
Journal of Applied Analysis and Computation Website:http://jaac.ijournal.cn

Volume 10, Number 1, February 2020, 282–296 DOI:10.11948/20190143

DYNAMICAL BEHAVIOR AND SOLUTION OF
NONLINEAR DIFFERENCE EQUATION VIA

FIBONACCI SEQUENCE∗

E. M. Elsayed1,2,†, Faris Alzahrani1, Ibrahim Abbas1

and N. H. Alotaibi1
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constants. Also, we give the solution of some special cases of this equation.

Keywords Stability, boundedness, solution of difference equations.

MSC(2010) 39A10.

1. Introduction

In this paper, we deal with the behavior of the solutions of the following difference
equation

xn+1 = axn +
bxnxn−1

cxn−1 + dxn−2
, n = 0, 1, ..., (1.1)

where the initial conditions x−2, x−1, x0 are arbitrary positive real numbers and
a, b, c, d are positive constants. Also, we obtain the solution of some special cases of
the same equation.

Let us introduce some basic definitions and some theorems that we need in the
sequel.

Let I be some interval of real numbers and let

f : Ik+1 → I,

be a continuously differentiable function. Then for every set of initial conditions
x−k, x−k+1, ..., x0 ∈ I, the difference equation

xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, ..., (1.2)

has a unique solution {xn}∞n=−k [34].
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Definition 1.1 (Equilibrium Point). A point x ∈ I is called an equilibrium point
of Eq. (1.2) if

x = f(x, x, ..., x).

That is, xn = x for n ≥ 0, is a solution of Eq. (1.2), or equivalently, x is a fixed
point of f .

Definition 1.2 (Stability). (i) The equilibrium point x of Eq. (1.2) is locally stable
if for every ε > 0, there exists δ > 0 such that for all x−k, x−k+1, ..., x−1, x0 ∈
I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < δ,

we have
|xn − x| < ε for all n ≥ −k.

(ii) The equilibrium point x of Eq. (1.2) is locally asymptotically stable if x is
locally stable solution of Eq. (1.2) and there exists γ > 0, such that for all x−k,
x−k+1, ..., x−1, x0 ∈ I with

|x−k − x|+ |x−k+1 − x|+ ...+ |x0 − x| < γ,

we have
lim
n→∞

xn = x.

(iii) The equilibrium point x of Eq. (1.2) is global attractor if for all x−k, x−k+1, ...,
x−1, x0 ∈ I, we have

lim
n→∞

xn = x.

(iv) The equilibrium point x of Eq. (1.2) is globally asymptotically stable if x is
locally stable, and x is also a global attractor of Eq. (1.2).
(v) The equilibrium point x of Eq. (1.2) is unstable if x is not locally stable.

The linearized equation of Eq. (1.2) about the equilibrium x is the linear differ-
ence equation

yn+1 =

k∑
i=0

∂f(x, x, ..., x)

∂xn−i
yn−i. (1.3)

Theorem A ( [34]).Assume that p, q ∈ R and k ∈ {0, 1, 2, ...}. Then

|p|+ |q| < 1,

is a sufficient condition for the asymptotic stability of the difference equation

xn+1 + pxn + qxn−k = 0, n = 0, 1, ... .

Remark 1.1. Theorem A can be easily extended to a general linear equations of
the form

xn+k + p1xn+k−1 + ...+ pkxn = 0, n = 0, 1, ..., (1.4)

where p1, p2, ..., pk ∈ R and k ∈ {1, 2, ...}. Then Eq. (1.4) is asymptotically stable
provided that

k∑
i=1

|pi| < 1.
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Consider the following equation

xn+1 = g(xn, xn−1, xn−2). (1.5)

The following theorem will be useful for the proof of our results in this paper.

Theorem B ( [35]). Let [a, b] be an interval of real numbers and assume that

g : [a, b]3 → [a, b],

is a continuous function satisfying the following properties :
(a) g(x, y, z) is non-decreasing in x and y in [a, b] for each z ∈ [a, b], and is

non-increasing in z ∈ [a, b] for each x and y in [a, b];
(b) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

M = g(M,M,m) and m = g(m,m,M),

then
m = M.

Then Eq. (1.5) has a unique equilibrium x ∈ [a, b] and every solution of Eq. (1.5)
converges to x.

Definition 1.3 (Periodicity). A sequence {xn}∞n=−k is said to be periodic with
period p if xn+p = xn for all n ≥ −k.

Definition 1.4 (Fibonacci Sequence). The sequence {fm}∞m=0 = {1, 2, 3, 5, 8, 13, ...}
i.e. fm = fm−1 + fm−2, m ≥ 0, f−2 = 0, f−1 = 1 is called Fibonacci Sequence.

The study of rational difference equations of order greater than one is quite
challenging and rewarding because some prototypes for the development of the basic
theory of the global behavior of nonlinear difference equations of order greater than
one come from the results for rational difference equations. However, there have
not been any effective general methods to deal with the global behavior of rational
difference equations of order greater than one so far. Therefore, the study of rational
difference equations of order greater than one is worth further consideration.

Recently, Agarwal et al. [4] investigated the global stability, periodicity character
and gave the solution of some special cases of the difference equation

xn+1 = a+
dxn−lxn−k
b− cxn−s

.

Aloqeili [6] has obtained the solutions of the difference equation

xn+1 =
xn−1

a− xnxn−1
.

Cinar [12,13] deal with the solutions of the following difference equations

xn+1 =
xn−1

1 + axnxn−1
, xn+1 =

xn−1
−1 + axnxn−1

.

Elabbasy et al. [17, 18] investigated the global stability, periodicity character and
gave the solution of special case of the following recursive sequences

xn+1 = axn −
bxn

cxn − dxn−1
, xn+1 =

αxn−k

β + γ
∏k
i=0 xn−i

.
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Ibrahim [27] has got the solutions of the rational difference equation

xn+1 =
xnxn−2

xn−1(a+ bxnxn−2)
.

Karatas et al. [31] studied form of the solution of the difference equation

xn+1 =
xn−5

1 + xn−2xn−5
.

Simsek et al. [40] obtained the solutions of the following difference equations

xn+1 =
xn−3

1 + xn−1
.

See also [1–20]. Other related results on rational difference equations can be found
in refs. [21–49].

The study of these equations is quite challenging and rewarding and is still
in its infancy. We believe that the nonlinear rational difference equations are of
paramount importance in their own right, and furthermore we believe that these
results about such equations over prototypes for the development of the basic theory
of the global behavior of nonlinear rational difference equations.

2. Local Stability of Eq. (1.1)

In this section we investigate the local stability character of the solutions of Eq. (1.1).
Eq. (1.1) has a unique equilibrium point and is given by

x = ax+
bx2

cx+ dx
,

or,

x2(1− a)(c+ d) = bx2,

if (c+ d)(1− a) 6= b, then the unique equilibrium point is x = 0.
Let f : (0,∞)3 −→ (0,∞) be a function defined by

f(u, v, w) = au+
buv

cv + dw
. (6)

Therefore it follows that

fu(u, v, w) = a+
bv

cv + dw
,

fv(u, v, w) =
bduw

(cv + dw)2
,

fw(u, v, w) =
−bduv

(cv + dw)2
,

we see that

fu(x, x, x) = a+
b

c+ d
,
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fv(x, x, x) =
bd

(c+ d)2
,

fw(x, x, x) =
−bd

(c+ d)2
.

The linearized equation of Eq. (1.1) about x is

yn+1 −
(
a+

b

c+ d

)
yn −

bd

(c+ d)2
yn−1 +

bd

(c+ d)2
yn−2 = 0. (2.1)

Theorem 2.1. Assume that

b(c+ 3d) < (1− a)(c+ d)2.

Then the equilibrium point of Eq. (1.1) is locally asymptotically stable.

Proof. It is follows by Theorem A that, Eq. (2.1) is asymptotically stable if∣∣∣∣a+
b

c+ d

∣∣∣∣+

∣∣∣∣ bd

(c+ d)2

∣∣∣∣+

∣∣∣∣ bd

(c+ d)2

∣∣∣∣ < 1,

or,

a+
b

c+ d
+

2bd

(c+ d)2
< 1,

and so,
bc+ 3bd

(c+ d)2
< (1− a).

The proof is completed.

3. Global Attractor of the Equilibrium Point of
Eq. (1.1)

In this section we investigate the global attractivity character of solutions of E-
q. (1.1).

Theorem 3.1. The equilibrium point x of Eq. (1.1) is global attractor if c(1−a) 6= b.

Proof. Let p, q are a real numbers and assume that g : [p, q]3 −→ [p, q] be a

function defined by g(u, v, w) = au +
buw

cv + dw
, then we can easily see that the

function g(u, v, w) increasing in u, v and decreasing in w.
Suppose that (m,M) is a solution of the system

M = g(M,M,m) and m = g(m,m,M).

Then from Eq. (1.1), we see that

M = aM +
bM2

cM + dm
, m = am+

bm2

cm+ dM
,

or,

M(1− a) =
bM2

cM + dm
, m(1− a) =

bm2

cm+ dM
,
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then

c(1− a)M2 + d(1− a)Mm = bM2, c(1− a)m2 + d(1− a)Mm = bm2.

Subtracting we obtain

c(1− a)(M2 −m2) = b(M2 −m2), c(1− a) 6= b.

Thus

M = m.

It follows by Theorem B that x is a global attractor of Eq. (1.1) and then the proof
is completed.

4. Boundedness of solutions of Eq. (1.1)

In this section, we study the boundedness of solutions of Eq. (1.1).

Theorem 4.1. Every solution of Eq. (1.1) is bounded if (a+
b

c
) < 1.

Proof. Let {xn}∞n=−2 be a solution of Eq. (1.1). It follows from Eq. (1.1) that

xn+1 = axn +
bxnxn−1

cxn−1 + dxn−2
≤ axn +

bxnxn−1
cxn−1

=

(
a+

b

c

)
xn.

Then

xn+1 ≤ xn for all n ≥ 0.

Then the sequence {xn}∞n=0 is decreasing and so are bounded from above by M =
max{x−2, x−1, x0}.

5. Special Cases of Eq. (1.1)

5.1. First Equation

In this subsection, we deal with the following special case of Eq. (1.1)

xn+1 = xn +
xnxn−1

xn−1 + xn−2
, (5.1)

where the initial conditions x−2, x−1, x0 are arbitrary positive real numbers.

Theorem 5.1. Let {xn}∞n=−2 be a solution of Eq. (5.1). Then for n = 0, 1, 2, ...

x2n = h

n−1∏
i=0

(
f2i+3h+ f2i+2k

f2i+2h+ f2i+1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)
,

x2n+1 =

n∏
i=0

(
f2i+1h+ f2ik

f2ih+ f2i−1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)
,

where x−2 = r, x−1 = k, x0 = h, {fm}∞m=−1 = {0, 0, 1, 1, 2, 3, 5, 8, 13, ...}.
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Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assump-
tion holds for n− 1, n− 2. That is;

x2n−2 = h

n−2∏
i=0

(
f2i+3h+ f2i+2k

f2i+2h+ f2i+1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)
,

x2n−1 =

n−1∏
i=0

(
f2i+1h+ f2ik

f2ih+ f2i−1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)
,

x2n−3 =

n−2∏
i=0

(
f2i+1h+ f2ik

f2ih+ f2i−1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)
.

Now, it follows from Eq. (5.1) that

x2n =x2n−1 +
x2n−1x2n−2
x2n−2 + x2n−3

=

n−1∏
i=0

(
f2i+1h+ f2ik

f2ih+ f2i−1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)

+

n−1∏
i=0

(
f2i+1h+f2ik
f2ih+f2i−1k

)(
f2i+3k+f2i+2r
f2i+2k+f2i+1r

)
h

n−2∏
i=0

(
f2i+3h+f2i+2k
f2i+2h+f2i+1k

)(
f2i+3k+f2i+2r
f2i+2k+f2i+1r

)

h

n−2∏
i=0

(
f2i+3h+f2i+2k
f2i+2h+f2i+1k

)(
f2i+3k+f2i+2r
f2i+2k+f2i+1r

)
+

n−2∏
i=0

(
f2i+1h+f2ik
f2ih+f2i−1k

)(
f2i+3k+f2i+2r
f2i+2k+f2i+1r

)

=

n−1∏
i=0

(
f2i+1h+ f2ik

f2ih+ f2i−1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)

+

n−1∏
i=0

(
f2i+1h+ f2ik

f2ih+ f2i−1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

) n−2∏
i=0

(
f2i+3h+ f2i+2k

f2i+2h+ f2i+1k

)
n−2∏
i=0

(
f2i+3h+ f2i+2k

f2i+2h+ f2i+1k

)
+

n−2∏
i=1

(
f2i+1h+ f2ik

f2ih+ f2i−1k

)

=

n−1∏
i=0

(
f2i+1h+ f2ik

f2ih+ f2i−1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)

+

n−1∏
i=0

(
f2i+1h+ f2ik

f2ih+ f2i−1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)(
f2n−1h+ f2n−2k

f2n−2h+ f2n−3k

)
(
f2n−1h+ f2n−2k

f2n−2h+ f2n−3k

)
+ 1

=

n−1∏
i=0

(
f2i+1h+ f2ik

f2ih+ f2i−1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)

+

n−1∏
i=0

(
f2i+1h+ f2ik

f2ih+ f2i−1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)
(f2n−1h+ f2n−2k)

f2nh+ f2n−1k

=

n−1∏
i=0

(
f2i+1h+ f2ik

f2ih+ f2i−1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)(
1 +

f2n−1h+ f2n−2k

f2nh+ f2n−1k

)

=

n−1∏
i=0

(
f2i+1h+ f2ik

f2ih+ f2i−1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)(
f2n+1h+ f2nk

f2nh+ f2n−1k

)
.
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Therefore

x2n = h

n−1∏
i=0

(
f2i+3h+ f2i+2k

f2i+2h+ f2i+1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)
.

Also, from Eq. (5.1), we see that

x2n+1 =x2n +
x2nx2n−1

x2n−1 + x2n−2
= h

n−1∏
i=0

(
f2i+3h+ f2i+2k

f2i+2h+ f2i+1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)

+

h

n−1∏
i=0

(
f2i+3h+f2i+2k
f2i+2h+f2i+1k

)(
f2i+3k+f2i+2r
f2i+2k+f2i+1r

) n−1∏
i=0

(
f2i+1h+f2ik
f2ih+f2i−1k

)(
f2i+3k+f2i+2r
f2i+2k+f2i+1r

)
n−1∏
i=0

(
f2i+1h+f2ik
f2ih+f2i−1k

)(
f2i+3k+f2i+2r
f2i+2k+f2i+1r

)
+h

n−2∏
i=0

(
f2i+3h+f2i+2k
f2i+2h+f2i+1k

)(
f2i+3k+f2i+2r
f2i+2k+f2i+1r

)

=h

n−1∏
i=0

(
f2i+3h+ f2i+2k

f2i+2h+ f2i+1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)

+

n−1∏
i=0

(
f2i+3h+ f2i+2k

f2i+2h+ f2i+1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)(
f2n+1k + f2nr

f2nk + f2n−1r

)
(
f2n+1k + f2nr

f2nk + f2n−1r

)
+ 1

=h

n−1∏
i=0

(
f2i+3h+f2i+2k

f2i+2h+f2i+1k

)(
f2i+3k+f2i+2r

f2i+2k+f2i+1r

)(
1+ f2n+1k+f2nr

f2n+1k+f2nr+f2nk+f2n−1r

)
=h

n−1∏
i=0

(
f2i+3h+ f2i+2k

f2i+2h+ f2i+1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)(
1 +

f2n+1k + f2nr

f2n+2k + f2n+1r

)

=h

n−1∏
i=0

(
f2i+3h+ f2i+2k

f2i+2h+ f2i+1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)(
f2n+3k + f2n+2r

f2n+2k + f2n+1r

)
.

Thus

x2n+1 =

n∏
i=0

(
f2i+1h+ f2ik

f2ih+ f2i−1k

)(
f2i+3k + f2i+2r

f2i+2k + f2i+1r

)
.

Hence, the proof is completed.
For confirming the results of this section, we consider numerical example for

Eq. (5.1) put x−2 = 3, x−1 = 6, x0 = 7. [See Fig. 1].

5.2. Second Equation

In this subsection, we give a specific form of the solutions of the difference equation

xn+1 = xn +
xnxn−1

xn−1 − xn−2
, (5.2)

where the initial conditions x−2, x−1, x0 are arbitrary positive real numbers with
x−1 6= x0, x−1 6= x−2.

Theorem 5.2. Let {xn}∞n=−2 be a solution of Eq. (5.2). Then for n = 0, 1, 2, ...

x2n = h

n−1∏
i=0

(
fi+3h− fi+1k

fi+1h− fi−1k

)(
fi+3k − fi+1r

fi+1k − fi−1r

)
,
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x2n+1 = h

(
2k − r
k − r

) n−1∏
i=0

(
fi+3h− fi+1k

fi+1h− fi−1k

)(
fi+4k − fi+2r

fi+2k − fir

)
,

where x−2 = r, x−1 = k, x0 = h, {fm}∞m=−1 = {1, 0, 1, 1, 2, 3, 5, 8, ...}.

Proof. As the proof of Theorem 5.1 and will be omitted.
Assume for Eq. (5.2) that x−2 = 3.6, x−1 = 2, x0 = 1.4. [See Fig. 2], and for

x−2 = 4, x−1 = 11, x0 = 3. [See Fig. 3].
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5.3. Third Equation

In this subsection, we obtain the solution of the following special case of Eq. (1.1)

xn+1 = xn −
xnxn−1

xn−1 + xn−2
, (5.3)

where the initial conditions x−2, x−1, x0 are arbitrary positive real numbers.

Theorem 5.3. Let {xn}∞n=−2 be a solution of Eq. (5.3). Then for n = 0, 1, 2, ...

x2n =
hkr

(fnk + fn+1r) (fnh+ fn+1k)
,
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x2n+1 =
hkr

(fn+1k + fn+2r) (fnh+ fn+1k)
.

Proof. For n = 0, 1 the result holds. Now suppose that n > 1 and that our
assumption holds for n− 1, n− 2. That is;

x2n−2 =
hkr

(fn−1k + fnr) (fn−1h+ fnk)
,

x2n−1 =
hkr

(fnk + fn+1r) (fn−1h+ fnk)
,

x2n−3 =
hkr

(fn−1k + fnr) (fn−2h+ fn−1k)
.

Now, it follows from Eq. (5.3) that

x2n =x2n−1 −
x2n−1x2n−2
x2n−2 + x2n−3

=
hkr

(fnk + fn+1r) (fn−1h+ fnk)

−

hkr

(fnk + fn+1r) (fn−1h+ fnk)

hkr

(fn−1k + fnr) (fn−1h+ fnk)(
hkr

(fn−1k + fnr) (fn−1h+ fnk)
+

hkr

(fn−1k + fnr) (fn−2h+ fn−1k)

)

=
hkr

(fnk + fn+1r) (fn−1h+ fnk)
−

hkr

(fnk + fn+1r) (fn−1h+ fnk)

1

(fn−1h+ fnk)(
1

(fn−1h+ fnk)
+

1

(fn−2h+ fn−1k)

)

=
hkr

(fnk + fn+1r) (fn−1h+ fnk)

1− 1

1 +
fn−1h+ fnk

fn−2h+ fn−1k


=

hkr

(fnk + fn+1r) (fn−1h+ fnk)

(
1− fn−2h+ fn−1k

fn−2h+ fn−1k + fn−1h+ fnk

)
=

hkr

(fnk + fn+1r) (fn−1h+ fnk)

(
1− fn−2h+ fn−1k

fnh+ fn+1k

)
=

hkr

(fnk + fn+1r) (fn−1h+ fnk)

(
fnh+ fn+1k − fn−2h− fn−1k

fnh+ fn+1k

)
=

hkr

(fnk + fn+1r) (fn−1h+ fnk)

(
fn−1h+ fnk

fnh+ fn+1k

)
.

Then

x2n =
hkr

(fnk + fn+1r) (fnh+ fn+1k)
.

Also, we see from Eq. (5.3) that

x2n+1 =x2n −
x2nx2n−1

x2n−1 + x2n−2
=

hkr

(fnk + fn+1r) (fnh+ fn+1k)

−

hkr

(fnk + fn+1r) (fnh+ fn+1k)

hkr

(fnk + fn+1r) (fn−1h+ fnk)
hkr

(fnk + fn+1r) (fn−1h+ fnk)
+

hkr

(fn−1k + fnr) (fn−1h+ fnk)
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=
hkr

(fnk+fn+1r) (fnh+fn+1k)
−

hkr

(fnk+fn+1r) (fnh+fn+1k)
(fn−1k+fnr)

fn−1k+fnr+fnk+fn+1r

=
hkr

(fnk + fn+1r) (fnh+ fn+1k)

(
1− fn−1k + fnr

fn+1k + fn+2r

)
=

hkr

(fnk + fn+1r) (fnh+ fn+1k)

(
fn+1k + fn+2r − fn−1k − fnr

fn+1k + fn+2r

)
=

hkr

(fnk + fn+1r) (fnh+ fn+1k)

(
fnk + fn+1r

fn+1k + fn+2r

)
.

Therefore

x2n+1 =
hkr

(fn+1k + fn+2r) (fnh+ fn+1k)
.

Hence, the proof is completed.
Fig. 4 shows the solution of Eq. (5.3) when x−2 = 9, x−1 = 6, x0 = 11.
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plot of x(n+1)= x(n)−(x(n)*x(n−1))/(x(n−1)+x(n−2))

Figure 4.

5.4. Fourth Equation

In this subsection, we study the following special case of Eq. (1.1)

xn+1 = xn −
xnxn−1

xn−1 − xn−2
, (5.4)

where the initial conditions x−2, x−1, x0 are arbitrary non zero real numbers.with
x−1 6= x0, x−1 6= x−2.

Theorem 5.4. Let {xn}∞n=−2 be a solution of Eq. (5.4). Then every solution of
Eq. (5.4) is periodic with period 6. Moreover {xn}∞n=−2 takes the form{

r, k, h,
hr

r − k
,

hkr

(h− k)(k − r)
,
hr

h− k
, r, k, h,

hr

r − k
,

hkr

(h− k)(k − r)
,
hr

h− k
, ...

}
.

Or

x6n−2 = r, x6n−1 = k, x6n = h, x6n+1 =
hr

r − k
,
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Figure 5.

x6n+2 =
hkr

(h− k)(k − r)
, x6n+3 =

hr

h− k
.

Proof. The proof is left to the reader.
Fig. 5 shows the solution of Eq. (5.4) when x−2 = 5, x−1 = 3, x0 = 2.
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[45] I. Yalçınkaya, On the global asymptotic stability of a second-order system of
difference equations, Discrete Dynamics in Nature and Society, 2008, Vol. 2008,
Article ID 860152, 12 pages. DOI: 10.1155/2008/ 860152.
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