
Journal of Applied Analysis and Computation Website:http://jaac.ijournal.cn

Volume 10, Number 1, February 2020, 267–281 DOI:10.11948/20190140

TRAVELING WAVES OF THE
(3+1)-DIMENSIONAL

KADOMTSEV-PETVIASHVILI-BOUSSINESQ
EQUATION∗

Lan Wang1, Yuqian Zhou1,†, Qian Liu2 and Qiuyan Zhang1

Abstract In this paper, the bifurcation theory of dynamical system is applied
to study the traveling waves of the (3+1)-dimensional Kadomtsev-Petviashvili-
Boussinesq (KP-Boussinesq) equation. By transforming the traveling wave
system of the KP-Boussinesq equation into a dynamical system in R3, we de-
rive various parameter conditions which guarantee the existence of its bounded
and unbounded orbits. Furthermore, by calculating complicated elliptic inte-
grals along these orbits, we obtain exact expressions of all possible traveling
wave solutions of the (3+1)-dimensional KP-Boussines equation.
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1. Introduction

Throughout the last several decades, many nonlinear partial differential equations
(NPDEs) have been put forward to model a wide variety of nonlinear phenome-
na in various fields such as plasma physics, nonlinear optics, fluid dynamics, solid
state physics, electromagnetic waves. As the first glimpse, traveling wave solution-
s (TWS) play vital roles in the study of NPDEs. From the mathematical point
of view, TWS can be well used to describe the long time behaviour of a nonlin-
ear partial differential equation. From the physical point of view, TWS is helpful
to understand the complicated nonlinear wave phenomena and wave propagation.
Especially, the soliton pulse, as an important class of traveling waves, indicates
a perfect balance between nonlinearity and dispersion effects and is investigated
widely [5–8,20,22].

This paper considers the following (3+1)-dimensional Kadomtsev-Petviashvili-
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Boussinesq (KP-Boussinesq) equation [23,25]

Uxxxy + 3(UxUy)x + Uty + Utx + Utt − Uzz = 0, (1.1)

where the real scalar function u = u(x, y, z, t) is the height of the wave at the
point (x, y, z) in R3 and time t. If the term utt is removed from equation (1.1), the
(3+1)-dimensional KP-Boussinesq equation reduces to the well known generalized
(3+1)-dimensional Kadomtsev-Petviashvili (KP) equation [17,23–25]

Uxxxy + 3(UxUy)x + Utx + Uty − Uzz = 0 (1.2)

which can be used to describe the growth of quasi-one dimensional shallow water
waves when the impact of surface tension and viscosity are minimal and is widely
applied in various physics fields such as the internal and surface oceanic waves,
ferromagnetics, nonlinear optics, Bose-Einstein condensation. Wazwaz [23] pointed
out that this slight change, by adding the term utt to the generalized (3+1)- dimen-
sional KP equation (1.2), would make a drastic impact on the dispersion relation
and the phase shift. Equation (1.1) can also be regarded as a new combination of
equation (1.2) and the following generalized Boussinesq equation [25]

Uxxxy + 3(UxUy)x + Utt − Uzz = 0.

Due to the Boussinesq structure added to this new model, the (3+1)-dimensional
KP-Boussinesq equation can model both right and left-going waves, as in the Boussi-
nesq equation [25]. In addition, equation (1.1) has some advantages when it is
applied to solve engineering problems. For example, during the research on the
dynamics of the water it can provide a much more precise approximation than the
KP equation and do not require any zero mass assumption [25].

In 2017, by applying a simplified Hirotas method to equation (1.1), Wazwaz [23]
derived its one and two-soliton solutions where the coefficients of the spatial vari-
ables were left as free parameters. Yu [25] used a direct bilinear Bäcklund transfor-
mation to present some classes of exponential and rational traveling wave solutions
with arbitrary wave numbers. Later, based on the Hirotas bilinear form, Kaur [10]
got exact lump solutions of equation (1.1) under some restriction conditions. Sub-
sequently, Verma and Kaur [19] explored that this equation could pass Painlevé test
and was completely integrable. With the Bell polynomials approach and novel test
function, they also constructed abundant new exact solutions in uniform manner.
With the Hirota method, Lü [16] got the lump solution, interaction solution and
breather-wave solution under certain constraints. Recently, by means of the Hirotas
bilinear method combined with the perturbation expansion, Sun [18] constructed
the general N-soliton solutions of the (3 +1)-dimensional KP-Boussinesq equation.

Although there are so many interesting results about the multi-soliton solutions
of the (3 +1)-dimensional KP-Boussinesq equation, we note that, for the single wave
solutions of this equation, only one type of exponential solution is given. It means
that many single wave solutions could be still missing. As shown in [7, 21–23], the
single wave solutions play important roles in constructing muti-soliton solutions.
So, in this paper, our aim is to seek all possible single wave solutions of equation
(1.1). In general, a traveling wave solution of a PDE usually corresponds to a orbit
of its traveling wave system [2, 9, 11]. It is just the fact that makes the bifurca-
tion theory of dynamical system [1, 3] become a powerful approach to investigate
traveling waves of a PDE. In recent decades, many works have been done in the
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field [4,12–15,26–29,31]. Motivated by them, our strategy is to transform the trav-
eling wave equation of equation (1.1) into a dynamical system in R3. Fortunately,
there exists a 2-dimensional invariant manifold which determines most of dynamical
behaviours. Then, bifurcation analysis is applied to seek the parameter bifurcation
sets which determine various qualitatively different phase portraits. According to
them, each orbit is identified clearly and investigated in detailed including bound-
ed and unbounded one. Finally, by calculating complicated elliptic integrals along
these orbits, we obtain analytic expressions of all traveling wave solutions of the (3
+1)-dimensional KP-Boussinesq equation without any loss. The obtained solution-
s well complement the types of traveling wave solutions of the (3+1)-dimensional
KP-Boussinesq equation and are helpful to understand the complicated nonlinear
wave phenomena and wave propagation, as well as help to construct more exact
solutions of this equation including the multi-soliton solutions.

2. Traveling wave system and bifurcation analysis

With the traveling wave transformation

U = U(t, x, y, z) = u(ξ) = u(x+ ay + bz − ct),

equation (1.1) can be converted into its traveling wave equation

au
′′′′

+ 3(a(u
′
)2)
′
− acu

′′
+ c2u

′′
− cu

′′
− b2u

′′
= 0, (2.1)

where ′ stands for d/dξ, a 6= 0 and b 6= 0 represent the wave numbers in the y and z
direction respectively and c 6= 0 is the wave speed. Integrating (2.1) once, we have

au
′′′

+ 3a(u
′
)2 − (ac− c2 + c+ b2)u

′
= e, (2.2)

where parameter e is the integral constant. Equation (2.2) has the following equiv-
alent form 

u
′

= v,

v
′

= y,

y
′

= −3v2 +
ac− c2 + c+ b2

a
v +

e

a
,

(2.3)

which is a dynamical system in R3. Obviously, system (2.3) has a 2-dimensional
invariant manifold in R3. Flows on it are governed by the last two equations in
system (2.3), i.e. 

v
′

= y,

y
′

= −3v2 +
ac− c2 + c+ b2

a
v +

e

a
,

(2.4)

which is exactly a Hamiltonian system with the energy function

H(v, y) =
1

2
y2 + v3 − 1

2
Av2 − e

a
v, (2.5)

where A = ac−c2+c+b2

a .

Firstly, we start with equilibria of system (2.4).
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Theorem 2.1. If A2 + 12e
a > 0, system (2.4) has a center B1(

A+
√
A2+ 12e

a

6 , 0) and a

saddle B2(
A−
√
A2+ 12e

a

6 , 0). If A2+ 12e
a = 0, system (2.4) has a unique cusp B3(A6 , 0).

If A2 + 12e
a < 0, system (2.4) has no equilibrium.

Proof. By the theory of dynamic system [1, 3, 30] and the method used in [26],
it is not difficult to check that system (2.4) has a center B1 and a saddle B2 if
A2 + 12e

a > 0, whereas it has no equilibrium if A2 + 12e
a < 0

If A2 + 12e
a = 0, system (2.4) has only one high order equilibrium B3(A6 , 0) with

the degenerate Jacobian matrix

M(B3) =

0 0

0 1

 .
In order to determine its type further, we make the following homeomorphic trans-
formation

ϕ = v − A

6
, ψ = y,

which converts system (2.4) into the equivalent form belowϕ
′

= ψ,

ψ
′

= akϕ
k[1 + p(ϕ)] + bnϕ

kψ[1 + q(ϕ)] + ψ2g(ϕ,ψ) = −3ϕ2.

According to the qualitative theory of differential equation [30, Theorem 7.3, Chap-
ter 2], we have k = 2, ak = −3 and bn = 0, which indicates that B3 is a cusp.

Next, we need to discuss global phase portraits of system (2.4) in different
parameter bifurcation sets {(a, b, c, e)|A2 + 12e

a > 0}, {(a, b, c, e)|A2 + 12e
a = 0} and

{(a, b, c, e)|A2 + 12e
a < 0}. According to the properties of Hamiltonian system [1]

and energy function (2.5), we have the following results.

Case 1. For A2 + 12e
a > 0, there is a homoclinic orbit γ connecting the saddle B2.

Inside the homoclinic loop γ ∪B2 there exists a family of periodic orbits

Γ(h) = {H(v, y) = h, h ∈ (h(B1), h(B2))},

which surround center B1, where

h(B1) =
−2A3 − (2A2 + 24e

a )
√
A2 + 12e

a −
36e
a A

216
,

h(B2) =
−2A3 + (2A2 + 24e

a )
√
A2 + 12e

a −
36e
a A

216
.

Moreover, Γ(h) tends to B1 as h→h(B1) and tends to γ as h→h(B2). Outside of
the homoclinic loop γ ∪B2, all orbits are unbounded, as shown in figure 1(a).

Case 2. For A2 + 12e
a = 0, all orbits of system (2.4) are unbounded. There are

two special orbits L2 and L2 which are different from others. The ω-limit set of L2

and the α-limit set of L2 correspond to the same equilibrium B3, as shown in figure
1(b).

Case 3. For A2 + 12e
a < 0, system (2.4) has only one type of orbits. All of them

are unbounded, as shown in figure 1(c).



Traveling Waves of the (3+1)-dimensional KP-Boussinesq equation 271

(a) A = 2, e
a = 1 (b) A = 6, e

a = −3 (c) A = 2, e
a = −1

Figure 1. The phase portraits of system (2.4) in different parameter bifurcation sets.

3. Exact solutions of system (2.4)

In this section, we try to seek explicit expressions of all solutions of system (2.4),
including bounded and unbounded ones.

3.1. Bounded solutions of system (2.4)

For A2 + 12e
a > 0, the bounded orbits of system (2.4) exist. They comprise of the

homoclinic orbit γ and the family of periodic orbits Γ(h) inside the homoclinic loop
γ ∪B2. Firstly, we consider the periodic orbits.

(B1) According to the energy function (2.5), any one of the periodic orbits Γ(h) can
be expressed by

y = ±
√

2
√

(v − v1)(v − v2)(v3 − v),

where v1, v2 and v3 are reals and satisfy the constraint condition v1 < v2 < v < v3.
Assuming that the period is 2T and choosing initial value v(0) = v2, we have∫ v

v2

dv√
2
√

(v − v1)(v − v2)(v3 − v)
=

∫ ξ

0

dξ, 0 < ξ < T,

−
∫ v2

v

dv√
2
√

(v − v1)(v − v2)(v3 − v)
=

∫ 0

ξ

dξ, − T < ξ < 0,

which can be rewritten as∫ v

v2

dv√
2
√

(v − v1)(v − v2)(v3 − v)
=| ξ |, − T < ξ < T.

By calculating the elliptic integral∫ v

v2

dv√
(v − v1)(v − v2)(v3 − v)

= g · sn−1(

√
(v3 − v1)(v − v2)

(v3 − v2)(v − v1)
, k),

where g = 2√
v3−v1

, k2 = v3−v2
v3−v1 , we get the expression of periodic solution of system

(2.4)

vb1(ξ) = v1 +
(v2 − v1)(v3 − v1)

(v3 − v1)− (v3 − v2)sn2(
√

v3−v1
2 ξ)

, − T < ξ < T.
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(B2) Similarly, the homoclinic orbit γ can be expressed by

y = ±
√

2
√

(v − v4)2(v5 − v),

where v4 =
A−
√
A2+ 12e

a

6 and v5 =
A+2
√
A2+ 12e

a

6 satisfy the condition that v4 < v <
v5. Choosing v(0) = v5, we have∫ v5

v

dv√
2(v − v4)

√
v5 − v

=

∫ 0

ξ

dξ, ξ < 0,

−
∫ v

v5

dv√
2(v − v4)

√
v5 − v

=

∫ ξ

0

dξ, ξ > 0,

which can be rewritten as∫ v

v5

dv√
2(v − v4)

√
v5 − v

= − | ξ |, −∞ < ξ < +∞.

Noting that ∫ v

v5

dv

(v − v4)
√
v5 − v

=
1√

v5 − v4
ln

√
v5 − v4 −

√
v5 − v√

v5 − v4 +
√
v5 − v

,

we get the bell-shaped bounded solution of the system (2.4)

vb2(ξ) = v5 −
(v5 − v4)(1− exp(

√
2(v5 − v4)|ξ|))2

(1 + exp(
√

2(v5 − v4)|ξ|))2
, −∞ < ξ < +∞. (3.1)

It is not difficult to check that expression (3.1) can be further simplified to

vb2(ξ) = v5 −
(v5 − v4)(1− exp(

√
2(v5 − v4)ξ))2

(1 + exp(
√

2(v5 − v4)ξ))2
, −∞ < ξ < +∞. (3.2)

3.2. Unbounded solutions of system (2.4)

Except the homoclinic orbit and periodic orbits, all orbits of system (2.4) are un-
bounded. We need to discuss them in three cases.

(I) First of all, we start with the case that A2 + 12e
a > 0. This case incudes five

subcases (U1-U5) according to different level curves of energy function (2.5).

(U1) Consider the first type of unbounded orbits Γ2 and Γ2 as shown in figure 1(a),
whose energy is equal to the energy of the saddle B2, as well as the energy of the
homoclinic orbit γ. They can be expressed respectively by

y = ±
√

2
√

(v4 − v)2(v5 − v),

where −∞ < v < v4 < v5. Firstly, we take Γ2 for example to calculate its corre-
sponding solution. Given initial value v(0) = −∞, we have∫ v

−∞

dv√
2(v4 − v)

√
v5 − v

=

∫ ξ

0

dξ, ξ > 0.
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Noting that∫ v

−∞

dv

(v4 − v)
√
v5 − v

= − 1√
v5 − v4

ln

√
v5 − v −

√
v5 − v4√

v5 − v +
√
v5 − v4

,

we get the expression of the first type of unbounded solution of system (2.4)

vu1(ξ) = v5 −
(v5 − v4)(1 + exp(

√
2(v5 − v4)ξ))2

(1− exp(
√

2(v5 − v4)ξ))2
, ξ > 0. (3.3)

For orbit Γ2, similar calculation can be used to derive its corresponding un-
bounded solution. One can check that it has the same form as vu1(ξ).

(U2) Consider the second type of unbounded orbits, for example Γ3 shown in figure
1(a), whose energy is lower than energy of saddle B2, but higher than energy of
center B1. Any one of them can be expressed by

y = ±
√

2
√

(v6 − v)(v7 − v)(v8 − v),

where v6, v7, v8 are reals and relationship −∞ < v < v6 < v7 < v8 holds. Similar to
the discussion in (U1), we only need to consider the upper branch of Γ3. Choosing
v(0) = −∞, we have∫ v

−∞

dv√
(v6 − v)(v7 − v)(v8 − v)

=

∫ ξ

0

dξ, ξ > 0.

By calculating the elliptic integral∫ v

−∞

dv√
(v6 − v)(v7 − v)(v8 − v)

= g · sn−1(

√
(v8 − v6)

(v8 − v)
, k),

where g = 2√
v8−v6

, k2 = v8−v7
v8−v6 , we get the second type of unbounded solution of

system (2.4)

vu2(ξ) = v8 −
v8 − v6

sn2(
√

v8−v6
2 ξ)

, 0 < ξ < ξ1, (3.4)

where ξ1 = 2
√

2√
v8−v6

·
∫ π

2

0
dθ√

1− v8−v7v8−v6
·sin2 θ

.

(U3) Consider the unbounded orbit Γ4 shown in figure 1(a), whose energy is equal
to energy of center B1. It can be expressed by

y = ±
√

2
√

(v10 − v)2(v9 − v),

where v9 =
A−2
√
A2+ 12e

a

6 and v10 =
A+
√
A2+ 12e

a

6 are reals and relationship −∞ <
v9 < v10 holds. Similarly, taking the upper branch of Γ4 and choosing the initial
value v(0) = −∞, we have the following integral expression∫ v

−∞

dv√
2(v10 − v)

√
(v9 − v)

=

∫ ξ

0

dξ, ξ > 0.

Noting that∫ v

−∞

dv

(v10 − v)
√

(v9 − v)
=

1√
v10 − v9

(π − arctan

√
v9 − v
v10 − v9

),
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we get the third type of unbounded solution of system (2.4)

vu3(ξ) = v9 − (v10 − v9) tan2(
√

2(v10 − v9)ξ), 0 < ξ < ξ2, (3.5)

where ξ2 = π√
2(v10−v9)

.

(U4) Consider the fourth type of unbounded orbits, for example Γ5 shown in figure
1(a), whose energy is lower than energy of center B1. Any one of them has the form

y = ±
√

2

√
(v11 − v)[v2 + (v11 −

1

2
A)v + (v2

11 −
1

2
Av11 −

e

a
)],

where −∞ < v < v11 < v9. Taking v(0) = −∞, we have∫ v

−∞

dv
√

2
√

(v11 − v)[v2 + (v11 − 1
2A)v + (v2

11 − 1
2Av11 − e

a )]
=

∫ ξ

0

dξ, ξ > 0.

By calculating the elliptic integral∫ v

−∞

dv√
(v11 − v)[v2 + (v11 − 1

2A)v + (v2
11 − 1

2Av11 − e
a )]

= g·sn−1(
v11 −B − v
v11 +B − v

, k),

where B2 = 3v2
11 − Av11 − e

a , g = 1√
B

and k2 = 4B+6v11−A
8B . We can get the fourth

unbounded solution of system (2.4)

vu4(ξ) =v11 +

√
3v2

11 −Av11 −
e

a

−
2
√

3v2
11 −Av11 − e

a

1− cn( 4

√
12v2

11 − 4Av11 − 4e
a ξ)

, 0 < ξ < ξ3,

(3.6)

where ξ3 = 4
4
√

12v211−4Av11− 4e
a

·
∫ π

2

0

dθ√
1− 4

√
3v211−Av11−

e
a+6v11−A

8
√

3v211−Av11−
e
a

· sin2 θ

.

(U5) Consider the fifth type of unbounded orbits, for example Γ6 shown in figure
1(a), whose energy is higher than energy of saddle B2. Any one of them can be
expressed by

y = ±
√

2

√
(v12 − v)[v2 + (v12 −

1

2
A)v + (v2

12 −
1

2
Av12 −

e

a
)],

where v12 >
A+2
√
A2+ 12e

a

6 and relationship −∞ < v < v12 holds. Choosing v(0) =
−∞, we have∫ v

−∞

dv
√

2
√

(v12 − v)[v2 + (v12 − 1
2A)v + (v2

12 − 1
2Av12 − e

a )]
=

∫ ξ

0

dξ, ξ > 0.
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By similar calculation to that in subcase (U4), we get the fifth unbounded solution
of system (2.4)

vu5(ξ) =v12 +

√
3v2

12 −Av12 −
e

a

−
2
√

3v2
12 −Av12 − e

a

1− cn( 4

√
12v2

12 − 4Av12 − 4e
a ξ)

, 0 < ξ < ξ4,

(3.7)

where ξ4 = 4
4
√

12v212−4Av12− 4e
a

·
∫ π

2

0

dθ√
1− 4

√
3v212−Av12−

e
a+6v12−A

8
√

3v212−Av12−
e
a

· sin2 θ

.

(II) Next, we discuss the case that A2+ 12e
a = 0. This case includes two subcases

(U6-U7) according to different level curves of energy function.

(U6) Consider the orbits L2 and L2 shown in figure 1(b), whose energy is equal to
energy of the cusp B3, which can be expressed by

y = ±
√

2(
A

6
− v)

√
A

6
− v,

where −∞ < v < A
6 . Similarly, we only need to discuss the orbit L2. choosing

v(0) = −∞, we have∫ v

−∞

dv
√

2(A6 − v)
√

A
6 − v

=

∫ ξ

0

dξ, ξ > 0.

By a direct calculation, we get the sixth unbounded solution of system (2.4)

vu6(ξ) =
A

6
− 2

ξ2
, ξ > 0. (3.8)

(U7) Consider other unbounded orbits, for example L1 and L3 shown in figure 1(b),
which can be uniformly expressed by

y = ±
√

2

√
(v13 − v)[v2 + (v13 −

1

2
A)v + (v2

13 −
1

2
Av13 −

e

a
)],

where −∞ < v < v13 and v13 6= A
6 . Choosing v(0) = −∞, we have∫ v

−∞

dv
√

2
√

(v13 − v)[v2 + (v13 − 1
2A)v + (v2

13 − 1
2Av13 − e

a )]
=

∫ ξ

0

dξ, ξ > 0.

A direct calculation leads to the seventh unbounded solution of system (2.4)

vu7(ξ) =v13 +

√
3v2

13 −Av13 −
e

a

−
2
√

3v2
13 −Av13 − e

a

1− cn( 4

√
12v2

13 − 4Av13 − 4e
a ξ)

, 0 < ξ < ξ5,

(3.9)
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where ξ5 = 4
4
√

12v213−4Av13− 4e
a

·
∫ π

2

0

dθ√
1− 4

√
3v213−Av13−

e
a+6v13−A

8
√

3v213−Av13−
e
a

· sin2 θ

.

(III) Finally, we discuss the case that A2 + 12e
a < 0.

(U8) In this case, system (2.4) has only one type of unbounded orbits. Any one of
them can be expressed by

y = ±
√

2

√
(v14 − v)[v2 + (v14 −

1

2
A)v + (v2

14 −
1

2
Av14 −

e

a
)],

where −∞ < v < v14. Choosing v(0) = −∞, we have∫ v

−∞

dv
√

2
√

(v14 − v)[v2 + (v14 − 1
2A)v + (v2

14 − 1
2Av14 − e

a )]
=

∫ ξ

0

dξ, ξ > 0.

Thus, we obtain the last type of unbounded solutions of system (2.4)

vu8(ξ) =v14 +

√
3v2

14 −Av14 −
e

a

−
2
√

3v2
14 −Av14 − e

a

1− cn( 4

√
12v2

14 − 4Av14 − 4e
a ξ)

, 0 < ξ < ξ6,

(3.10)

where ξ6 = 4
4
√

12v214−4Av14− 4e
a

·
∫ π

2

0

dθ√
1− 4

√
3v214−Av14−

e
a+6v14−A

8
√

3v214−Av14−
e
a

· sin2 θ

.

4. Traveling wave solutions of equation (1.1)

According to the relationship between (2.3) and (2.4), we can get the traveling wave
solutions u(ξ) of equation (1.1) by integrating the obtained solutions of system (2.4)
with respect to ξ.

(S1) For system (2.4), any one of the periodic orbits can be expressed by

vb1(ξ) = v1 +
(v2 − v1)(v3 − v1)

(v3 − v1)− (v3 − v2)sn2(
√

v3−v1
2 ξ)

, − T < ξ < T.

Noting that ∫
du

1± k · sn(u)
=

1

k′2
[E(u) + k(1∓ k · sn(u))cd(u)],

where k′ =
√

1− k2, we calculate the first type of traveling wave solution of equation
(1.1) as follows

u1(ξ) =

∫
vb1(ξ)dξ =

∫
[v1 +

(v2 − v1)(v3 − v1)

(v3 − v1)− (v3 − v2)sn2(
√

v3−v1
2 ξ)

]dξ
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=

∫
[v1 +

v2 − v1

1− v3−v2
v3−v1 · sn

2(
√

v3−v1
2 ξ)

]dξ

=

∫
[v1 +

v2 − v1

1− k2 · sn2(
√

v3−v1
2 ξ)

]dξ

=

∫
{v1 +

v2 − v1

2
[

1

1− k · sn(
√

v3−v1
2 ξ)

+
1

1 + k · sn(
√

v3−v1
2 ξ)

]}dξ

= v1 · ξ +
√

2(v3 − v1)[E(

√
v3 − v1

2
ξ) +

√
v3 − v2

v3 − v1
· cd(

√
v3 − v1

2
ξ)] + C1,

where −T < ξ < T and C1 is a constant.

(S2) Integrating (3.2) directly, we get the second type of traveling wave solution of
equation (1.1)

u2(ξ)=

∫
vb2(ξ)dξ

=

∫
[v5 −

(v5 − v4)(1− exp(
√

2(v5 − v4)ξ))2

(1 + exp(
√

2(v5 − v4)ξ))2
]dξ

=v5 ·ξ+

√
v5−v4

2
[

√
2(v5−v4)ξ−exp(

√
2(v5−v4)ξ)+ 1

2exp(2
√

2(v5−v4)ξ)

1+exp(
√

2(v5−v4)ξ)
]+C2,

where −∞ < ξ <∞ and C2 is a constant.

(S3) Integrating (3.3), we get the third type of traveling wave solution of equation
(1.1)

u3(ξ)=

∫
vu1(ξ)dξ

=

∫
[v5 −

(v5 − v4)(1 + exp(
√

2(v5 − v4)ξ))2

(1− exp(
√

2(v5 − v4)ξ))2
]dξ

=v5 ·ξ+

√
v5−v4

2
[

√
2(v5−v4)ξ+exp(

√
2(v5−v4)ξ)+ 1

2exp(2
√

2(v5−v4)ξ)

1−exp(
√

2(v5−v4)ξ)
]+C3,

where ξ > 0 and C3 is a constant.

(S4) Integrating (3.4) leads to

u4(ξ) =

∫
vu2(ξ)dξ =

∫
[v8 −

v8 − v6

sn2(
√

v8−v6
2 ξ)

]dξ.

From the fact that∫
du

sn2(u)
=

∫
ns2(u)du = u− E(u)− dn(u) · cs(u),

we have the fourth type of traveling wave solution of equation (1.1)

u4(ξ) = v6 ·ξ+
√

2(v8 − v6)[E(

√
v8 − v6

2
ξ)+dn(

√
v8 − v6

2
ξ) ·cs(

√
v8 − v6

2
ξ)]+C4,
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where 0 < ξ < ξ1 and C4 is a constant.

(S5) Integrating (3.5) directly, we get the fifth type of traveling wave solution of
equation (1.1)

u5(ξ) =

∫
vu3(ξ)dξ

=

∫
[v9 − (v10 − v9) tan2(

√
2(v10 − v9)ξ)]dξ

=v10 · ξ −
√
v10 − v9

2
tan(

√
2(v10 − v9)ξ) + C5,

where 0 < ξ < ξ2 and C5 is a constant.

(S6) Integrating (3.6) leads to

u6(ξ) =

∫
vu4(ξ)dξ

=

∫
[v11 +

√
3v2

11 −Av11 −
e

a
−

2
√

3v2
11 −Av11 − e

a

1− cn( 4

√
12v2

11 − 4Av11 − 4e
a )

]dξ.

Noting that ∫
du

1− cn(u)
= u− E(u)− dn(u) · sn(u)

1− cn(u)
,

we have the sixth type of traveling wave solution of equation (1.1)

u6(ξ)=(v11−
√

3v2
11−Av11−

e

a
)ξ+

4

√
12v2

11−4Av11−
4e

a
[E(

4

√
12v2

11−4Av11−
4e

a
ξ)

+
dn( 4

√
12v2

11 − 4Av11 − 4e
a ξ)sn( 4

√
12v2

11 − 4Av11 − 4e
a ξ)

1− cn( 4

√
12v2

11 − 4Av11 − 4e
a ξ)

] + C6,

where 0 < ξ < ξ3 and C6 is a constant.

(S7) Integrating (3.7), we get the seventh type of traveling wave solution of equation
(1.1)

u7(ξ) =

∫
vu5(ξ)dξ

=

∫
[v12 +

√
3v2

12 −Av12 −
e

a
−

2
√

3v2
12 −Av12 − e

a

1− cn( 4

√
12v2

12 − 4Av12 − 4e
a )

]dξ.

= (v12−
√

3v2
12−Av12−

e

a
)ξ+

4

√
12v2

12−4Av12−
4e

a
[E(

4

√
12v2

12−4Av12−
4e

a
ξ)

+
dn( 4

√
12v2

12 − 4Av12 − 4e
a ξ)sn( 4

√
12v2

12 − 4Av12 − 4e
a ξ)

1− cn( 4

√
12v2

12 − 4Av12 − 4e
a ξ)

] + C7,

where 0 < ξ < ξ4 and C7 is a constant.
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(S8) Integrating (3.8) directly leads to the eighth type of traveling wave solution of
equation (1.1)

u8(ξ) =

∫
vu6(ξ)dξ =

∫
(
A

6
− 2

ξ2
)dξ =

A

6
· ξ +

2

ξ
+ C8,

where ξ > 0 and C8 is a constant.

(S9) Integrating (3.9), we get the ninth type of traveling wave solution of equation
(1.1)

u9(ξ) =

∫
vu7(ξ)dξ

=

∫
[v13 +

√
3v2

13 −Av13 −
e

a
−

2
√

3v2
13 −Av13 − e

a

1− cn( 4

√
12v2

13 − 4Av13 − 4e
a )

]dξ.

= (v13−
√

3v2
13−Av13−

e

a
)ξ+

4

√
12v2

13−4Av13−
4e

a
[E(

4

√
12v2

13−4Av13−
4e

a
ξ)

+
dn( 4

√
12v2

13 − 4Av13 − 4e
a ξ)sn( 4

√
12v2

13 − 4Av13 − 4e
a ξ)

1− cn( 4

√
12v2

13 − 4Av13 − 4e
a ξ)

] + C9,

where 0 < ξ < ξ5 and C9 is a constant.

(S10) At last, integrating (3.10), we get the tenth type of traveling wave solution of
equation (1.1)

u10(ξ) =

∫
vu8(ξ)dξ

=

∫
[v14 +

√
3v2

14 −Av14 −
e

a
−

2
√

3v2
14 −Av14 − e

a

1− cn( 4

√
12v2

14 − 4Av14 − 4e
a )

]dξ.

= (v14−
√

3v2
14−Av14−

e

a
)ξ+

4

√
12v2

14−4Av14−
4e

a
[E(

4

√
12v2

14−4Av14−
4e

a
ξ)

+
dn( 4

√
12v2

14 − 4Av14 − 4e
a ξ)sn( 4

√
12v2

14 − 4Av14 − 4e
a ξ)

1− cn( 4

√
12v2

14 − 4Av14 − 4e
a ξ)

] + C10,

where 0 < ξ < ξ6 and C10 is a constant.

5. Discussion and conclusion

In this paper, we investigate traveling wave system of the (3+1)-dimensional KP-
Boussinesq equation. Although it is a high dimensional dynamical system, we find
that there exists a 2-dimensional invariant manifold which makes it possible to com-
pletely investigate all bounded and unbounded orbits of it by detailed analysing the
phase space geometry. By dynamical system methods and theory of elliptic integral,
we obtain all single wave solutions of this equation without any loss. The strategy
used in this paper can be applied to other similar high dimensional nonlinear wave
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field. The obtained solution are helpful to understand nonlinear wave phenomena
and wave propagation in high dimensional space, as well as facilitate the verification
of numerical solutions. More importantly, as shown in [7, 19, 21–23], one can com-
bine them with other types of solutions to construct more exact solution including
the muti-soliton solutions.
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