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MULTIWAVE SOLUTIONS TO THE
NEGATIVE-ORDER KDV EQUATION IN

(3+1)-DIMENSIONS

Zhou-Zheng Kang1,2 and Tie-Cheng Xia1,†

Abstract This work aims to study the negative-order KdV equation in (3+1)-
dimensions which is developed via using the recursion operator of the KdV
equation by employing the three-wave methods. As a consequence, a variety of
novel multiwave solutions with several arbitrary parameters to the considered
equation are presented. Moreover, selecting particular values for the parame-
ters, some graphs are plotted to show the spatial structures and dynamics of
the resulting solutions. These results enrich the variety of the dynamics in the
field of nonlinear waves.
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1. Introduction
Many complex nonlinear phenomena arising in diverse areas of science, such as
plasma physics, nonlinear optics, optical communication, solid state physics, lattice
dynamics, etc, can be mainly described by nonlinear evolution equations (NLEEs).
Investigating on exact solutions to NLEEs has important help for the understand-
ing of nonlinear interaction [25]. Therefore, it is a very meaningful and interesting
work to construct novel solutions to NLEEs. Plenty of approaches currently exist
for the derivation of exact solutions, some of which include the inverse scattering
method [1, 26], the Hirota’s bilinear method [2, 7, 14, 15], the Darboux transforma-
tion method [16,22,27–29], the Lie symmetry method [18,23], the Riemann-Hilbert
method [10,17,24], the variable separation method [5,12,30] and the multiple exp-
function method [6,9]. Among these methods, the Hirota’s bilinear method provides
a direct and powerful way to seek multi-soliton solutions of NLEEs. Inspired by
this approach, extensive research has been carried out on probing various kinds of
interaction solutions among solitary wave solutions (kink or bell), periodic wave
solutions, etc. For example, Tang et al. investigated interaction phenomena in-
cluding a lump and two kink solitons [13], a lump and other multi-solitons [3] for
the (2+1)-dimensional BLMP equation. Liu et al. [8] obtained a lump and a kink
soliton for a new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation,
and analyzed the interaction process in detail. In Ref. [19], Wang et al. proposed
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an efficient approach by using Hirota’s bilinear form and a generalized three-wave
type of ansatz method, and studied the (2+1)-dimensional and (3+1)-dimensional
KdV-type equations. As a result, the periodic type of three-wave solutions including
the periodic two-solitary wave solution, the doubly periodic solitary wave solution
as well as the breather type of solitary wave solution for both equations were pre-
sented. Subsequently, many NLEEs were investigated via adopting this approach,
such as the (2+1)-dimensional Ito equation [31], the (2+1)-dimensional breaking
soliton equation [32], the (2+1)-dimensional Kadomtsev-Petviashvili equation [20],
the (3+1)-dimensional Sharma-Tasso-Olver-like equation [4] and others.

In 2017, depending on using the recursion operator of the KdV equation, Wazwaz
[21] developed some negative-order KdV equations in (3+1)-dimensions, and showed
distinct solitons structures for these equations. In the current work, we focus on
the following equation

− uxxt + 4uut + 2ux∂
−1
x (ut) = ux + uy − uxxz + 4uuz + 2ux∂

−1
x (uz), (1.1)

where u is a function of the spatial variables x, y, z and temporal variable t, ∂x
means the total derivative with respect to x, and ∂−1

x is its integration operator.
Eq. (1.1) is referred to as the (3+1)-dimensional negative-order KdV equation for
model II. The principal aim of this study is to work out a series of exact solutions
to the above newly introduced equation by implementing the three-wave methods.

2. Application of three-wave methods
In this section, we start with a variable transformation

u(x, y, z, t) = ϕx(x, y, z, t), (2.1)

under which Eq. (1.1) is cast into the following equation in ϕ(x, y, z, t):

− ϕxxxt + 4ϕxϕxt + 2ϕxxϕt = ϕxx + ϕxy − ϕxxxz + 4ϕxϕxz + 2ϕxxϕz. (2.2)

We introduce an auxiliary function f(x, y, z, t) having the link with ϕ(x, y, z, t) as

ϕ(x, y, z, t) = −2[ln f(x, y, z, t)]x. (2.3)

By substituting (2.3) into Eq. (2.2), we obtain

4fxxxftfx − 4fxtfxfxx − 4fxxxfxfz + 4fxxfxfxz − fxxfyf − 2fxfxyf

+ 2f2
xfy + fxxxxfzf + 4fxxxzfxf − 4fxxzf

2
x − 2fxxfxxzf + 2f2

xxfz

− 3fxxfxf + 2fxxtfxxf − 4fxxxtfxf − fxxxxftf + 4fxxtf
2
x − 2f2

xxft

+ 2f3
x + fxxxxtf

2 + fxxxf
2 + fxxyf

2 − fxxxxzf
2 = 0.

(2.4)

Apparently, the potential function u(x, y, z, t) is determined by (2.1) provided the
auxiliary function f(x, y, z, t) is a solution to Eq. (2.4). In the subsections that
follow, we shall treat Eq. (2.4) by considering the auxiliary function f(x, y, z, t) in
two forms.
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2.1. Ansatz method I
Following the description of method in Ref. [19], the auxiliary function f is supposed
to be of the form

f = a1cos η1 + a2cosh η2 + a3eη3 + a4e−η3 , (2.5)

where

η1 = k1x+ k2y + k3z + k4t, η2 = l1x+ l2y + l3z + l4t, η3 = c1x+ c2y + c3z + c4t,

and the parameters aj , kj , lj , cj , j = 1, 2, 3, 4, need to be known later. Insertion of
the assumption (2.5) into Eq. (2.4) directly results in a system of overdetermined
algebraic equations in the unknowns. By straightforward calculation of the resulting
system, seven classes of the parameters’ relations are listed below:

Case 1.
a1 = a2 = 0, c2 = 4c21c3 − 4c21c4 − c1.

Through substitution of these results into (2.5), we derive

f = a3e
η3 + a4e

−η3 ,

where
η3 = c1x+

(
4c21c3 − 4c21c4 − c1

)
y + c3z + c4t.

Hence, setting a3a4 > 0, we acquire the solitary wave solution of Eq. (1.1) as follows

u = −2c21sech2

(
η3 +

1

2
ln

a3
a4

)
. (2.6)

Case 2.

a1 = 0, a3 =
a22
4a4

, c1 = ϵl1, c2 = 4ϵl21l3 + 4l21c3 − 4l21c4 − 4ϵl21l4 − 2ϵl1 − ϵl2, ϵ = ±1.

In this case, carrying these results into (2.5) under the restriction of a2a4 > 0
leads to

f = a2cosh η2 +
a22
4a4

eη3 + a4e−η3 ,

with η2, η3 being given by

η2 = l1x+ l2y + l3z + l4t,

η3 = ϵl1x+
(
4ϵl21l3 + 4l21c3 − 4l21c4 − 4ϵl21l4 − 2ϵl1 − ϵl2

)
y + c3z + c4t.

Therefore, the expression of solitary wave solution for Eq. (1.1) reads

u = −2l21 +
2
(
a2l1 sinh η2 + ϵ

√
a22l1 sinh(η3 + ξ1)

)2(
a2 cosh η2 +

√
a22 cosh(η3 + ξ1)

)2 ,

where ξ1 = ln a2

2a4
.
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Case 3.

a2 = 0, a3 = − a21k
2
1

4c21a4
,

c2 =
2k21k4c

2
1 − 2k21k3c

2
1 − k21k2 − k41k3 + k41k4 − k1c

2
1 + k2c

2
1 − k3c

4
1 + k4c

4
1 − k31

2k1c1
,

c3 =
k21k3 − k21k4 + k1 + 2k1c1c4 − k3c

2
1 + k4c

2
1 + k2

2k1c1
.

In this case, under the assumption of a3 = −a5, a5 > 0, the auxiliary function
takes the form

f = a1cos η1 − a5eη3 + a4e−η3 ,

with η1, η3 being given by

η1 = k1x+ k2y + k3z + k4t,

η3 = c1x

+
(2k21k4c

2
1−2k21k3c

2
1 − k21k2−k41k3+k41k4−k1c

2
1+k2c

2
1−k3c

4
1+k4c

4
1−k31)y

2k1c1
,

+

(
k21k3 − k21k4 + k1 + 2k1c1c4 − k3c

2
1 + k4c

2
1 + k2

)
z

2k1c1
+ c4t.

Hence, we write down the periodic solitary wave solution to Eq. (1.1)

u =
2
(
a1k

2
1cos η1 + 2c21

√
a4a5 sinh(η3 + ξ2)

)
a1cos η1 − 2

√
a4a5 sinh(η3 + ξ2)

+
2
(
a1k1sin η1 + 2c1

√
a4a5 cosh(η3 + ξ2)

)2(
a1cos η1 − 2

√
a4a5 sinh(η3 + ξ2)

)2 ,

where ξ2 = 1
2 ln

a5

a4
.

Case 4.

a1 =
ϵia2l1
k1

, a3 = a4 = 0,

k2 =
2k21l

2
1l3 − 2k21l

2
1l4 + k21l2 + l41l3 − l41l4 − k21l1 − l21l2 − k41l4 + k41l3 − l31

2k1l1
,

k3 = −k21l3 − k21l4 − 2k1k4l1 + l1 − l21l3 + l21l4 + l2
2k1l1

, ϵ = ±1.

Regarding this case, we set k1 = ik̃1 and k4 = ik̃4, where k̃1, k̃4 ∈ R, k1l1 ̸= 0.
Then plugging these results into (2.5) gives rise to

f =
ϵa2l1

k̃1
cosh η̃1 + a2cosh η2,

with η̃1, η2 being given by

η̃1 = k̃1x+

(
2k̃21l

2
1l3 − 2k̃21l

2
1l4 + k̃21l2 − l41l3 + l41l4 − k̃21l1 + l21l2 + k̃41l4 − k̃41l3 + l31

)
y

2k̃1l1

−
(
k̃21l3 − k̃21l4 − 2k̃1k̃4l1 − l1 + l21l3 − l21l4 − l2

)
z

2k̃1l1
+ k̃4t,

η2 = l1x+ l2y + l3z + l4t.
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Thus, we obtain the solitary wave solution to Eq. (1.1)

u = −
2
(
ϵk̃1l1cosh η̃1 + l21cosh η2

)
ϵl1
k̃1

cosh η̃1 + cosh η2
+

2(ϵl1sinh η̃1 + l1sinh η2)
2(

ϵl1
k̃1

cosh η̃1 + cosh η2
)2 .

Case 5.

k2 = −k1, k3 = k4, l2 = −l1, l3 = l4, c2 = −c1, c3 = c4.

Insertion of these results into (2.5) generates

f = a1cos η1 + a2cosh η2 + a3eη3 + a4e−η3 ,

where η1, η2, η3 are determined by

η1 = k1x− k1y + k4z + k4t, η2 = l1x− l1y + l4z + l4t, η3 = c1x− c1y + c4z + c4t.

If a3a4 > 0, then the expression of periodic solitary wave solution for Eq. (1.1)
reads

u = −
2
(
− a1k

2
1cos η1 + a2l

2
1cosh η2 + 2c21

√
a3a4 cosh(η3 + ξ3)

)
a1cos η1 + a2cosh η2 + 2

√
a3a4 cosh(η3 + ξ3)

+
2
(
− a1k1sin η1 + a2l1sinh η2 + 2c1

√
a3a4 sinh(η3 + ξ3)

)2(
a1cos η1 + a2cosh η2 + 2

√
a3a4 cosh(η3 + ξ3)

)2 ,

(2.7)

where ξ3 = 1
2 ln

a3

a4
.

Further, under the conditions of a2 = 0 and k1 = c1, the periodic solitary wave
solution (2.7) can be reduced to

u = −
2c21

(
− a21 + 4a3a4 + 4a1

√
a3a4sin η1 sinh(η3 + ξ3)

)(
a1cos η1 + 2

√
a3a4 cosh(η3 + ξ3)

)2 , (2.8)

where
η1 = c1x− c1y + k4z + k4t, η3 = c1x− c1y + c4z + c4t.

Case 6.

k1 = ϵic1, k2 = ϵic1(4l3c1 − 4l4c1 − 1), k3 = ϵil3 − ϵil4 + k4, l1 = c1,

l2 = c1(4l3c1 − 4l4c1 − 1), c2 = c1(4c1c3 − 4c1c4 − 1), ϵ = ±1.

In this case, if we posit that a3a4 > 0 and k4 = ik̃4, where k̃4 is a real constant,
then we substitute these results into (2.5) and find

f = a1cosh η̃1 + a2cosh η2 + a3eη3 + a4e−η3 ,

in which η̃1, η2, η3 are determined by

η̃1 = ϵc1x+ ϵc1(4l3c1 − 4l4c1 − 1)y +
(
ϵl3 − ϵl4 + k̃4

)
z + k̃4t,

η2 = c1x+ c1(4l3c1 − 4l4c1 − 1)y + l3z + l4t,

η3 = c1x+ c1(4c1c3 − 4c1c4 − 1)y + c3z + c4t.
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Therefore, the solitary wave solution of Eq. (1.1) is represented as

u = −2c21 +
2
(
ϵa1c1sinh η̃1 + a2c1sinh η2 + 2c1

√
a3a4 sinh(η3 + ξ4)

)2(
a1cosh η̃1 + a2cosh η2 + 2

√
a3a4 cosh(η3 + ξ4)

)2 ,

where ξ4 = 1
2 ln

a3

a4
.

Case 7.

k1 = ϵic1, k2 = 4k3c
2
1 − 4k4c

2
1 − ϵic1, l1 = −c1, l2 = 4ϵik3c

2
1 − 4ϵik4c

2
1 + c1,

l3 = ϵik3 − ϵik4 + l4, c2 = 8ϵik3c
2
1 − 8ϵik4c

2
1 − c1, c3 = 2ϵik3 − 2ϵik4 + c4, ϵ = ±1.

Particularly, in this case, if we take a3 = a4 = 1 and l4 = il̃4, c1 = ic̃1, c4 =
ic̃4, l̃4, c̃1, c̃4 ∈ R, then the auxiliary function (2.5) is of the form

f = a1cos η1 + a2cos η̃2 + eη3 + e−η3 ,

where η3 = iη̃3, and η1, η̃2, η̃3 are given by

η1 = −ϵc̃1x+
(
ϵc̃1 − 4k3c̃

2
1 + 4k4c̃

2
1

)
y + k3z + k4t,

η̃2 = −c̃1x+
(
4ϵk4c̃

2
1 − 4ϵk3c̃

2
1 + c̃1

)
y +

(
ϵk3 − ϵk4 + l̃4

)
z + l̃4t,

η̃3 = c̃1x+ (8ϵk4c̃
2
1 − 8ϵk3c̃

2
1 − c̃1)y + (2ϵk3 − 2ϵk4 + c̃4)z + c̃4t.

Thus, the periodic wave solution of Eq. (1.1) is obtained as

u = 2c̃21 +
2(ϵa1c̃1sin η1 + a2c̃1sin η̃2 − 2c̃1sin η̃3)

2

(a1cos η1 + a2cos η̃2 + 2cos η̃3)
2 .

2.2. Ansatz method II
In this subsection, we take an interest in generating double resonance-type solutions
to Eq. (1.1) based on a different ansatz method [11]. Assuming that the expression
of the auxiliary function f is

f = a1sin
2η1 + a2sinh

2η1 + a3e
η2 + a4e

−η2 , (2.9)

in which
η1 = k1x+ k2y + k3z + k4t, η2 = c1x+ c2y + c3z + c4t,

and aι, kι, cι, ι = 1, 2, 3, 4, are several undetermined parameters. Performing the
similar operations as before, we get two sets of solutions:

Case 1.

a4 = k1 = 0, k2 = k3c
2
1 − k4c

2
1, c2 = c21c3 − c21c4 − c1.

Substituting these results into (2.9) yields

f = a1sin
2η1 + a2sinh

2η1 + a3e
η2 ,

where

η1 =
(
k3c

2
1 − k4c

2
1

)
y + k3z + k4t, η2 = c1x+

(
c21c3 − c21c4 − c1

)
y + c3z + c4t.
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Therefore, the solution to Eq. (1.1) is expressed as

u = − 2a3c
2
1e

η2

a1sin
2η1 + a2sinh

2η1 + a3eη2
+

2a23c
2
1e

2η2(
a1sin

2η1 + a2sinh
2η1 + a3eη2

)2 . (2.10)

Case 2.
k2 = −k1, k3 = k4, c2 = −c1, c3 = c4.

Carrying these results into (2.9), it can be seen that the auxiliary function

f = a1sin
2η1 + a2sinh

2η1 + a3e
η2 + a4e

−η2 ,

where
η1 = k1x− k1y + k4z + k4t, η2 = c1x− c1y + c4z + c4t.

Hence, Eq. (1.1) possesses the double resonance-type solution

u = −
2
(
2a1k

2
1cos(2η1) + 2a2k

2
1cosh

2η1 + 2a2k
2
1sinh

2η1 + 2c21
√
a3a4 cosh(η2 + ξ5)

)
a1sin

2η1 + a2sinh
2η1 + 2

√
a3a4 cosh(η2 + ξ5)

+
2
(
a1k1sin(2η1) + 2a2k1sinh η1 cosh η1 + 2c1

√
a3a4 sinh(η2 + ξ5)

)2(
a1sin

2η1 + a2sinh
2η1 + 2

√
a3a4 cosh(η2 + ξ5)

)2 ,

where ξ5 = 1
2 ln

a3

a4
and a3a4 > 0.

3. Summary and discussion
In this work, we concentrate on the study of the negative-order KdV equation
in (3+1)-dimensions upon applying the three-wave methods. Finally, a series of
multiwave solutions to the equation under examination are gained. Additionally, via
selecting appropriate values for the parameters, we depict some obtained solutions
to show their localized coherent structures. Figure 1 indicates the localization
of solution (2.6) in (x, z)-plane which is a typical anti-bell-shaped solitary wave
solution. Figure 2 presents the periodic solitary wave solution (2.7). Manifestly,
from the expression (2.7), it is revealed that this solution is a complexiton solution or
an interaction solution combining trigonometric and hyperbolic waves. Due to the
amplitude of trigonometric waves involved oscillating periodically as time evolves,
it is actually a type of breather solitary wave solution. Under a proper choice of
parameters, the localized features are clearly displayed in Figure 2(a). It can be
known that a pair of anti-bell-shaped solitons interact mutually. As time evolves,
two solitons gradually fuse to generate a novel soliton with oscillations. And later
they seperate and recover their original shapes. Figure 2(b) is the density plot of
this wave. In particular, a reduced solution (2.8) arises from the solution (2.7),
which is also a type of breather wave solution with periodicity (see Figure 3). In
Figure 4, one can evidently observe the dynamics of the Y-type resonance solitary
wave solution (2.10). As time goes by, this wave propagates towards the positive
direction of the y-axis. In the future, more research should be undertaken to explore
abundant multiwave solutions of nonlinear evolution equations in nonlinear science.
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(a) (b) (c)

Figure 1. Plots of solution (2.6) with the parameters being fixed at a3 = 2, a4 = 2, c1 = 1
2 , c3 = 1, c4 =

1. (a) Perspective view of the wave with y = t = 0; (b) Density plot corresponding to Figure 1(a); (c)
The wave along the x-axis with y = z = 0 at different times.

(a) (b)

Figure 2. Plots of solution (2.7) with the parameters being fixed at a1 = 1, a2 = 1, a3 = 1, a4 = 1, k1 =
6, k4 = 1, l1 = 1, l4 = 2, c1 = −3, c4 = 2. (a) Perspective view of the wave with y = t = 0; (b) Density
plot corresponding to Figure 2(a).

(a) (b) (c)

Figure 3. Plots of solution (2.8) with the parameters being fixed at a1 = 4
5 , a3 = 1

2 , a4 = 1
2 , k4 =

− 1
3 , c1 = 1

3 , c4 = 2
3 . (a) Perspective view of the wave with y = t = 0; (b) Contour plot corresponding

to Figure 3(a); (c) The wave along the x-axis with y = z = 0 at different times.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Plots of solution (2.10) with the parameters being fixed at a1 = 1, a2 = 2, a3 = 1, c1 =
−1, c3 = −2, c4 = −1, k3 = 1, k4 = −1, x = 0. (a) Perspective view of the wave at t = −2; (b) Perspec-
tive view of the wave at t = 0; (c) Perspective view of the wave at t = 2; (d) Density plot corresponding
to Figure 4(a); (e) Density plot corresponding to Figure 4(b); (f) Density plot corresponding to Figure
4(c).
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