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OSCILLATION BEHAVIOR OF SOLUTION OF
IMPULSIVE FRACTIONAL DIFFERENTIAL

EQUATION∗

Limei Feng1 and Zhenlai Han1,†

Abstract In this paper, we study the oscillation of impulsive Caputo frac-
tional differential equation. Sufficient conditions for the asymptotic and oscil-
lation of the equation are obtained by using the inequality principle and Bihari
Lemma. An example is given to illustrate the results. This is the first time to
study the oscillation of impulsive fractional differential equation with Caputo
derivative.
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1. Introduction

Fractional differential equations appear more and more frequently in various re-
search areas, such as in modeling mechanical and electrical properties of real mate-
rials, as well as in rheological theory and other physical problems, see [1, 7, 9]. For
articles on the oscillation of fractional differential equations, readers can refer to
literatures [4, 14,15,17–19].

Meanwhile, many evolution processes are subject to short term perturbations
whose durations are negligible in comparison with the duration of the processes.
Consequently, it is natural to assume that these perturbations act instantaneously,
that is, act in the form of impulses. Due to the intensive development about the
theory of impulsive differential equations and fractional calculus and their widely
applications in diverse fields, impulsive fractional differential equations have become
a new hot topic. Very recently, more and more researchers show great interest in
the field of impulsive problems for fractional differential equations, see [6,11,13,16].

Because of the difficulties caused by impulsive perturbations, only a small amoun-
t of literature have been done on the oscillation of impulsive fractional differential
equations.

In 2016, Jessada Tariboon and Sotiris K. Ntouyas [12] investigated oscillation re-
sults for the solutions of impulsive fractional differential equations with conformable
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derivative of the form{
tkD

α(p(t)[tkD
αx(t) + r(t)x(t)]) + q(t)x(t) = 0, t > t0, t 6= tk, α ∈ (1, 2),

x(t+k ) = akx(t−k ), tkD
αx(t+k ) = bktk−1

Dαx(t−k ), k = 1, 2, ....

They obtained some new oscillatory results by using the equivalence transformation
and the associated Riccati techniques.

The definition of conformable derivative is only related to the limit form and
is similar to form of integer derivative. Therefore, the methods for oscillation of
integer differential equation can be applied to conformable derivative only through
a simple transformation. There are still some gaps between conformable derivative
and classical fractional derivative.

In 2017, A. Raheem, Md. Maqbul [10] considered the oscillatory behavior of
solutions on the differential equation with Riemann-Liouville fractional derivative,
for t 6= tj

Dβ
+,tu(x, t) + a(t)Dβ−1

+,t u(x, t) = b(t)∆u(x, t) +
m∑
k=1

ck(t)∆u(x, t− τk)− F (x, t),

under the impulsive condition

Dβ−1
+,t u(x, t+j )−Dβ−1

+,t u(x, t−j ) = σ(x, tj)D
β−1
+,t u(x, tj), j = 1, 2, ..., (x, t) ∈ Ω× R+.

With two kind of boundary conditions

∂u(x, t)

∂N
+ f(x, t)u(x, t) = 0, (x, t) ∈ ∂Ω× R+, t 6= tj

and
u(x, t) = 0, (x, t) ∈ ∂Ω× R+, t 6= tj ,

where a, b, ck ∈ PC[R+,R+], forcing term F ∈ PC[Ω × R+,R+], f ∈ PC[∂Ω,R+],
and PC denotes the class of functions which are piecewise continuous functions in
t with discontinuities of first kind only at t = tj , j = 1, 2, ... and left continuous at
t = tj , β ∈ (1, 2) is a constant, ∆ is the Laplacian operator in Rn, Ω is a bounded
domain in Rn with a smooth boundary ∂Ω, Ω = Ω ∪ ∂Ω, N is the unit out normal
vector to ∂Ω.

The ingenuity of impulsive fractional partial differential is that the equation has
two variables. Impulse phenomenon occurs on the variable t, and the equation is
still continuous for the variable x. And the authors skillfully solved the problem of
discontinuity at the impulse points by using the boundary condition.

In 2019, Mouffak Benchohra, Samira Hamani and Yong Zhou [3] dealt with
the existence of oscillatory and nonoscillatory solutions for the following class of
initial value problems for impulsive fractional differential with Caputo–Hadamard
derivative inclusion,

HcDα
tk
y(t) ∈ F (t, y(t)), t ∈ J = (tk, tk+1),

y(t+k ) = Ik(y(t−k )), k = 1, 2, ...,

y(1) = y∗.

By using the concept of upper and lower solutions and the fixed point theorem, the
authors obtained the existence theorems of oscillatory and non-oscillatory solutions
of the above equation.
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Motivated by the above papers, we consider the oscillatory behavior of solutions
of following fractional impulsive differential equation

cDα
ax(t)=e(t)+f(t, x(t)), a>1, t∈J ′ :=J/{t1, ..., tm}, J :=[a,∞),

∆x(tk) = yk, ∆x′(tk) = ȳk, k = 1, 2, ...,

x(a) = x0, x
′(a) = x̄,

(1.1)

where cDα
a is the Caputo derivative of the order α ∈ (1, 2), x0, x̄, yk, ȳk ∈ R,

tk satisfy a = t0 < t1 < ... < tm → ∞ as m → ∞. ∆u(tk) = u(t+k ) − u(t−k ) with
u(t+k ) = lim

ε→0+
u(tk+ε) and u(t−k ) = lim

ε→0−
u(tk+ε) represent the right and left limits

of u(t) at t = tk,
The purpose of this paper is to study the oscillation of impulsive fractional dif-

ferential equation. We analyze the integral expression of (1.1) to obtain oscillatory
sufficient condition for (1.1). Since this is the first study of oscillation of impulsive
fractional differential equation with Caputo derivative, we choose a relatively simple
impulsive condition,

∆x(tk) = yk, ∆x′(tk) = ȳk, k = 1, 2, ...,

which has the advantage of getting the expression of the solution. Although the
central idea of our method is similar to Grace [5], the detailed technique is different
from the one given in [5].

This paper is structured as follows. In Section 2, we present necessary notation,
lemma and definition. In Section 3, we state and prove our main results. At last,
one illustrative example are proposed.

2. Preliminaries

In this section, we will present some necessary knowledge and notation.

Lemma 2.1 (Lemma 2.6, [8]). Let β, γ and p be positive constants such that [p(β−
1) + 1] > 0, p(γ − 1) + 1 > 0. Then∫ t

0

(t− s)p(β−1)sp(γ−1)ds = tθB(p(γ − 1) + 1, p(β − 1) + 1), t > 0,

where B(·, ·) is Beta function of form

B(ξ, η) =

∫ 1

0

sξ−1(1− s)η−1ds,

ξ > 0, η > 0 and θ = p(β + γ − 2) + 1.

Lemma 2.2 (Lemma 3.1, [13]). Let α ∈ (1, 2) and {e(s) + f(s, x(s))} : J → R be
continuous. A function x given by

x(t) =



1
Γ(α)

∫ t
a
(t− s)α−1[e(s) + f(s, x(s))]ds+ x0 + x̄0(t− a), for t ∈ [t0, t1],

1
Γ(α)

∫ t
a
(t− s)α−1[e(s) + f(s, x(s))]ds

+
k∑
i=1

ȳi(t− ti) +
k∑
i=1

yi + x0 + x̄0(t− a), for t ∈ (tk, tk+1], k = 1, 2, ...

(2.1)
is the equivalent form of equation (1.1).
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We can easily see that

x′(t) =



1
Γ(α−1)

∫ t
0
(t− s)α−2[e(s) + f(s, x(s))]ds+ x̄0, for t ∈ [t0, t1],

1
Γ(α−1)

∫ t
0
(t− s)α−2[e(s) + f(s, x(s))]ds

+
k∑
i=1

ȳit+ x̄0, for t ∈ (tk, tk+1], k = 1, 2, ....

As usual, a solution is called oscillatory if it is neither eventually positive nor
eventually negative. Otherwise, it is said to be nonoscillatory. In other words, a
solution is said to be oscillatory if there exists an increasing divergent sequence
{ξk}k∈N ⊂ [θ0,∞) such that x(ξ+

k )x(ξ−k ) 6 0 for all k ∈ N.

3. Main results

We are now in a position to state and prove our main results .

Theorem 3.1. Suppose that 1 < α < 2, p > 1, γ > 0, p(α−2)+1 > 0, p(γ−1)+1 >
0, q = p

p−1 , and the function e(t) : J → R is continuous such that

1

t

∫ t

a

(t− s)α−1|e(s)|ds is bounded for all t > a (3.1)

and the function f(t, x) satisfies the following conditions.

(i) f(t, x) is continuous in D = {(t, x) : t ∈ J, x ∈ R}.
(ii) There are continuous nonnegative functions g, h : R+ := [a,∞) → R+, g is

nondecreasing and let 0 < γ 6 3− α− 1/p such that

|f(t, x)| 6 tγ−1h(t)g(
|x|
t

), t > a, (t, x) ∈ D, (3.2)

and ∫ ∞
a

sθq/phq(s)ds <∞, (3.3)

where θ := p(α+ γ − 3) + 1 6 0.

(iii) ∫ ∞
a

dη

gq(η)
→∞. (3.4)

The impulsive points meet the following condition.

(iv) There is a constant M such that

|
k∑
i=1

ȳi| < M, |
k∑
i=1

yi| < M, k = 1, 2, .... (3.5)
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If x(t) is a solution of (1.1), then

lim sup
t→∞

|x(t)|
t

<∞. (3.6)

Proof. We obtain from (2.1) that

|x(t)| 6 |x0|+ |x̄0|(t− a) +
1

Γ(α)

∫ t

a

(t− s)α−1|e(s)|ds+ |
k∑
i=1

ȳi|t+ |
k∑
i=1

yi|

+
1

Γ(α)

∫ t

a

(t− s)α−1|f(s, x(s))|ds, t ∈ (tk, tk+1].

Then by applying condition (3.2), we have

|x(t)| 6 |x0|+ |x̄0|(t− a) +
1

Γ(α)

∫ t

a

(t− s)α−1|e(s)|ds+ |
k∑
i=1

ȳi|t+ |
k∑
i=1

yi|

+
1

Γ(α)

∫ t

a

(t− s)α−1sγ−1h(s)g

(
|x(s)|
s

)
ds, t ∈ (tk, tk+1].

From (3.1), we obtain 1
t

∫ t
a
(t−s)α−1|e(s)|ds 6 c for all t > a, where d is a constant.

Let C(k) = |x0|+ |x̄0|+ |
k∑
i=1

ȳi|+ |
k∑
i=1

yi|+ c
Γ(α) . We have

|x(t)| 6 C(k)t+
1

Γ(α)

∫ t

a

(t− s)α−1sγ−1h(s)g

(
|x(s)|
s

)
ds

6 C(k)t+
1

Γ(α)
(t− a)

∫ t

a

(t− s)α−2sγ−1h(s)g

(
|x(s)|
s

)
ds, t ∈ (tk, tk+1].

This yields the inequality

|x(t)|
t

6 C(k) +
1

Γ(α)

∫ t

a

(t− s)α−2sγ−1h(s)g

(
|x(s)|
s

)
ds, t ∈ (tk, tk+1]. (3.7)

If we denote that z(t) is the right side of the inequality (3.7). We obtain the
inequality

|x(t)|
t

6 z(t, k), t ∈ (tk, tk+1]. (3.8)

Since the function g is nondecreasing, the inequality (3.8) yields

g

(
|x(t)|
t

)
6 g(z(t, k)), t ∈ (tk, tk+1],

and from definition of z(t, k) we get

z(t, k) 6 1 + C(k) +
1

Γ(α)

∫ t

a

(t− s)β−1sγ−1h(s)g (z(s, k)) ds, t ∈ (tk, tk+1],

(3.9)
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where 0 < β = α− 1 < 1.
Applying Hölders inequality and Lemma 2.1, we obtain∫ t

a

(t− s)β−1sγ−1h(s)g (z(s, k)) ds

6

(∫ t

a

(t− s)p(β−1)sp(γ−1)ds

)1/p(∫ t

a

hq(s)gq (z(s, k)) ds

)1/q

6

(∫ t

0

(t− s)p(β−1)sp(γ−1)ds

)1/p(∫ t

a

hq(s)gq (z(s, k)) ds

)1/q

6 (Btθ)1/p

(∫ t

a

hq(s)gq (z(s, k)) ds

)1/q

, t ∈ (tk, tk+1],

where B := B(p(γ − 1) + 1, p(β − 1) + 1), θ = p(α+ γ − 3) + 1 6 0. Using the fact
that θ 6 0 and t > s > a, we have∫ t

a

(t− s)β−1sγ−1h(s)g (z(s, k)) ds

6 B1/p

(∫ t

a

sθq/phq(s)gq (z(s, k)) ds

)1/q

, t ∈ (tk, tk+1].

(3.10)

Using (3.10) and the elementary inequality

(x+ y)q 6 2q−1(xq + yq), x, y > 0, q > 1.

For t ∈ (tk, tk+1], we obtain from (3.9) that

zq(t, k) 6 2q−1

(
(1 + C(k))q + (B1/p 1

Γ(α)
)q
∫ t

a

sθq/phq(s)gq (z(s, k)) ds

)
.

If we denote P1(k) = 2q−1[(1 + C(k))q], Q1 = 2q−1(B1/p 1
Γ(α) )q, then

zq(t, k) 6 P1(k) +Q1

∫ t

a

sθq/phq(s)gq(z(s, k))ds, t ∈ (tk, tk+1].

Denote

w(η) = gq(η),

G(ξ) =

∫ ξ

zk

dη

w(η)
, zk = z(t+k , k). (3.11)

Since G(z(t, k)) =
∫ z(t,k)

zk

dη
gq(η) , condition (iii) implies that lim

z(t,k)→∞
G(z(t, k)) =∞,

then by the Bihari Lemma [2] we get

zq(t, k)6K(k) :=G−1

(
G(P1(k))+Q1

∫ t

a

sθq/phq(s)ds

)
, t ∈ (tk, tk+1], k = 1, 2, ....
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Because of condition (iv) and boundedness of P1(k). Hence from (ii) and (3.11) we
conclude K(k), k = 1, 2, ... is bounded. Then

zq(t, k) 6 K = sup
k>1

K(k), t > t1, k = 1, 2, ....

We obtain that z(t, k) 6 K1/q, and from (3.8), we have

|x(t)|
t

6 K1/q, t > t1.

We conclude that

lim sup
t→∞

|x(t)|
t

<∞.

This completes the proof.

Remark 3.1. We note that Theorem 3.1 remains valid if g(z) = z. In this case
condition (3.4) is automatically fulfilled. Also, when 0 < γ = 3− α − 1/p we have
θ := p(α+ γ − 3)− 1 = 0.

Theorem 3.2. Let the constants α, p, q, γ and θ be defined as is in Theorem 3.1,
conditions (3.1)-(3.5) hold. If for any constant d̄ ∈ (MΓ(α) + x̄0Γ(α), 1 +MΓ(α) +
x̄0Γ(α)),

lim inf
t→∞

[
d̄t+

∫ t

a

(t− s)α−1e(s)ds

]
= −∞ (3.12)

or

lim sup
t→∞

[
d̄t+

∫ t

a

(t− s)α−1e(s)ds

]
=∞, (3.13)

then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1). We may assume that x(t) >
0 for all t > c0 for some c0 > a. Because of Theorem 3.1 and (3.3), we have

lim
t→∞

∫ ∞
t

sθq/phq(s)gq
(
x(s)

s

)
ds = 0.

So there is c1 > c0 that satisfies

0 <

∫ ∞
c1

sθq/phq(s)gq
(
x(s)

s

)
ds < 1. (3.14)

Without loss of generality, we can assume that a 6 c0 6 c1 < t1.
Proceeding similarly to the proof of Theorem 3.1, we obtain

x(t) 6 x0 + x̄0(t− a) +
1

Γ(α)

∫ t

a

(t− s)α−1e(s)ds+

k∑
i=1

ȳit+

k∑
i=1

yi

+
1

Γ(α)

∫ t

a

(t− s)α−1f(s, x(s))ds, t ∈ (tk, tk+1], k > 1.
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Using condition (3.2) in the above equation, we have

x(t) 6 x0+x̄0(t−a)+
1

Γ(α)

∫ t

a

(t− s)α−1e(s)ds+
1

Γ(α)

∫ c1

a

(t− s)α−1f(s, x(s))ds

+

k∑
i=1

ȳit+

k∑
i=1

yi +
1

Γ(α)

∫ t

c1

(t− s)α−1sγ−1h(s)g(
x(s)

s
)ds

6 x0+x̄0(t−a)+
1

Γ(α)

∫ t

a

(t− s)α−1e(s)ds+
1

Γ(α)

∫ c1

a

(t− s)α−1f(s, x(s))ds

+

k∑
i=1

ȳit+

k∑
i=1

yi+
1

Γ(α)
t

∫ t

c1

(t− s)α−2sγ−1h(s)g(
x(s)

s
)ds, t ∈ (tk, tk+1], k > 1.

Using inequality (3.10) and condition (iv), we have

x(t) 6 x̄0(t− a) +
1

Γ(α)

∫ t

a

(t− s)α−1e(s)ds+
1

Γ(α)

∫ c1

a

(t− s)α−1f(s, x(s))ds

+
1

Γ(α)
tB1/p

(∫ t

c1

sθq/phq(s)gq
(
x(s)

s

)
ds

)1/q

+Mt+M + x0, t > t1.

(3.15)

Clearly, the conclusion of Theorem 3.1 holds, i.e. lim sup
t→∞

|x(t)|
t <∞. This together

with (3.3) imply that the third integral on the right side of (3.15) is bounded and
hence one can easily find

x(t) 6 d+
1

Γ(α)

(
d̄t+

∫ t

a

(t− s)α−1e(s)ds

)
t, t > t1, (3.16)

where

d = x0 +M +
1

Γ(α)

∫ c1

a

(t− s)α−1f(s, x(s))ds

and

d̄ := x̄0 +MΓ(α) + Γ(α)B1/p

(∫ t

c1

sθq/phq(s)gq
(
x(s)

s

)
ds

)1/q

are constants. From (3.14), we have MΓ(α) + x̄0Γ(α) < d̄ < 1 +MΓ(α) + x̄0Γ(α).
Finally, taking limit inferior in (3.16) as t→∞ and using (3.12) in a contradiction
with the fact that x(t) is eventually positive. If x(t) is eventually negative, we set
y = −x, then we can easily see that y satisfies (1.1) with e(t) being replaced by
−e(t) and f(t, x) by −f(t,−y). The proof of this case is the same as above and
hence is omitted. This completes the proof of the theorem.

4. Example

In this section, we will present an example to illustrate our main results.

Example 4.1. Consider impulsive 3
2 -order fractional differential equation

cD
3/2
2 x(t)=e(t)+tγ−1h(t)g(xt ), t∈J ′ :=J/{t1, ..., tm}, J :=[2,∞) α= 3

2 ,

∆x(tk) = 1
k(k+1) , ∆x′(tk) = 1

k(k+1) , k = 1, 2, ...,

x(2) = x0, x
′(2) = x̄0,

(4.1)
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where x0 = 1, x̄0 <
B( 1

2 ,
3
2 )−Γ( 3

2 )−1

Γ( 3
2 )

, h(t) = (t+1)−
2
3 , g(η) = 1

η1/q
, e(t) = −t− 1

2 , s >

2. Let p = 3
2 , γ = 5

6 , a = 2. Clearly, we see that p(α − 2) + 1 = 1
4 > 0,

p(γ − 1) + 1 = 3
4 > 0, q = p

p−1 = 3 and θ = p(α+ γ − 3) + 1 = 0. Then

1

t

∫ t

a

(t− s)α−1|e(s)|ds =
1

t

∫ t

2

s−
1
2 (t− s) 1

2 ds

=
1

t

∫ t

2

s−
1
2 t

1
2 (1− s

t
)

1
2 ds, t > 2.

(4.2)

Let v := s
t . Then (4.2) can be written as

1

t

∫ t

a

(t− s)α−1|e(s)|ds =
1

t

∫ 1

2
t

v−
1
2 t−

1
2 t

1
2 (1− v)

1
2 tdv

=

∫ 1

2
t

v−
1
2 (1− v)

1
2 dv

6
∫ 1

0

v−
1
2 (1− v)

1
2 dv = B(

1

2
,

3

2
), t > 2.

And ∫ ∞
a

sθq/phq(s)ds =

∫ ∞
2

(s+ 1)−2ds =
1

3
.

We can obtain ∫ ∞
a

dη

gq(η)
=

∫ ∞
2

ηdη →∞,

and

|
k∑
i=1

ȳi| < 1, |
k∑
i=1

yi| < 1, k = 1, 2, ....

Then all conditions of Theorem 3.1 are satisfied and hence every solution of (4.1)
satisfies

lim sup
t→∞

|x(t)|
t

<∞.

From (4.2), we can obtain

d̄t+

∫ t

a

(t− s)α−1e(s)ds = d̄t− t
∫ 1

2
t

v−
1
2 (1− v)

1
2 dv = t

(
d̄−

∫ 1

2
t

v−
1
2 (1− v)

1
2 dv

)
.

Since

lim
t→∞

∫ 1

2
t

v−
1
2 (1− v)

1
2 dv = B(

1

2
,

3

2
).

And from MΓ(α) + x̄0Γ(α) < d̄ < 1 +MΓ(α) + x̄0Γ(α), we obtain

d̄ < B(
1

2
,

3

2
).

So

d̄−
∫ 1

2
t

v−
1
2 (1− v)

1
2 dv < 0 for sufficiently large t.
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Therefore

lim
t→∞

(
d̄t+

∫ t

a

(t− s)α−1e(s)ds

)
→ −∞.

Thus (4.1) satisfies (3.12). By Theorem 3.2, all solutions of (4.1) are oscillatory.
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