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Abstract In this paper, the aim is to discuss a class of p-Laplacian type frac-
tional Dirichlet’s boundary value problem involving impulsive impacts. Based
on the approaches of variational method and the properties of fractional deriva-
tives on the reflexive Banach spaces, the existence results of positive solutions
for our equations are established. Two examples are given at the end of each
main result.
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1. Introduction
This paper deals with a class of p-Laplacian type impulsive fractional differential
system with Dirichlet’s boundary value conditions

tD
αi

T Φp(ai(t)0D
αi
t ui(t)) = λ(t)fui(t, u(t)), t ∈ [0, T ], t ̸= tj ,

∆(tD
αi−1
T Φp(ai

c
0D

αi
t ui))(tj) = Iij(u

i(tj)), j = 1, 2, ...,m,

ui(0) = ui(T ) = 0,

(1.1)

for i = 1, 2, ..., n, where n ≥ 1, u = (u1, ..., un), 0D
αi
t and tD

αi

T are the left and
right standard Riemann-Liouville derivatives with 0 < αi ≤ 1, respectively, i =
1, 2, ..., n. Φp(s) = |s|p−2s (s ̸= 0, p > 1). λ(t) and ai(t) belong to L∞([0, T ],R+)
with λ0 = ess sup[0,T ] λ(t), λ0 = ess inf [0,T ] λ(t) > 0, a0i = ess sup[0,T ] ai(t), ai0 =
ess inf [0,T ] ai(t) > 0, for i = 1, 2, ..., n. f(t, u) : [0, T ]× Rn → R is measurable with
respect to t in [0, T ] for every u ∈ Rn, and continuously differentiable in u for every
t ∈ [0, T ], fs denotes the partial derivative of f with respect to s. Iij ∈ C(R,R)
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for i = 1, 2, ..., n, j = 1, 2, ...,m, 0 = t0 < t1 < ... < tm+1 = T , the operator ∆ is
defined as

∆(tD
αi−1
T Φp(ai

c
0D

αi
t ui))(tj) = tD

αi−1
T Φp(ai

c
0D

αi
t ui)(t+j )−tD

αi−1
T Φp(ai

c
0D

αi
t ui)(t−j ),

where

tD
αi−1
T Φp(ai

c
0D

αi
t ui)(t+j ) = lim

t→t+j

tD
αi−1
T Φp(ai(t)

c
0D

αi
t ui(t)),

tD
αi−1
T Φp(ai

c
0D

αi
t ui)(t−j ) = lim

t→t−j

tD
αi−1
T Φp(ai(t)

c
0D

αi
t ui(t)),

and c
0D

αi
t denotes the left Caputo fractional derivative with 0 < αi ≤ 1, i =

1, 2, ..., n.
Fractional differential boundary value problems (BVPs for short) can describe

many interesting nonlinear phenomena due to the fact that they have wild applica-
tion background in multifarious fields of science, for instance, mathematics, biolog-
ical processes, chemical engineering, underground water flow, thermo-elasticity and
plasma physics ( [8, 11, 16]), etc. For this reason, many researchers have been at-
tracted to focus on this kind of problems, and a large number of meaningful results
have been obtained in resent years, (we refer the reader to the papers [5,22,29]). The
classical approaches, such as the method of mixed monotone iterative, topological
degree theory, fixed-point theorems and upper and lower solutions method, etc, are
always used to investigate the existence results of positive solutions for nonlinear
BVPs, and those methods have been developed maturely. Since the formulation of
ordinary p-Laplacian operator was put forward by Leibenson in 1983 [21], there are
numerous applications in nonlinear elastic mechanics, non-Newtonian fluid theory,
and so on. Based on some classical metheds, many relevant existence results for
fractional differential equations with generalized p-Laplacian operator have been
established ( [12, 13, 23, 31]). In [13], the following eigenvalue problem of nonlinear
fractional differential equation with p-Laplacian operator was givenDβ

0+(Φp(D
α
0+u(t))) = λf(u(t)), 0 < t < 1,

u(0) = u′(0) = u′(1) = 0, Φp(D
α
0+u(0)) = (Φp(D

α
0+u(1)))

′ = 0,
(1.2)

where λ > 0 is a parameter, 2 < α ≤ 3, 1 < β ≤ 2, Φp is the generalized p-Laplacian
operator, f : (0,+∞) → (0,+∞) is continuous. The authors discussed the existence
of at least one or two positive solutions for (1.2) by the Guo-Krasnosel’skii fixed
point theorem in cones. Moreover, relying on the generalization of Leggett-Williams
fixed point theorem, the existence of at least three positive solutions was obtained
for the p-Laplacian type fractional equation involving both the Riemann-Liouville
fractional derivatives and Caputo fractional derivatives in [23]. By virtue of some
methods from nonlinear functional analysis including the contraction mapping the-
orem and the Brouwer fixed point theorem, the authors presented the existence
and uniqueness of solution for a discrete fractional BVP with p-Laplacian operator
in [31].

One the other hand, since Ambrosetti and Rabinowitz proposed Mountain pass
theorem in 1973 [1], variational methods together with critical point theory have
become useful and practical tools in dealing with the existence results for fractional
differential equations in recent years [2, 10]. The problem of p-Laplacian type frac-
tional differential equation is also studied based on variational approachs [6,17–19].
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For example, Li et al. in reference [17] considered a class of ordinary p-Laplacian
type equation with the form of (| u′(t) |p−2 u′(t)) +∇F (t, u(t)) = 0,

u(0)− u(T ) = u′(0)− u′(T ) = 0,
(1.3)

where p > 1, T > 0, F : [0, T ] × RN → R is T-periodic in t for all u ∈ RN.
Through the generalized Mountain pass theorem of Rabinowitz, the existence of
periodic solutions was studied for problem (1.3). In [18], the existence of at least one
nontrivial solution was discussed for the following fractional BVP with p-Laplacian
operator by using the Mountain pass theorem and iterative technique tD

α
T

(
1

ω(t)p−2φp(ω(t)0D
α
t u(t))

)
+ λu(t) = f(t, u, c0D

α
t u(t)) + h(u(t)),

u(0) = u(T ) = 0, a.e. t ∈ [0, T ],

where f : [0, T ] × R × R → R is continuous, h : R → R is a Lipschitz continuous
function with the Lipschitz constant L > 0. Furthermore, by using critical point
theory, the existence of at least one weak solution was studied for a fractional
differential equation with generalized p-Laplacian operator in [6].

Additionally, it is well known that the normal characteristic of impulsive effects
is the sudden changes at some certain moments owing to instantaneous disturbances.
Because the impulses always appear in many actual systems, such as in multi-agent
systems, signal processing systems, automatic control systems, etc., the research on
the impulsive problem of fractional differential BVPs has received great progress.
Recently, many existence results about impulsive fractional differential equations
via variational methods have been studied (see [3, 4, 9, 10,25]).

Inspired by the mentioned work above, this paper devotes to investigate a class
of p-Laplacian type impulsive fractional system with Dirichlet’s boundary value
conditions. Based on the variational approaches and the properties of fractional
derivatives defined on reflexive Banach spaces, the existence results for the problem
(1.1) are established. The main features for our paper are stated as follows: Firstly,
we discuss the existence of positive solutions for problem (1.1) in the general case 1 <
p < ∞, which is the generalization for some related results based on the particular
case of p = 2. It’s worth noting that the differential operator tD

α
TΦp(0D

α
t ) (α >

0, p > 1) is nonlocal and nonlinear, and it can be reduced to the linear differential
operator tD

α
T 0D

α
t under p = 2. Further, if take α = 1, the operator tD

α
T 0D

α
t can

be recovered the usual definition, i.e., a second-order differential operator d2

dt2 . So
that, BVPs (1.1) can be recovered a integer-order Dirichlet’s BVPs with impulsive
impacts in the particular case of p = 2, αi = 1, i = 1, 2, ..., n, i.e.,

ai(t)ü
i(t) = λ(t)fui(t, u(t)), t ∈ [0, T ], t ̸= tj ,

∆(ai(tj)u̇
i(tj)) = Iij(u

i(tj)), j = 1, 2, ...,m,

ui(0) = ui(T ) = 0,

for i = 1, 2, ..., n. Secondly, we discuss a n-dimensional fractional differential equa-
tions rather than a single equation and consider the impulsive effects, which cause
some aspects of the paper more complicated, such as the Euler-Lagrange functional
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related to the system (1.1), the procedure of applying the Mountain pass theorem.
Finally, the positive solution is also studied in this paper. To the best of authors’
knowledge, little work has been developed on studying the positive solutions for
generalized p-Laplacian type impulsive fractional system by using the variational
method. Therefore, it is worthwhile to be investigated. So that, our main re-
sults are different from those relevant literatures mentioned above, and moreover,
complement the results in previous ones.

This paper’s organization is stated as follows. In section 2, some basic defini-
tions and preliminary facts for fractional calculus are introduced. In section 3, we
establish appropriate function spaces and the variational framework for problem
(1.1), which are necessary for the discussion of this paper. Then, applying critical
point theorems, the main results are obtained, and meanwhile, tow examples are
given to illustrate the applications of our results in section 4. Finally, a conclusion
is presented in section 5.

2. Preliminaries
In this section, some basic definitions and properties are introduced for fractional
calculus, and some important theorems are given, which shall be used throughout
this paper.

For any [a, b] ⊆ R, denote

∥x∥∞ = max
t∈[a,b]

| x(t) |, ∀ x ∈ C([a, b],R);

∥x∥Lp = (

∫ b

a

| x(t) |p dt)
1
p , ∀ x ∈ Lp([a, b],R).

Definition 2.1 ( [16,26]). Let x be a function defined on [a, b]. Then the left and
right Riemann-Liouville fractional integrals denoted by aD

−γ
t and tD

−γ
b with order

γ > 0 are defined by

aD
−γ
t x(t) =

1

Γ(γ)

∫ t

a

(t− s)γ−1x(s)ds,

tD
−γ
b x(t) =

1

Γ(γ)

∫ b

t

(s− t)γ−1x(s)ds.

Definition 2.2 ( [16,26]). Let x be a function defined on [a, b]. Define the left and
right Riemann-Liouville fractional derivatives denoted by aD

γ
t and tD

γ
b with order

n− 1 ≤ γ < n and n ∈ N as follows

aD
γ
t x(t) =

dn

dtn
aD

γ−n
t x(t) =

1

Γ(n− γ)

dn

dtn

∫ t

a

(t− s)n−γ−1x(s)ds,

tD
γ
b x(t) = (−1)n

dn

dtn
tD

γ−n
b x(t) =

(−1)n

Γ(n− γ)

dn

dtn

∫ b

t

(s− t)n−γ−1x(s)ds,

in particular, if γ = n − 1, then, the left and right Riemann-Liouville fractional
derivatives aD

n−1
t x(t) and tD

n−1
b x(t) can be recovered the usual definitions, i.e.,

aD
n−1
t x(t) = xn−1(t), tD

n−1
b x(t) = (−1)n−1xn−1(t), t ∈ [a, b].
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Definition 2.3 ( [16,26]). Let γ ≥ 0, n ∈ N.
(I) If x(t) ∈ ACn([a, b],R) and n − 1 < γ < n. Then the left and right Caputo
fractional derivatives of order γ for x denoted as c

aD
γ
t x(t) and c

tD
γ
b x(t) respectively,

are given by

c
aD

γ
t x(t) = aD

γ−n
t xn(t) =

1

Γ(n− γ)

∫ t

a

(t− s)n−γ−1xn(s)ds,

c
tD

γ
b x(t) = (−1)ntD

γ−n
b xn(t) =

(−1)n

Γ(n− γ)

∫ b

t

(s− t)n−γ−1xn(s)ds.

(II) If x(t) ∈ ACn−1([a, b],R) and γ = n− 1, we can obtain the usual definitions for
the Caputo fractional derivatives, i.e.,

c
aD

n−1
t x(t) = xn−1(t), c

tD
n−1
b x(t) = (−1)n−1xn−1(t), t ∈ [a, b],

particularly, c
aD

0
t x(t) =

c
tD

0
bx(t) = x(t) for t ∈ [a, b].

Lemma 2.1 ( [16, 26]). Let x be a function defined on [a, b] and n − 1 < γ < n,
n ∈ N. The Caputo fractional derivatives c

aD
γ
t x(t) and c

tD
γ
b x(t) of order γ and the

Riemann-Liouville fractional derivatives aD
γ
t x(t) and tD

γ
b x(t) have the following

characteristics to contact with each other:

c
aD

γ
t x(t) = aD

γ
t x(t)−

n−1∑
i=0

xi(a)

Γ(i− γ + 1)
(t− a)i−γ ,

c
tD

γ
b x(t) = tD

γ
b x(t)−

n−1∑
i=0

xi(b)

Γ(i− γ + 1)
(b− t)i−γ ,

in addition, when 0 < γ < 1, one has

c
aD

γ
t x(t) = aD

γ
t x(t)−

x(a)

Γ(1− γ)
(t− a)−γ , (2.1)

c
tD

γ
b x(t) = tD

γ
b x(t)−

x(b)

Γ(1− γ)
(b− t)−γ . (2.2)

Lemma 2.2. If there exist C > 0, µi > p, i = 1, 2, ..., n, such that 0 < f(t, x) ≤
n∑

i=1

1
µi
fxi(t, x)xi, for any x = (x1, x2, ..., xn) ∈ Rn with

n∑
i=1

| xi |µi≥ 2C. Then, the

following inequality:

f(t, x) ≥ c1(

n∑
i=1

| xi |µi)− c2, for c1, c2 > 0

holds. (The proof immediately follows from Theorem 5 of [7].)

Nextly, we point out some fundamental definitions and theorems, which will be
used to obtain our main results.

Definition 2.4. Let E be a real Banach space and functional φ ∈ C1(E,R). If any
sequence {uk}∞k=1 ⊂ E for which {φ(uk)}∞k=1 is bounded and φ′(uk) → 0 as k → ∞
possesses a convergent subsequence, then we say that φ satisfies the Palais-Smale
condition (P.S. condition for short).
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Theorem 2.1 ( [24]). Let E be a real reflexive Banach space. If the functional
φ : E → R is weakly lower semicontinuous and coercive, i.e., lim

∥z∥→∞
φ(z) = +∞,

then there exists z0 ∈ E such that φ(z0) = inf
z∈E

φ(z). Moreover, if φ is also Fréchet
differentiable on E, then φ′(z0) = 0.

Theorem 2.2 ( [20,27]). Let E be a real Banach space and functional φ ∈ C1(E,R)
satisfies the P.S. condition. Suppose that
(C1) φ(0) = 0;
(C2) There exist ρ > 0 and σ > 0 such that φ(z) ≥ σ for all z ∈ E with ∥ z ∥= ρ;
(C3) There exists z1 ∈ E with ∥ z1 ∥> ρ such that φ(z1) < σ.

Then φ possesses a critical value c ≥ σ . Moreover, c can be characterized as

c = inf
g∈Ω

max
z∈g([0,1])

φ(z),

where Ω = {g ∈ C([0, 1], E) | g(0) = 0, g(1) = z1}.

3. Fractional derivative spaces and variational set-
ting

In what follows, the appropriate function spaces and the variational framework for
problem (1.1) are established.

Definition 3.1. Let 1 < p < ∞, 0 < αi ≤ 1, i = 1, 2, ..., n. The fractional
derivative space Eαi,p

0 is defined as

Eαi,p
0 = {ui(t) ∈ Lp([0, T ],R)|0Dαi

t ui(t) ∈ Lp([0, T ],R), ui(0) = ui(T ) = 0},

with the norm

∥ui∥αi,p =

(∫ T

0

| ui(t) |p dt+

∫ T

0

ai(t) | 0Dαi
t ui(t) |p dt

) 1
p

, (3.1)

for any ui(t) ∈ Eαi,p
0 , i = 1, 2, ..., n.

Remark 3.1. For any ui(t) ∈ Eαi,p
0 with ui(0) = ui(T ) = 0, i = 1, 2, ..., n, owing

to (2.1) and (2.2) yields

0D
αi
t ui(t) = c

0D
αi
t ui(t), tD

αi

T ui(t) = c
tD

αi

T ui(t), ∀t ∈ [0, T ], i = 1, 2, ..., n.

Lemma 3.1 ( [14]). Let 1 < p < ∞, 0 < αi ≤ 1, i = 1, 2, ..., n. For any ui(t) ∈
Eαi,p

0 , we have

∥ ui ∥Lp≤ Tαi

Γ(αi + 1)
∥ 0D

αi
t ui ∥Lp , for i = 1, 2, ..., n, (3.2)

when αi >
1
p and 1

p + 1
q = 1, one has

∥ ui ∥∞≤ Tαi− 1
p

Γ(αi)((αi − 1)q + 1)
1
q

∥ 0D
αi
t ui ∥Lp , for i = 1, 2, ..., n. (3.3)
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Remark 3.2. For any ui(t) ∈ Eαi,p
0 , i = 1, 2, ..., n, based on lemma 3.1, one has

∥ ui ∥Lp≤ ai

(∫ T

0

ai(t) | 0Dαi
t ui(t) |p dt

) 1
p

, ∀ 0 < αi ≤ 1, (3.4)

∥ ui ∥∞≤ bi

(∫ T

0

ai(t) | 0Dαi
t ui(t) |p dt

) 1
p

, ∀ αi >
1

p
,
1

p
+

1

q
= 1, (3.5)

where

ai =
Tαi

Γ(αi + 1)a
1
p

i0

, bi =
Tαi− 1

p

Γ(αi)a
1
p

i0
((αi − 1)q + 1)

1
q

, i = 1, 2, ..., n. (3.6)

Therefore, from (3.4), the norm of (3.1) can be replaced with the following norm

∥ui∥αi,p =

(∫ T

0

ai(t) | 0Dαi
t ui(t) |p dt

) 1
p

, ∀ui(t) ∈ Eαi,p
0 , i = 1, 2, ..., n. (3.7)

Then, from (3.4) and (3.5), we also have

n∑
i=1

∥ ui ∥pLp≤ A(

n∑
i=1

∥ ui ∥pαi,p), ∀ 0 < αi ≤ 1, i = 1, 2, ..., n, (3.8)

n∑
i=1

∥ ui ∥p∞≤ B(
n∑

i=1

∥ ui ∥pαi,p), ∀ αi >
1

p
, i = 1, 2, ..., n, (3.9)

where

A = max
1≤i≤n

{
T pαi

(Γ(αi + 1))pai0

}
, B = max

1≤i≤n

{
T pαi−1

(Γ(αi))pai0((αi − 1)q + 1)
p
q

}
. (3.10)

Define X is a Cartesian product of n fractional derivative spaces, i.e., X =

Eα1,p
0 ×Eα2,p

0 × ...×Eαn,p
0 , and furnished with the norm ∥ u ∥X= (

n∑
i=1

∥ ui ∥pαi,p)
1
p

for any u(t) = (u1(t), u2(t), ..., un(t)) ∈ X.
For any x(t) = (x1(t), x2(t), ..., xn(t)) ∈ X, denote ∥ x ∥∞=

n∑
i=1

max
t∈[0,T ]

|xi(t)|.

Then, we obtain

∥ x ∥∞ ≤
n∑

i=1

Tαi− 1
p

Γ(αi)((αi − 1)q + 1)
1
q a

1
p

i0

∥ xi ∥αi,p (3.11)

≤ d(

n∑
i=1

∥ xi ∥αi,p)
p· 1p ≤ nd(

n∑
i=1

∥ xi ∥pαi,p)
1
p = nd ∥ x ∥X ,

where αi >
1
p , i = 1, 2, ..., n, d = max

1≤i≤n

{
T

αi−
1
p

Γ(αi)((αi−1)q+1)
1
q a

1
p
i0

}
and the inequality

(
n∑

i=1

bi)
p ≤ np

n∑
i=1

bpi ( bi ∈ R+, i = 1, 2, ..., n) is used.
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Lemma 3.2. The fractional derivative space X is a reflexive and separable Banach
space.

Proof. The proof is similar to Lemma 9 of [19], we omit it here.

Lemma 3.3 ( [14]). Let 1
p < γ ≤ 1 and 1 < p < ∞. Assume that the sequence

{uk} converges to u in Eγ,p
0 weakly as k → ∞, then uk → u in C([0, T ],R).

Here, we give the definition of weak solution for BVPs (1.1).

Definition 3.2. If u(t) = (u1(t), u2(t), ..., un(t)) ∈ X is a weak solution of the
system (1.1), we mean that for any v(t) = (v1(t), v2(t), ..., vn(t)) ∈ X, such that the
following relationship holds

n∑
i=1

∫ T

0

Φp(ai(t)0D
αi
t ui(t))0D

αi
t vi(t)dt+

n∑
i=1

m∑
j=1

Iij(u
i(tj))v

i(tj)

=

n∑
i=1

∫ T

0

λ(t)fui(t, u1(t), u2(t), ..., un(t))vi(t)dt.

Lemma 3.4. For any ui, vi ∈ Eαi,p
0 , i = 1, 2, ..., n, the following identity holds:∫ T

0

Φp(ai(t)0D
αi
t ui(t))0D

αi
t vi(t)dt

=

∫ T

0
tD

αi

T (Φp(ai(t)0D
αi
t ui(t)))vi(t)dt−

m∑
j=1

∆(tD
αi−1
T Φp(ai(tj)

c
0D

αi
t ui(tj)))v

i(tj),

(The proof immediately follows from Proposition 2.5 in [32].).

Remark 3.3. We say that u(t) ∈ X is a classical solution of BVPs (1.1) if u(t) is
a weak solution of (1.1).

Proof. Indeed, if u(t) is a weak solution of BVPs (1.1), then, the Definition 3.2
holds. Choose a function v(t) = (v1(t), v2(t), ..., vn(t)) ∈ X satisfying v(t) = 0 for
any t ∈ [0, tj ]∪ [tj+1, T ], j ∈ {1, ...,m}. By using Definition 3.2 and Lemma 3.4, we
get

n∑
i=1

∫ tj+1

tj

Φp(ai(t)0D
αi
t ui(t))0D

αi
t vi(t)dt

=

n∑
i=1

∫ tj+1

tj
tD

αi

T (Φp(ai(t)0D
αi
t ui(t)))vi(t)dt, (3.12)

and
n∑

i=1

∫ tj+1

tj

Φp(ai(t)0D
αi
t ui(t))0D

αi
t vi(t)dt

=

n∑
i=1

∫ tj+1

tj

λ(t)fui(t, u1(t), u2(t), ..., un(t))vi(t)dt. (3.13)

Hence, we can obtain from (3.12) and (3.13) that

tD
αi

T Φp(ai(t)0D
αi
t ui(t)) = λ(t)fui(t, u1(t), u2(t), ..., un(t)), ∀ t ∈ (tj , tj+1), (3.14)
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which shows that u(t) satisfies the equation of BVPs (1.1) for every t ∈ [0, T ], t ̸= tj ,
j = 1, 2, ...,m.

Moreover, according to Proposition 2.6 in [32], we know that the following limits

tD
αi−1
T Φp(ai

c
0D

αi
t ui)(t+j ) = lim

t→t+j

tD
αi−1
T Φp(ai

c
0D

αi
t ui)(t),

tD
αi−1
T Φp(ai

c
0D

αi
t ui)(t−j ) = lim

t→t−j

tD
αi−1
T Φp(ai

c
0D

αi
t ui)(t),

exist. From Lemma 3.4, multiplying (3.14) by vi ∈ Eαi,p
0 and integrating between

0 and T before summing i from 1 to n, yields
n∑

i=1

m∑
j=1

∆(tD
αi−1
T Φp(ai(tj)

c
0D

αi
t ui(tj)))v

i(tj) =

n∑
i=1

m∑
j=1

Iij(u
i(tj))v

i(tj).

Therefore, ∆(tD
αi−1
T Φp(ai(tj)

c
0D

αi
t ui(tj))) = Iij(u

i(tj)), for i = 1, 2, ..., n, j =
1, 2, ...,m, which means that u satisfies the impulsive conditions of BVPs (1.1).
Meanwhile, according to the definition of X that u also satisfies the boundary
conditions of (1.1). So that, u is a classical solution of (1.1).

Obviously, u is a weak solution of (1.1) if u is a classical one.
Define the Euler-Lagrange functional I : X → R related to BVPs (1.1) by

I(u(t)) =
1

p

n∑
i=1

∫ T

0

ai(t)
p−1 | 0Dαi

t ui(t) |p dt+

n∑
i=1

m∑
j=1

∫ ui(tj)

0

Iij(s)ds

−
∫ T

0

λ(t)f(t, u1(t), u2(t), ..., un(t))dt, ∀ u(t) ∈ X.

Lemma 3.5. We claim that I ∈ C1(X,R).

Proof. Denote

I1(u(t)) =
1

p

n∑
i=1

∫ T

0

ai(t)
p−1 | 0Dαi

t ui(t) |p dt+

n∑
i=1

m∑
j=1

∫ ui(tj)

0

Iij(s)ds,

I2(u(t)) =

∫ T

0

λ(t)f(t, u1(t), u2(t), ..., un(t))dt, ∀ u(t) = (u1(t), ..., un(t)) ∈ X.

Note that f is continuously differentiable and Iij are continuous for j = 1, 2, ...,m,
i = 1, 2, ..., n. Thus, I1(u) and I2(u) are clearly continuous and differentiable on X,
and we present the derivative of I at the point u(t) ∈ X as

I ′(u(t))(v(t)) =I ′1(u(t))(v(t))− I ′2(u(t))(v(t))

=

n∑
i=1

∫ T

0

Φp(ai(t)0D
αi
t ui(t))0D

αi
t vi(t)dt+

n∑
i=1

m∑
j=1

Iij(u
i(tj))v

i(tj)

−
n∑

i=1

∫ T

0

λ(t)fui(t, u1(t), u2(t), ..., un(t))vi(t)dt, ∀ v(t) ∈ X.

Using a standard argument in Theorem 4.1 of [15], we have I1(u(t)) ∈ C1(X,R).
Nextly, we claim that I ′2 is continuous. Suppose that (u1, u2, ..., un) → (u1

0, u
2
0, ..., u

n
0 )
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in X. According to Lemma 3.3, we have (u1, u2, ..., un) → (u1
0, u

2
0, ..., u

n
0 ) on [0, T ].

Then, for any u = (u1, u2, ..., un), x = (x1, x2, ..., xn) ∈ X with ∥ x ∥X= 1, one has

sup
∥x∥X=1

| I ′2(u)(x)− I ′2(u0)(x) |

≤ sup
∥x∥X=1

λ0

∫ T

0

| (∇f(t, u1, u2, ..., un)−∇f(t, u1
0, u

2
0, ..., u

n
0 ))(x

1, x2, ..., xn) | dt

≤ sup
∥x∥X=1

λ0

∫ T

0

| ∇f(t, u1, u2, ..., un)−∇f(t, u1
0, u

2
0, ..., u

n
0 ) || (x1, x2, ..., xn) | dt

≤ sup
∥x∥X=1

λ0T ∥ (∇f(t, u1, u2, ..., un)−∇f(t, u1
0, u

2
0, ..., u

n
0 ) ∥∞∥ x ∥∞

≤λ0Tnd ∥ (∇f(t, u1, u2, ..., un)−∇f(t, u1
0, u

2
0, ..., u

n
0 )) ∥∞,

where (3.11) is used and ∇f(t, u1, u2, ..., un) is the gradient of f at (u1, u2, ..., un).
Recalling that (u1, u2, ..., un) → (u1

0, u
2
0, ..., u

n
0 ) on [0, T ] and f is continuously dif-

ferentiable in (u1, u2, ..., un) for every t ∈ [0, T ], we have

∥ ∇f(t, u1, u2, ..., un)−∇f(t, u1
0, u

2
0, ..., u

n
0 ) ∥∞→0 as (u1, u2, ..., un)→(u1

0, u
2
0, ..., u

n
0 ).

Therefore, we obtain I ′2(u)(x) − I ′2(u0)(x) → 0 with ∥ x ∥X= 1, which means that
I ′2 is continuous. So that I ∈ C1(X,R).

In order to simplify the description of further discussion, some notations are
stated here. Denote

ω∗ =


min

1≤i≤n
{(a0i )p−2}, 1 < p ≤ 2,

min
1≤i≤n

{ap−2
i0

}, p ≥ 2,
ω∗ =


max
1≤i≤n

{ap−2
i0

}, 1 < p ≤ 2,

max
1≤i≤n

{(a0i )p−2}, p ≥ 2.
(3.15)

4. Main Results
In this section, the existence results of positive solutions for BVPs (1.1) are consid-
ered.

Define f+(t, u1, u2, ..., un)=f(t, θ(u1), θ(u2), ..., θ(un)), where θ(ui) :=max{0, ui},
i = 1, 2, ..., n. From [30], it is easy to know that f+(t, u1, u2, ..., un) ∈ C1([0, T ] ×
Rn,R) and f+

ui(t, u
1, u2, ..., un) = fui(t, θ(u1), θ(u2), ..., θ(un)), i = 1, 2, ..., n.

In order to obtain the positive solution of problem (1.1), we define

I+(u(t)) =
1

p

n∑
i=1

∫ T

0

ai(t)
p−1 | 0Dαi

t ui(t) |p dt+

n∑
i=1

m∑
j=1

∫ ui(tj)

0

Iij(s)ds

−
∫ T

0

λ(t)f+(t, u1(t), ..., un(t))dt, ∀ u(t) ∈ X. (4.1)

Then, we have

I ′+(u(t))(v(t)) =

n∑
i=1

∫ T

0

Φp(ai(t)0D
αi
t ui(t))0D

αi
t vi(t)dt+

n∑
i=1

m∑
j=1

Iij(u
i(tj))v

i(tj)

−
n∑

i=1

∫ T

0

λ(t)fui(t, θ(u1(t)), ..., θ(un(t)))vi(t)dt, ∀ v(t) ∈ X.

(4.2)
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Firstly, we apply the Theorem 2.1 to discuss the existence of at least one positive
solution for BVPs (1.1).

Theorem 4.1. Let p > 2, 1
p < αi ≤ 1, i = 1, 2, ..., n. Assume that

(A1) There exist nonnegative constants Ki, i = 1, 2, ..., n, such that

ω∗

p
− λ0 max

1≤i≤n
{Ki}A > 0;

(A2) There exist functions hi(t) ∈ L1([0, T ],R+), i = 1, 2, ..., n, such that

f(t, x) ≤
n∑

i=1

Ki | xi |p +hi(t), ∀ x ∈ Rn;

(A3) Iij(0) = 0 and there exist constants Lij > 0 such that | Iij(s1) − Iij(s2) |≤
Lij | s1 − s2 |, for any s1, s2 ∈ R, i = 1, 2, ..., n, j = 1, 2, ...,m;
(A4) fxi(t, x1, ..., xi−1, 0, xi+1, ..., xn) = 0, ∀x ∈ Rn with xi ≤ 0, i = 1, 2, ..., n;
(A5)

n∑
i=1

m∑
j=1

Iij(s)s ≥ 0 for any s < 0, i = 1, 2, ..., n, j = 1, 2, ...,m.

Then, BVPs (1.1) admits at least one positive solution that minimizes I on X.

Proof. Lemma 3.2 shows the fact that fractional derivative space X is a reflexive
and separable Banach space. For any sequence {uk = (u1

k, u
2
k, ..., u

n
k )}∞k=1 ⊂ X,

assume that uk(t) ⇀ u(t) = (u1(t), u2(t), ..., un(t)) in X as k → ∞. Then, ∥
ui ∥αi,p≤ lim

k→∞
inf ∥ ui

k ∥αi,p and ui
k(t) uniform converges to ui(t) on [0, T ], i =

1, 2, ..., n. Hence

lim
k→∞

inf I+(uk(t))

= lim
k→∞

{
1

p

n∑
i=1

∫ T

0

ai(t)
p−1 | 0Dαi

t ui
k(t) |p dt+

n∑
i=1

m∑
j=1

∫ ui
k(tj)

0

Iij(s)ds

−
∫ T

0

λ(t)f+(t, uk(t))dt

}
≥1

p

n∑
i=1

∫ T

0

ai(t)
p−1 | 0Dαi

t ui(t) |p dt+

n∑
i=1

m∑
j=1

∫ ui(tj)

0

Iij(s)ds

−
∫ T

0

λ(t)f+(t, u(t))dt = I+(u(t)),

which implies that functional I+ is weakly lower semi-continuous on X. So that,
in order to accomplish Theorem 4.1, we need to guarantee that functional I+ is
coercive on X.

Indeed, for any x(t) ∈ X, combining (4.1), (3.15), (3.4), (A2) and (A3), one has

I+(x(t)) ≥
ω∗

p

n∑
i=1

∥ xi ∥pαi,p −
n∑

i=1

m∑
j=1

∫ xi(tj)

0

| Iij(s) | ds

− λ0

∫ T

0

n∑
i=1

Ki | xi(t) |p +hi(t)dt
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≥ω∗

p

n∑
i=1

∥ xi ∥pαi,p −
n∑

i=1

m∑
j=1

Lij

∫ xi(tj)

0

| s | ds− λ0
n∑

i=1

Ki ∥ xi ∥pLp

− λ0
n∑

i=1

∥ hi ∥L1

≥(
ω∗

p
− λ0 max

1≤i≤n
{Ki}A)

n∑
i=1

∥ xi ∥pαi,p −
n∑

i=1

m∑
j=1

Lijb
2
i

2
∥ xi ∥2αi,p

− λ0
n∑

i=1

∥ hi ∥L1 .

Recalling that p > 2, ω∗
p −λ0 max

1≤i≤n
{Ki}A > 0. Then, we obtain lim∥x∥X→∞ I+(x) =

+∞, which means that the functional I+ is coercive. This fact together with The-
orem 2.1 guarantee that there exists u0(t) = (u1

0(t), u
2
0(t), ..., u

n
0 (t)) ∈ X such that

I+(u0(t)) = inf
u(t)∈X

I+(u(t)). Since I+ is differentiable, we have I ′+(u0(t))(v(t)) = 0,
i.e.,

n∑
i=1

∫ T

0

Φp(ai(t)0D
αi
t ui

0(t))0D
αi
t vi(t)dt+

n∑
i=1

m∑
j=1

Iij(u
i
0(tj))v

i(tj)

=

n∑
i=1

∫ T

0

λ(t)fui(t, θ(u1
0(t)), ..., θ(u

n
0 (t)))v

i(t)dt, ∀ v(t) ∈ X. (4.3)

Define u− = min{0, u}. Then, due to (A4) and (A5), one has

n∑
i=1

∫ T

0

λ(t)fui(t, θ(u1
0(t)), ..., θ(u

n
0 (t)))u

i−
0 (t)dt=0,

n∑
i=1

m∑
j=1

Iij(u
i−
0 (tj))u

i−
0 (tj)≥0.

(4.4)
Take v = (u1−

0 , u2−
0 , ..., un−

0 ), then, combining (4.3) with (4.4), we obtain

0 =

n∑
i=1

∫ T

0

Φp(ai(t)0D
αi
t ui−

0 (t))0D
αi
t ui−

0 (t)dt ≥ ω∗

n∑
i=1

∥ ui−
0 ∥pαi,p,

which implies that ui−
0 ≡ 0, i = 1, 2, ..., n. Hence, we have ui

0 ≥ 0, 1 ≤ i ≤ n.
Namely, I+(u0) = I(u0) and u0 = (u1

0, u
2
0, ..., u

n
0 ) is a positive solution of problem

(1.1).

Example 4.1. Let n = 2, m = 1. Define f(t, x, y) = sin t cos y sinxp+sin t cosx sin yp

and Ii1(s) = ci arctan s, ci > 0, i = 1, 2. By the direct computation, we derive that
f(t, x, y) ≤| x |p + | y |p, fx(t, 0, y) = fy(t, x, 0) = 0, I11(s)s + I21(s)s ≥ 0 and
Li1 = ci, Ki = hi(t) = 0, i = 1, 2. Obviously, we can choose appropriate functions
and parameters λ(t), ai(t), αi, i = 1, 2, such that (A1) holds. So that, the conditions
of Theorem 4.1 are satisfied.

In what follows, the existence of mountain pass solutions of BVPs (1.1) is es-
tablished by Theorem 2.2.

Theorem 4.2. Let p > 1, 1
p < αi ≤ 1, i = 1, 2, ..., n. Assume that
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(A6) There exist nonnegative constants M and µ with µ > p such that

0 < µf(t, x) ≤
n∑

i=1

fxi(t, x)xi, ∀ x ∈ Rn with | x |> M, t ∈ [0, T ];

(A7) There exists a constant υ ∈ (p, µ] such that 0 ≤ Iij(s)s ≤ υ
∫ s

0
Iij(ξ)dξ for any

s ∈ R, i = 1, 2, ..., n, j = 1, 2, ...,m;
(A8) fxi(t, x1, ..., xi−1, 0, xi+1, ..., xn) = 0, ∀x ∈ Rn with xi ≤ 0, i = 1, 2, ..., n.
(A9)

lim sup
n∑

i=1
|xi|→0

f(t, x)
n∑

i=1

| xi |p
<

1

C0
,

for any x = (x1, x2, ..., xn) ∈ Rn, where C0 = pB and B is introduced in (3.10);
(A10) There exist constants Mij ≥ 0, 0 < wij ≤ p − 1 such that Iij(s) ≤ Mijs

wij ,
for any s ∈ R, i = 1, 2, ..., n, j = 1, 2, ...,m.

Then, BVPs (1.1) admits at least one positive solution on X.

Proof. First of all, we claim that the functional I+ satisfies the P.S. condition.
Assume {uk}k∈N ⊂ X is a P.S. sequence associated with I+, i.e.,

| I+(uk) |≤ K, I ′+(uk) → 0 as k → ∞,

where K is a nonnegative constant. From (4.2) we have

I ′+(uk(t))(uk(t))=

n∑
i=1

∫ T

0

Φp(ai(t)0D
αi
t ui

k(t))0D
αi
t ui

k(t)dt+

n∑
i=1

m∑
j=1

Iij(u
i
k(tj))u

i
k(tj)

−
n∑

i=1

∫ T

0

λ(t)fui
k
(t, θ(u1

k(t)), ..., θ(u
n
k (t)))u

i
k(t)dt. (4.5)

Since I ′+(uk) → 0 as k → ∞, then, there exists εk → 0 such that

| I ′+(uk(t))(vk(t)) |≤ εk, ∀ vk(t) ∈ X, k ∈ N, t ∈ [0, T ]. (4.6)

Based on (A7) and (A8), one has
n∑

i=1

m∑
j=1

Iij(u
i−
k (tj))u

i−
k (tj) ≥ 0,

n∑
i=1

∫ T

0

λ(t)fui
k
(t, θ(u1

k(t)), ..., θ(u
n
k (t)))u

i−
k (t)dt = 0,

that is

I ′+(uk(t))(u
−
k (t)) =

n∑
i=1

∫ T

0

ai(t)
p−1 | 0Dαi

t ui−
k (t) |p dt+

n∑
i=1

m∑
j=1

Iij(u
i−
k (tj))u

i−
k (tj)

≥ ω∗

n∑
i=1

∥ ui−
k ∥pαi,p . (4.7)

So that, combining (4.6) and (4.7), we obtain

ui−
k → 0 as k → ∞, 1 ≤ i ≤ n. (4.8)
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On the other hand, condition (A7) implies that

µ

∫ ui
k(tj)

0

Iij(s)ds−Iij(u
i
k(tj))u

i
k(tj) ≥ (µ−υ)

∫ ui
k(tj)

0

Iij(s)ds ≥ 0, (µ ≥ υ), (4.9)

for i = 1, 2, ..., n, j = 1, 2, ...,m. Then, from (4.1), (4.2), (4.5), (4.9) and (A6), we
have

µI+(θ(uk(t)))− I ′+(θ(uk(t)))θ(uk(t))

≥(
µ

p
− 1)ω∗

n∑
i=1

∥ θ(ui
k) ∥pαi,p +

n∑
i=1

m∑
j=1

(µ− υ)

∫ θ(ui
k(tj))

0

Iij(s)ds

+

n∑
i=1

∫ T

0

λ(t)fui
k
(t, θ(u1

k(t)), ..., θ(u
n
k (t)))θ(u

i
k(t))dt

− µ

∫ T

0

λ(t)f+(t, u1
k(t), ..., u

n
k (t))dt

≥(
µ

p
− 1)ω∗

n∑
i=1

∥ θ(ui
k) ∥pαi,p +λ0

∫ T

0

n∑
i=1

fui
k
(t, θ(uk(t)))θ(u

i
k(t))− µf(t, θ(uk(t)))dt

≥(
µ

p
− 1)ω∗

n∑
i=1

∥ θ(ui
k) ∥pαi,p .

Noting that µ > p, | I+(θ(uk)) |≤ K and I ′+(θ(uk)) → 0 as k → ∞, we conclude
that {θ(uk)} is bounded in X. Hence, in view of (4.8), we get that the sequence
{uk}k∈N is bounded in X.

Taking into account that X is a reflexive Banach space, assume uk ⇀ u∗ in X,
u∗ = (u1

∗, u
2
∗, ..., u

n
∗ ) ∈ X. From Lemma 3.3, we get that uk → u∗ on [0, T]. Then,

we deduce

(I ′+(uk)− I ′+(u∗))(uk − u∗) =I ′+(uk)(uk − u∗)− I ′+(u∗)(uk − u∗)

≤ ∥ I ′+(uk) ∥ · ∥ uk − u∗ ∥X −I ′+(u∗)(uk − u∗)

→0, as k → ∞. (4.10)

Moreover, since function f continuously differentiable in u and Iij are continuous,
i = 1, 2, ..., n, j = 1, 2, ...,m, we have

n∑
i=1

m∑
j=1

(Iij(u
i
k(tj))− Iij(u

i
∗(tj)))(u

i
k(tj)− ui

∗(tj)) → 0, k → ∞,

n∑
i=1

∫ T

0
λ(t)(fui

k
(t, uk(t))− fui

∗
(t, u∗(t)))(u

i
k(t)− ui

∗(t))dt → 0, k → ∞.
(4.11)

Recalling that

(I ′+(uk(t))− I ′+(u∗(t)))(uk(t)− u∗(t))

=

n∑
i=1

∫ T

0

(Φp(ai(t)0D
αi
t ui

k(t))− Φp(ai(t)0D
αi
t ui

∗(t)))0D
αi
t (ui

k(t)− ui
∗(t))dt

+

n∑
i=1

m∑
j=1

(Iij(u
i
k(tj))− Iij(u

i
∗(tj)))(u

i
k(tj)− ui

∗(tj))
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−
n∑

i=1

∫ T

0

λ(t)(fui
k
(t, θ(uk(t)))− fui

∗
(t, θ(u∗(t))))(u

i
k(t)− ui

∗(t))dt,

then, this fact combining with (4.11) and (4.10) imply that
n∑

i=1

∫ T

0

(Φp(ai(t)0D
αi
t ui

k(t))− Φp(ai(t)0D
αi
t ui

∗(t)))0D
αi
t (ui

k(t)− ui
∗(t))dt → 0,

(4.12)
as k → ∞.

Further, literature [28] shows a well-known inequality, which is given by

⟨| s1 |p−2 s1− | s2 |p−2 s2, s1 − s2⟩ ≥

a1 | s1 − s2 |p, p ≥ 2,

a1
|s1−s2|2

(|s1|+|s2|)2−p , 1 < p ≤ 2,
(4.13)

for every s1, s2 ∈ RN, where a1 is a nonnegative constant. Then, base on (4.13), we
obtain that there exist some positive numbers ji, j′i, i = 1, 2, ..., n, such that∫ T

0

(Φp(ai(t)0D
αi
t ui

k(t))− Φp(ai(t)0D
αi
t ui

∗(t)))0D
αi
t (ui

k(t)− ui
∗(t))dt

≥

 ji
∫ T

0
1

ai(t)
| ai(t)0Dαi

t ui
k(t)− ai(t)0D

αi
t ui

∗(t) |p dt, p ≥ 2,

j′i
∫ T

0
1

ai(t)
|ai(t)0D

αi
t ui

k(t)−ai(t)0D
αi
t ui

∗(t)|
2

(|ai(t)0D
αi
t ui

k(t)|+|ai(t)0D
αi
t ui

∗(t)|)2−p dt, 1 < p < 2.

When 1 < p < 2, one has

1

(a0i )
p
2

∫ T

0

| ai(t)0Dαi
t ui

k(t)− ai(t)0D
αi
t ui

∗(t) |p dt

≤ 1

(a0i )
p
2

(∫ T

0

(
| ai(t)0Dαi

t uk(t)− ai(t)0D
αi
t ui

∗(t) |p

(ai(t))
p
2 (| ai(t)0Dαi

t ui
k(t) | + | ai(t)0Dαi

t ui
∗(t) |)

(2−p)p
2

) 2
p

dt

) p
2

·

(∫ T

0

(
(ai(t))

p
2 (| ai(t)0Dαi

t ui
k(t) | + | ai(t)0Dαi

t ui
∗(t) |)

(2−p)p
2

) 2
2−p

dt

) 2−p
2

≤
(∫ T

0

| ai(t)0Dαi
t uk(t)− ai(t)0D

αi
t ui

∗(t) |2

ai(t)(| ai(t)0Dαi
t ui

k(t) | + | ai(t)0Dαi
t ui

∗(t) |)2−p
dt

) p
2

2
p(2−p)

2

(∫ T

0

(ai(t))
p

2−p

(a0i )
p

2−p

(
| ai(t)0Dαi

t ui
k(t) |p + | ai(t)0Dαi

t ui
∗(t) |p

)
dt

) 2−p
2

≤
(∫ T

0

| ai(t)0Dαi
t ui

k(t)− ai(t)0D
αi
t ui

∗(t) |2

ai(t)(| ai(t)0Dαi
t ui

k(t) | + | ai(t)0Dαi
t ui

∗(t) |)2−p
dt

) p
2

2
p(2−p)

2

(∫ T

0

| ai(t)0Dαi
t ui

k(t) |p + | ai(t)0Dαi
t ui

∗(t) |p dt

) 2−p
2

,

where the inequality (b1 + b2)
p ≤ 2p(bp1 + bp2), b1, b2 ∈ R+, is used. Therefore, we

obtain ∫ T

0

(Φp(ai(t)0D
αi
t ui

k(t))− Φp(ai(t)0D
αi
t ui

∗(t)))0D
αi
t (ui

k(t)− ui
∗(t))dt

≥ J ′
i ∥ ui

k − ui
∗ ∥2αi,p (∥ ui

k ∥pαi,p + ∥ ui
∗ ∥pαi,p)

p−2
p , i = 1, 2, ..., n, (4.14)
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where J ′
i is a nonnegative constant, i = 1, 2, ..., n. When p ≥ 2 , we can easy to

observe that∫ T

0

(Φp(ai(t)0D
αi
t ui

k(t))− Φp(ai(t)0D
αi
t ui

∗(t)))0D
αi
t (ui

k(t)− ui
∗(t))dt

≥ jiω∗ ∥ ui
k − ui

∗ ∥pαi,p, i = 1, 2, ..., n. (4.15)

Then, combining (4.12), (4.14) and (4.15) yields

n∑
i=1

∥ ui
k − ui

∗ ∥pαi,p=∥ uk − u∗ ∥pX→ 0, as k → ∞.

That is, the sequence {uk}k∈N converges to u∗ strongly in X. Therefore, we assert
that the functional I+ satisfies the P.S. condition.

Nextly, we show that the fuctional I+ satisfies the geometry conditions of the
Mountain pass theorem.

Obviously, from the definition of I+, we have I+(0) = 0. In view of (A9), there

exist δ > 0 and 0 < ε < min

{
1, ω∗

λ0T

}
such that

f(t, u) ≤

n∑
i=1

| ui |p

C0
ε, (4.16)

for any u = (u1, u2, ..., un) ∈ Rn with | ui |< δ, i = 1, 2, ...n.
Choose ρ = 1

ndδ > 0 and σ = ω∗−λ0Tε
p ρp > 0. Then, the inequality (3.11)

implies that

∥ u ∥∞≤ nd ∥ u ∥X= δ, ∀u ∈ X, ∥ u ∥X= ρ.

Combining (4.1), (3.4), (A7) and (4.16) yields

I+(u(t)) ≥
ω∗

p

n∑
i=1

∥ ui ∥pαi,p +

n∑
i=1

m∑
j=1

∫ ui(tj)

0

Iij(s)ds−
λ0

C0
ε

∫ T

0

n∑
i=1

| ui(t) |p dt

≥ ω∗

p

n∑
i=1

∥ ui ∥pαi,p − λ0

C0
εT

n∑
i=1

∥ ui ∥p∞

≥ ω∗

p
∥ u ∥pX −λ0T

p
ε ∥ u ∥pX

=
ω∗ − λ0Tε

p
∥ u ∥pX= σ,

for u = (u1, u2, ..., un) ∈ X with ∥ u ∥X= ρ, which means that the condition (C2)
of Theorem 2.2 holds.

Moreover, Lemma 2.2 shows that the condition (A6) yields the following result

f(t, u) ≥ c1(

n∑
i=1

| ui |µ)− c2, for c1, c2 > 0. (4.17)
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Let B is a unit ball in RN, z = (z1, z2, ..., zn) ∈ X and zi is a positive function,
i = 1, 2, ...n. Denote by z0 the extension of z to zero out of B. Then, for any
τ ∈ R+, due to (4.1), (4.17) and (A10), we infer

I+(τz0) ≤
ω∗

p
∥ τz0 ∥pX +

n∑
i=1

m∑
j=1

∫ τzi
0(tj)

0

Iij(s)ds−λ0c1(

n∑
i=1

∫ T

0

| τzi0 |µ dt)+λ0c2T

≤ω∗

p
τp ∥ z0 ∥pX +

n∑
i=1

m∑
j=1

τωij+1Mijb
ωij+1
i

ωij + 1
∥ zi0 ∥ωij+1

αi,p

− λ0c1τ
µ(

n∑
i=1

∥ zi0 ∥µLµ) + λ0c2T.

Note that µ > p, 0 < ωij ≤ p− 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m, then, we have

I+(τz0) → −∞, as τ → +∞,

which implies that there exists a enough large number τ∗ such that I+(τ∗z0) ≤ 0
and ∥ τ∗z0 ∥> ρ. Namely, the condition (C3) of Theorem 2.2 holds. Therefore, we
have shown that the functional I+ satisfies the geometry conditions of the Mountain
pass theorem. This fact guarantees that the functional I+ possesses a critical value
z∗(t) ∈ X such that I ′+(z∗(t))(v(t)) = 0 for any v(t) ∈ X, i.e.,

n∑
i=1

∫ T

0

Φp(ai(t)0D
αi
t zi∗(t))0D

αi
t vi(t)dt+

n∑
i=1

m∑
j=1

Iij(z
i
∗(tj))v

i(tj)

=

n∑
i=1

∫ T

0

λ(t)fzi
∗
(t, θ(z1∗(t)), θ(z

2
∗(t)), ..., θ(z

n
∗ (t)))v

i(t)dt, (4.18)

then, by using (A7) and (A8), and taking vi = zi−∗ for i = 1, 2, ..., n, we deduce

0 =

n∑
i=1

∫ T

0

Φp(ai(t)0D
αi
t zi−∗ (t))0D

αi
t zi−∗ (t)dt+

n∑
i=1

m∑
j=1

Iij(z
i−
∗ (tj))z

i−
∗ (tj)

≥ ω∗

n∑
i=1

∥ zi−∗ ∥pαi,p .

Hence, we obtain zi−∗ ≡ 0, i = 1, 2, ..., n, which means that zi∗ ≥ 0, i = 1, 2, ..., n,
and f+(t, z∗) = f(t, z∗), i.e., z∗ is also a critical value for functional I. Then, we
say z∗ is a positive solution of BVPs (1.1).

Example 4.2. Let n = 2, m = 1. Define f(t, x, y) = xp+1y2 + yp+1x2 and

Ii1(s) =

dis
p−1, s ≥ 0, di > 0, 1 ≤ i ≤ 2,

−di(−s)p−1, s < 0, di > 0, 1 ≤ i ≤ 2,

where p is an arbitrary odd number with p > 1. It is easy to observe that f(t, x, y)
and Ii1(s) (1 ≤ i ≤ 2) are satisfy all the conditions of Theorem 4.2 by taking
µ = p+ 3, υ = p+ 1 and wi1 = p− 1, i = 1, 2.
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5. Conclusion
In this paper, by the methods of a critical point theorem and the Mountain pass
theorem, the existence of at least one positive solution has been addressed for a
class of p-Laplacian type fractional Dirichlet’s boundary value problem involving
impulsive impacts. Two examples have been given to illustrate the applications of
our results.
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