)〉.

According to Lemma 2.9, we get

〈x(t)〉∗ ≤ ε

b`
.

By the arbitrariness of ε, the desired conclusion is obtained.
(3) From the first equation of (4.5), we have

d lnx(t) ≤
(
a(t)− b(t)x(t)− σ2

1(t)

2

)
dt+ σ1(t)dB1(t).

Thus
lnx(t)− lnx0

t
≤
〈
a(t)− σ2

1(t)

2

〉
− b`〈x(t)〉+

M1(t)

t
.

By virtue of the superior limit and (4.7), for any given positive number ε > 0, there
exists T1 > 0 satisfying

〈a(t)− σ2
1(t)

2
〉 <

〈
a(t)− σ2

1(t)

2

〉∗
+
ε

2
, and

M1(t)

t
<
ε

2
, for all t > T1.

Therefore
lnx(t)− lnx0

t
≤
〈
a(t)− σ2

1(t)

2

〉∗
− b`〈x(t)〉+ ε.

According to Lemma 2.9 and the arbitrariness of ε, we get

〈x(t)〉∗ ≤
〈a(t)− σ2

1(t)
2 〉

∗

b`
:= Mx.

(4) Here, we note ψ(t) is the solution of (3.3). According to the comparison
theorem of stochastic equations, we know

y(t) ≥ ψ(t), t ∈ [0, τ%), a.s.

By (4.7) and Lemma 4.1, we have

bu〈x(t)〉∗ + cu〈y(t)〉∗

≥
( lnx(t)

t

)∗
+ 〈b(t)x(t)〉∗ +

〈 c(t)y(t)

(1 + α(t)x(t))(1 + β(t)y(t))

〉∗
−
〈M1(t)

t

〉
∗

≥
〈
a(t)− σ2

1(t)

2

〉∗
> 0.

(4.8)
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There must exist 〈x(t)〉∗ > 0 a.s. If not, for arbitrary ν ∈ {〈x(t, ν)〉∗ = 0}. By (4.8)
we have 〈y(t, ν)〉∗ > 0. Meanwhile, from the second equation of system (4.5), we
get ( ln y(t)− ln y0

t

)∗
=
〈
r(t)− σ2

2(t)

2

〉∗
− 〈h(t)y(t)〉∗ −

〈 f(t)y(t)

x(t) +m(t)

〉∗
≤
〈
r(t)− σ2

2(t)

2

〉∗
− h`〈y(t)〉∗ − f `

mu
〈y(t)〉∗

=
〈
r(t)− σ2

2(t)

2

〉∗
−
(
h` +

f `

mu

)
〈y(t)〉∗

≤
〈
r(t)− σ2

2(t)

2

〉∗
−
(
h` +

f `

mu

)
〈ψ(t)〉∗

< 0.

Then, lim
t→∞

y(t, ν) = 0, which contradicts with 〈y(t, ν)〉∗ > 0. The proof is complet-

ed.
(5) By the condition 〈a(t)− σ2

1(t)
2 〉∗−〈

c(t)
β(t) 〉

∗ > 0, there exists a sufficiently small

ε > 0 such that 〈
a(t)− σ2

1(t)

2

〉
∗
−
〈 c(t)
β(t)

〉∗
− ε > 0.

By (4.7), for this ε > 0, there exists T2 > 0, such that for all t > T2,

〈
a(t)− σ2

1(t)

2

〉
>
〈
a(t)− σ2

1(t)

2

〉
∗
− ε

3
,
〈 c(t)
β(t)

〉
<
〈 c(t)
β(t)

〉∗
+
ε

3
,
M1(t)

t
> −ε

3
.

Then,

lnx(t)− lnx0

t
≥
〈
a(t)− σ2

1(t)

2

〉
− bu〈x(t)〉 −

〈 c(t)
β(t)

〉
+
M1(t)

t

≥
〈
a(t)− σ2

1(t)

2

〉
∗
− ε

3
−
〈 c(t)
β(t)

〉∗
− ε

3
− ε

3
− bu〈x(t)〉

=
〈
a(t)− σ2

1(t)

2

〉
∗
−
〈 c(t)
β(t)

〉∗
− ε− bu〈x(t)〉.

According to Lemma 2.9 and the arbitrariness of ε, we have

〈x(t)〉∗ ≥
〈a(t)− σ2

1(t)
2 〉∗ − 〈

c(t)
β(t) 〉

∗

bu
> 0.

Theorem 4.2. For the predator population y(t) in system (1.1), the following con-
clusions hold:

(1) If 〈r(t)− σ2
2(t)
2 〉

∗ < 0, then lim
t→+∞

y(t) = 0.

(2) If 〈r(t)− σ2
2(t)
2 〉

∗ = 0, then 〈y(t)〉∗ = 0.

(3) If 〈r(t)− σ2
2(t)
2 〉

∗ > 0, then 〈y(t)〉∗ ≤My :=
〈r(t)−σ

2
2(t)

2 〉∗

h`
.
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(4) If 〈r(t)− σ2
2(t)
2 〉

∗ − 〈 f(t)ỹ(t)
m(t)+x̃(t) 〉

∗ > 0, then 〈y(t)〉∗ > 0. Here (x̃(t), ỹ(t)) is the

solution of the following equation{
dx(t) = x(t) (a(t)− b(t)x(t)) dt+ σ1(t)x(t)dB1(t),

dy(t) = y(t) (r(t)− h(t)y(t)) dt+ σ2(t)y(t)dB2(t).
(4.9)

(5) If 〈r(t)− σ2
2(t)
2 〉∗ > 0, then 〈y(t)〉∗ > 0.

Proof. (1) For the second equation of (4.5), we integrate it from 0 to t and get

ln y(t)− ln y0

t
=
〈
r(t)− σ2

2(t)

2

〉
− 〈h(t)y(t)〉

−
〈 f(t)y(t)

m(t) + x(t)

〉
+

1

t

∫ t

0

σ2(t)dB2(t),

(4.10)

which combing with (4.7) and the property of the superior limit produces(
ln y(t)− ln y0

t

)∗
≤
〈
r(t)− σ2

2(t)

2

〉∗
< 0.

Then,
lim
t→∞

y(t) = 0.

(2) By virtue of the superior limit and (4.7), we can show that for any ε > 0, there
exists T > 0, such that for all t > T〈

r(t)− σ2
2(t)

2

〉
<
〈
r(t)− σ2

2(t)

2

〉∗
+
ε

2
, and

M2(t)

t
<
ε

2
.

From (4.10), we know

ln y(t)− ln y0

t
≤
〈
r(t)− σ2

2(t)

2

〉∗
+ ε− h`〈y(t)〉 = ε− h`〈y(t)〉.

According to Lemma 2.9, we get

〈y(t)〉∗ ≤ ε

h`
.

By the arbitrariness of ε, the desired conclusion is obtained.
(3) From the second equation of (4.5), we achieve

d ln y(t) ≤
(
r(t)− h(t)y(t)− σ2

2(t)

2

)
dt+ σ2(t)dB2(t).

Thereby,
ln y(t)− ln y0

t
≤
〈
r(t)− σ2

2(t)

2

〉
− h`〈y(t)〉+

M2(t)

t
.

By exploiting the superior limit and (4.7), for any given positive number ε > 0,
there exists T1 > 0 satisfying, for all t > T1,〈

r(t)− σ2
2(t)

2

〉
<
〈
r(t)− σ2

2(t)

2

〉∗
+
ε

2
, and

M2(t)

t
<
ε

2
.
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Therefore,
ln y(t)− ln y0

t
≤
〈
r(t)− σ2

2(t)

2

〉∗
+ ε− h`〈y(t)〉.

According to Lemma 2.9 and the arbitrariness of ε, we have

〈y(t)〉∗ ≤
〈r(t)− σ2

2(t)
2 〉

∗

h`
:= My.

(4) Here, we want to prove that 〈y(t)〉∗ > 0 a.s. If not, for arbitrary ε1 > 0, there
exists a solution (x(t), y(t)) with initial value (x0, y0) ∈ R2

+ such that P{〈y(t)〉∗ <
ε1} > 0. Let ε1 be sufficiently small such that

〈
r(t)− σ2

2(t)

2

〉∗
−
〈 f(t)ỹ(t)

m(t) + x̃(t)

〉∗
>

[
hu +

fubu〈r(t)− σ2
2(t)
2 〉

∗

(m`)2b`h`

]
ε1.

Here (x̃(t), ỹ(t)) is the solution of (4.9) and (x(t), y(t)) is the solution of (1.1). Then,
by the comparison theorem, we have

x(t) ≤ x̃(t), y(t) ≤ ỹ(t).

Since

ln y(t)− ln y0

t
=
〈
r(t)− σ2

2(t)

2

〉
− 〈h(t)y(t)〉 −

〈 f(t)y(t)

m(t) + x(t)

〉
+
M2(t)

t

=
〈
r(t)− σ2

2(t)

2

〉
− 〈h(t)y(t)〉 −

〈 f(t)ỹ(t)

m(t) + x̃(t)

〉
+
M2(t)

t

+
〈 f(t)ỹ(t)

m(t) + x̃(t)
− f(t)y(t)

m(t) + x(t)

〉
.

Then(
ln y(t)− ln y0

t

)∗
=
〈
r(t)− σ2

2(t)

2

〉∗
− 〈h(t)y(t)〉∗ −

〈 f(t)y(t)

m(t) + x(t)

〉∗
=
〈
r(t)− σ2

2(t)

2

〉∗
− 〈h(t)y(t)〉∗ −

〈 f(t)ỹ(t)

m(t) + x̃(t)

〉∗
+
〈 f(t)ỹ(t)

m(t) + x̃(t)
− f(t)y(t)

m(t) + x(t)

〉∗
.

(4.11)

In addition,〈 f(t)ỹ(t)

m(t) + x̃(t)
− f(t)y(t)

m(t) + x(t)

〉∗
=
〈f(t)m(t)(ỹ(t)− y(t)) + f(t)y(t)(x(t)− x̃(t)) + f(t)x(t)(ỹ(t)− y(t))

(m(t) + x̃(t))((m(t) + x(t))

〉∗
≥
〈 f(t)y(t)(x(t)− x̃(t))

(m(t) + x̃(t))((m(t) + x(t))

〉∗
≥ − fu

(m`)2
〈y(t)(x̃(t)− x(t))〉∗

≥ − fu

(m`)2
〈y(t)〉∗〈x̃(t)− x(t)〉∗.
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By the above result, we know 〈y(t)〉∗ ≤My. Then we have〈 f(t)ỹ(t)

m(t) + x̃(t)
− f(t)y(t)

m(t) + x(t)

〉∗
≥ − fu

(m`)2
My〈x̃(t)− x(t)〉∗. (4.12)

Combining with (4.11), we acquire(
ln y(t)

t

)∗
≥
〈
r(t)− σ2

2(t)

2

〉∗
− hu〈y(t)〉∗ −

〈 f(t)ỹ(t)

m(t) + x̃(t)

〉∗
− fu

(m`)2
My〈x̃(t)− x(t)〉∗.

(4.13)

Define the Lyapunov function V3(t) = ln x̃(t)− lnx(t), which is a positive func-
tion on R+. Thus,

D+V3(t) =

(
dx̃(t)

x̃(t)
− (dx̃(t))2

2x̃2(t)

)
−
(

dx(t)

x(t)
− (dx(t))2

2x2(t)

)
=

[
−b(t)x̃(t) + b(t)x(t) +

c(t)y(t)

(1 + α(t)x(t))(1 + β(t)y(t))

]
dt

≤
[
−b`(x̃(t)− x(t)) + cuy(t)

]
dt.

(4.14)

Integrating (4.14), we get

V3(t)− V3(0)

t
≤ cu〈y(t)〉 − b`〈x̃(t)− x(t)〉.

That is

〈x̃(t)− x(t)〉 ≤ cu

b`
〈y(t)〉,

which indicates that

〈x̃(t)− x(t)〉∗ ≤ cu

b`
〈y(t)〉∗.

Combining with (4.13), we have(
ln y(t)

t

)∗
≥
〈
r(t)− σ2

2(t)

2

〉∗
− hu〈y(t)〉∗ −

〈 f(t)ỹ(t)

m(t) + x̃(t)

〉∗
− fucu

(m`)2b`
My〈y(t)〉∗

=
〈
r(t)− σ

2
2(t)

2

〉∗
−
〈 f(t)ỹ(t)

m(t)+x̃(t)

〉∗
−
[
hu+

fucu〈r(t)− σ2
2(t)
2 〉

∗

(m`)2b`h`

]
〈y(t)〉∗

≥
〈
r(t)− σ2

2(t)

2

〉∗
−
〈 f(t)ỹ(t)

m(t) + x̃(t)

〉∗
−
[
hu +

fucu〈r(t)− σ2
2(t)
2 〉

∗

(m`)2b`h`

]
ε1

> 0,
(4.15)

which contradicts with Lemma 4.1 and thus we complete the proof.

(5) By the condition 〈r(t)− σ2
2(t)
2 〉∗ > 0, there exists a sufficiently small ε > 0 such

that 〈
r(t)− σ2

2(t)

2

〉
∗
− ε > 0.

By the second equation of (4.5), we attain

ln y(t)− ln y0

t
≥
〈
r(t)− σ2

2(t)

2

〉
− hu〈y(t)〉 − fu

m`
〈y(t)〉+

M2(t)

t
.
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For any given positive number ε > 0, there exists T2 > 0 satisfying, for all t > T2〈
r(t)− σ2

2(t)

2

〉
>
〈
r(t)− σ2

2(t)

2

〉
∗
− ε

2
, and

M2(t)

t
> −ε

2
.

Therefore,

ln y(t)− ln y0

t
≥
〈
r(t)− σ2

2(t)

2

〉
∗
− ε−

(
hu +

fu

m`

)
〈y(t)〉.

According to Lemma 2.9 and the arbitrariness of ε, we have

〈y(t)〉∗ ≥
〈r(t)− σ2

2(t)
2 〉∗

hu + fu

m`

> 0.

Remark 4.1. According to the proof of Theorem 4.1 and Theorem 4.2, we can

know that if 〈a(t)− σ2
1

2 〉
∗ > 0 and 〈r(t)− σ2

2

2 〉
∗ < 0, then although the prey population

survives, the predators die out because of the too large diffusion coefficients σ2
2 .

5. Stochastic permanence

Theorem 5.1. Suppose that min{a` − cu

β`
, r`} − 1

2max{(σu1 )2, (σu2 )2} > 0, then the

system (1.1) is stochastically permanent.

Proof. The proof is motivated by Li and Mao [15] and Liu and Wang [18]. The
whole proof is divided into two parts.

In the first part, we prove that for arbitraty ε > 0, there exists a constant δ > 0
such that P{|X(t)| ≥ δ} ≥ 1 − ε. Above all, we claim that for any initial value
X(0) = (x(0), y(0)) ∈ R+

2 , the solution X(t) = (x(t), y(t)) satisfies

lim sup
t→+∞

E
(

1

|X(t)|θ

)
≤ H.

Here, θ < 2 is an arbitrary positive constant satisfying

min

{
a` − cu

β`
, r`
}
− 1

2
(θ + 1)max{(σu1 )2, (σu2 )2} > 0. (5.1)

Define V4(x(t), y(t)) = x(t) + y(t), then

dV4(x(t), y(t)) = dx(t) + dy(t)

= x(t)

[
a(t)− b(t)x(t)− c(t)y(t)

(1 + α(t)x(t))(1 + β(t)y(t))

]
dt

+ y(t)

[
r(t)− h(t)y(t)− f(t)y(t)

m(t) + x(t)

]
dt

+ σ1(t)x(t)dB1(t) + σ2(t)y(t)dB2(t).
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Let U(t) = 1
V4(x(t),y(t)) . By Itô’s formula, we obtain

dU(t) = −U2(t)dV4 + U3(t)(dV4)2

= −U2(t)

[
x(t)

(
a(t)− b(t)x(t)− c(t)y(t)

(1 + α(t)x(t))(1 + β(t)y(t))

)
+y(t)

(
r(t)− h(t)y(t)− f(t)y(t)

m(t) + x(t)

)]
dt+ U3(t)(σ2

1(t)x2(t)

+ σ2
2(t)y2(t))dt− U2(t)σ1(t)x(t)dB1(t)− U2(t)σ2(t)y(t)dB2(t)

= LU(t)dt− U2(t)σ1(t)x(t)dB1(t)− U2(t)σ2(t)y(t)dB2(t).

Here,

LU(t) = −U2(t)

[
x(t)

(
a(t)− b(t)x(t)− c(t)y(t)

(1 + α(t)x(t))(1 + β(t)y(t))

)
+y(t)

(
r(t)− h(t)y(t)− f(t)y(t)

m(t) + x(t)

)]
+ U3(t)(σ2

1(t)x2(t) + σ2
2(t)y2(t)).

Noting that the positive constant θ < 2 obeying (5.1), so we can choose a suitable
p > 0 such that it satisfies the following inequality

θmin
{
a` − cu

β`
, r`
}
− 1

2
θ(θ + 1)max{(σu1 )2, (σu2 )2} − p > 0. (5.2)

Denote W (t) = ept(1 + U(t))θ, then

dW (t) = pept(1 + U(t))θdt+ eptθ(1 + U(t))θ−1dU(t)

+
1

2
eptθ(θ − 1)(1 + U(t))θ−2(dU(t))2

= LW (t)dt− eptθ(1 + U(t))θ−1U2(t)σ1(t)x(t)dB1(t)

− eptθ(1 + U(t))θ−1U2(t)σ2(t)y(t)dB2(t).

Here,

LW (t) = ept(1 + U(t))θ−2

(
p(1 + U(t))2 + θ(1 + U(t))LU(t)

+
θ(θ − 1)

2
U4(t)(σ2

1(t)x2(t) + σ2
2(t)y2(t))

)
= ept(1 + U(t))θ−2

[
p(1 + U(t))2

− θU2(t)x(t)

(
a(t)− b(t)x(t)− c(t)y(t)

(1 + α(t)x(t))(1 + β(t)y(t))

)
− θU2(t)y(t)

(
r(t)− h(t)y(t)− f(t)y(t)

m(t) + x(t)

)
− θU3(t)x(t)

(
a(t)− b(t)x(t)− c(t)y(t)

(1 + α(t)x(t))(1 + β(t)y(t))

)
− θU3(t)y(t)

(
r(t)− h(t)y(t)− f(t)y(t)

m(t) + x(t)

)
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+ θU3(t)(σ2
1(t)x2(t) + σ2

2(t)y2(t))

+
θ(θ + 1)

2
U4(t)(σ2

1(t)x2(t) + σ2
2(t)y2(t))

]
.

In the following, we will make some estimations for the above LW (t). For the last
two items, we have

θU3(t)(σ2
1(t)x2(t) + σ2

2(t)y2(t))

≤ θU3(t)max{(σu1 )2, (σu2 )2}(x2(t) + y2(t))

≤ θU(t)max{(σu1 )2, (σu2 )2},

and

θ(θ + 1)

2
U4(t)(σ2

1(t)x2(t) + σ2
2(t)y2(t)) ≤ θ(θ + 1)

2
U2(t)max{(σu1 )2, (σu2 )2}.

Moreover, the estimations on the expressions involving U2(t) are

θU2(t)b(t)x2(t) + θU2(t)h(t)y2(t) + θU2(t)
f(t)y2(t)

m(t) + x(t)

≤ θmax
{
bu, hu +

fu

m`

}
U2(t)(x2(t) + y2(t))

≤ θmax
{
bu, hu +

fu

m`

}
,

and

− θU2(t)x(t)

(
a(t)− c(t)y(t)

(1 + α(t)x(t))(1 + β(t)y(t))

)
− θU2(t)y(t)r(t)

≤ −θU(t)min
{
a` − cu

β`
, r`
}
.

We proceed to estimate the rest expressions involving U3(t)

θU3(t)b(t)x2(t)+θU3(t)h(t)y2(t)+θU3(t)
f(t)y2(t)

m(t)+x(t)
≤θmax

{
bu, hu+

fu

m`

}
U(t),

and

− θU3(t)x(t)

(
a(t)− c(t)y(t)

(1 + α(t)x(t))(1 + β(t)y(t))

)
− θU3(t)y(t)r(t)

≤ −θU2(t)min
{
a` − cu

β`
, r`
}
.

Summarizing the above estimations, we have

LW (t) ≤ ept(1 + U(t))θ−2

[
p+ θmax

{
bu, hu +

fu

m`

}
+ (2p+ θmax{(σu1 )2, (σu2 )2}+ θmax

{
bu, hu +

fu

m`

}
− θmin

{
a` − cu

β`
, r`
}

)U(t) + (p− θmin
{
a` − cu

β`
, r`
}

+
θ(θ + 1)

2
max{(σu1 )2, (σu2 )2})U2(t)

]
≤ H1e

pt.
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Where

H1 =
4e1e3 + e2

2

4e1
, e1 = θmin

{
a` − cu

β`
, r`
}
− 1

2
θ(θ + 1)max{(σu1 )2, (σu2 )2} − p,

e2 = 2p+ θmax{(σu1 )2, (σu2 )2}+ θmax
{
bu, hu +

fu

m`

}
− θmin

{
a` − cu

β`
, r`
}
,

e3 = p+ θmax
{
bu, hu +

fu

m`

}
.

Thus

E[ept(1 + U(t))θ] ≤ (1 + U(0))θ +
H1(ept − 1)

p
.

Therefore

lim sup
t→∞

E[Uθ(t)] ≤ lim sup
t→∞

E[(1 + U(t))θ] ≤ H1

p
.

Since
1

x2(t) + y2(t)
=

2

2(x2(t) + y2(t))
≤ 2

(x(t) + y(t))2
,

then
1√

x2(t) + y2(t)
≤ 2

x(t) + y(t)
.

That is
1

X(t)
≤ 2U(t).

In other words,

E
[

1

|X(t)|θ

]
≤ 2θE[Uθ(t)] ≤ 2θ

H1

p
:= H.

Hence, for any ε > 0, letting δ = ( εH )
1
θ , by the Chebyshev inequality, we obtain

P{|X(t)|<δ}=P
{

1

|X(t)|
>

1

δ

}
≤
(

1

δ

)−θ
E
[

1

|X(t)|θ

]
=δθE

[
1

|X(t)|θ

]
≤ ε

H
·H=ε.

Consequently
lim inf
t→∞

P{|X(t)| < δ} ≤ ε,

which indicates
lim inf
t→∞

P{|X(t)| ≥ δ} ≥ 1− ε.

In the second part, we need to prove that for any ε > 0, there exists a constant
χ > 0 such that

lim inf
t→∞

P{|X(t)| ≤ χ} ≥ 1− ε.

By Theorem 3.2, we obtain that the solution of the system (1.1) is stochastically
ultimately bounded, that is

E(|X(t)|p) ≤ K(p).

Thus, for any given ε > 0, choosing χ = (K(p)
ε )

1
p , by the Chebyshev inequality, we

get

P{|X(t)| > χ} ≤ E (|X(t)|p)
χp

≤ ε.
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Therefore
lim inf
t→+∞

P{|X(t)| > χ} ≤ ε,

which shows
lim inf
t→+∞

P{|X(t)| ≤ χ} ≥ 1− ε.

So far, we complete all the proofs.

6. Numerical simulations

This section presents a numerical simulation to verify the theoretical analysis of our
system. By means of the Milstein method mentioned in Higham [7], we obtain the
following discretized equations:

xi+1 = xi + xi

(
a(i∆t)− b(i∆t)xi −

c(i∆t)yi
(1 + α(i∆t)xi)(1 + β(i∆t)yi)

)
∆t

+ xiσ1(i∆t)
√

∆tξi +
σ2

1(i∆t)

2
xi(ξ

2
i − 1)∆t,

yi+1 = yi + yi

(
r(i∆t)− h(i∆t)yi −

f(i∆t)yi
xi +m(i∆t)

)
∆t

+ yiσ2(i∆t)
√

∆tηi +
σ2

2(i∆t)

2
yi(η

2
i − 1)∆t.

In Figure 1(a), we take

a(t) = 0.4 + 0.1 sin t, r(t) = 0.5 + 0.05 sin t, σ1(t) = 1 + 0.02 sin t,

σ2(t) = 1.2 + 0.01 sin t, α(t) = 0.46 + 0.04 sin t, β(t) = 0.46 + 0.04 sin t.

By calculation, we have〈
a(t)− σ2

1(t)

2

〉∗
< 0, and

〈
r(t)− σ2

2(t)

2

〉∗
< 0.

By Theorem 4.1 and Theorem 4.2, both of the prey and predator populations (x
and y, respectively) end in extinction. In Figure 1(b)-1(d), the other parameters are
the same as those in Figture 1(a) expect α(t), β(t). By comparing Figures 1(a)-(d),
we observe that the effects of handling time α(t) and the magnitude of interference
among predators β(t) do not influence the extinction of the system.

In Figure 2, we choose

a(t) = 1.5 + 0.02 sin t, r(t) = 0.4 + 0.02 sin t, σ1(t) = 0.5 + 0.02 sin t,

σ2(t) = 1.2 + 0.02 sin t, α(t) = 0.46 + 0.04 sin t, β(t) = 0.46 + 0.04 sin t.

Then, we have 〈
a(t)− σ2

1(t)

2

〉∗
> 0, and

〈
r(t)− σ2

2(t)

2

〉∗
< 0.

By Theorem 4.1 and Theorem 4.2, we get that the prey population x is weakly
persistent in the mean and the predator population y goes to extinction.
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Figure 1. The figures (a)-(d) depict the extinction of the prey and predator species. (a) α(t) =
0.46 + 0.04 sin t, β(t) = 0.46 + 0.04 sin t. (b) α(t) = 0, β(t) = 0.86 + 0.04 sin t. (c) α(t) = 0.86 +
0.04 sin t, β(t) = 0. (d) α(t) = 0, β(t) = 0. Both of the prey and predator populations go to extinction.
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Figure 2. The prey population is weakly persistent in the mean, whereas the predator species y is
extinct.

In Figure 3, we make

a(t) = 0.8 + 0.1 sin t, r(t) = 0.4 + 0.02 sin t, σ1(t) = 0.2 + 0.02 sin t,

σ2(t) = 0.4 + 0.02 sin t, α(t) = 0.46 + 0.04 sin t, β(t) = 0.5 + 0.04 sin t,

c(t) = 0.1 + 0.02 sin t.
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Figure 3. The prey population is strongly persistent in the mean and the predator species
y is strongly persistent in the mean.

Direct calculation produces〈
a(t)− σ2

1(t)

2

〉
∗
−
〈 c(t)
β(t)

〉∗
> 0, and

〈
r(t)− σ2

2(t)

2

〉∗
> 0.

By Theorem 4.1 and Theorem 4.2, we know that the prey population x is strongly
persistent in the mean and the predator population y is strongly persistent in the
mean.

In Figure 4, we select

a(t) = 0.7 + 0.02 sin t, r(t) = 1.0 + 0.02 sin t, σ1(t) = 1.2 + 0.02 sin t,

σ2(t) = 0.4 + 0.02 sin t, α(t) = 0.46 + 0.04 sin t, β(t) = 0.5 + 0.04 sin t,

c(t) = 0.1 + 0.02 sin t.

Then, we have 〈
a(t)− σ2

1(t)

2

〉∗
< 0, and

〈
r(t)− σ2

2(t)

2

〉
∗
> 0.
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Figure 4. The prey population is extinct but the predator species y is strongly persistent
in the mean.



Analysis of a predator-prey model 2433

By Theorem 4.1 and Theorem 4.2, we get that the prey population x goes to
extinction and the predator population y is weakly persistent in the mean. Although
x goes to extinction due to the too large diffusion coefficients σ2

1 , the predator do
not extinct because the predator can seek other food.

In Figure 5, we let

a(t) = 1.5 + 0.02 sin t, r(t) = 0.4 + 0.02 sin t, σ1(t) = 0.4 + 0.02 sin t,

σ2(t) = 0.3 + 0.02 sin t, α(t) = 0.46 + 0.04 sin t, β(t) = 0.5 + 0.04 sin t,

c(t) = 0.1 + 0.02sint.

Then, we have

min
{
a` − cu

β`
, r`
}
− 1

2
max{(σu1 )2, (σu2 )2} > 0.

By Theorem 5.1, we get that the system (1.1) is stochastically permanent.
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Figure 5. The system (1.1) is stochastically permanent.
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