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Abstract This paper studied some properties of a predator-prey system with
Holling type III functional response. Based on Mawhin’s Continuation The-
orem, some sufficient conditions for the existence of periodic solutions are
obtained. Moreover, the global stability of the periodic solution is built with
the help of a suitable Lyapunov function.
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1. Introduction

Predator-prey systems are the basic and important models in mathematic biology,
and massive works have been focus on them. In consideration of predator-prey
capacity, Holling proposes three different predations with functional response based
on experiments. A general Holling type functional response f , which depends on
the prey population x, takes the form

f(x) =
λxn

1 + λmxn
,

where λ is the attack efficiency of predator to prey population, m denotes the
handling time of predators, and the exponent n illustrates the shape of the functional
response.

The research on the existence and stability of the periodic solution is one of
the most important directions. And many authors investigated the existence and
stability of the periodic solutions by different methods. For examples, in Ref. [1],
Cheng, Zhang and Wang used differential equation geometry theory and the method
of successor functions to verify the existence of the periodic solution of the system
with holling type I 

x′(t) = rx(t)− cx(t)y(t), x ≤ x0;

y′(t) = −dy(t) + ecx(t)y(t), x ≤ x0;

x′(t) = rx(t)− cx0y(t), x > x0;

y′(t) = −dy(t) + ecx0y(t), x > x0.
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And they prove the attractivity of the periodic solution by sequence convergence
rules and qualitative analysis.

In Ref. [5], Lisennna verified the existence of the period solutions of the system
through the comparison theorem and Brouwer fixed-point theorem

u′(t) = u(a(t)− u− u

u+m(t)
),

v′(t) = v(b(t)− v

r(t)u
).

And they construct a Liapunov function to prove the global asymptotic stability of
the periodic solution.

The results in Ref. [2], O. Diop, A. Moussaoui and A. Sene established sufficient
conditions for existence of a periodic solution of the system with Holling type II

x′(t) = r(t)x(1− x

k(t)
)− αxy

x+D
,

y′(t) = −d(t)y +
βxy

x+D
+ Λ(t).

Readers can refer to Refs. [3, 4, 6–11] to get more methods which can solve out the
existence of periodic solution or stability of the solution.

Motivated by the above discussion, in this paper, we mainly study the predator-
prey model with Holling type III described by

dx(t)

dt
= r(t)x(t)(1− x(t)

k
)− m(t)x2(t)y(t)

1 + cx(t) + bx2(t)
,

dy(t)

dt
= sy(t)(

m(t)x2(t)

1 + cx(t) + bx2(t)
− d(t)).

(1.1)

Where x(t), y(t) are the densities of the prey population and predator population at
time t, and they are all positive numbers. The other parameters have the following
biological meanings: c, b are positive, r(t) is the intrinsic per capita growth rate
of prey population at time t; k is the prey environmental carrying capacity; s is
the efficiency with which predators convert consumed prey into new predators; d(t)
is the per capita death rate of predators at time t, m(t) is the attack efficiency of
predator to prey population at time t, and r,m, d are continuous functions of period
T . We first denote:

r̄ =
1

T

∫ T

0

r(t)dt, m̄ =
1

T

∫ T

0

m(t)dt, d̄ =
1

T

∫ T

0

d(t)dt,

γ =
1

T

∫ T

0

|r(t)|dt,D =
1

T

∫ T

0

|d(t)|dt.

Then let

a = (γ + r̄)T − ln d̄b
m̄
.

This paper is organized as follows. In section 2, we first summarize a few concepts
which are needed, then we construct some conditions to prove the existence of
the periodic solution by continuation theorem. A suitable Lyapunov function is
estabished to investigate the global stability in the last section.
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2. Existence of periodic solution

To achieve the existence of periodic solutions, we shall summarize a few concepts
in the following.

Let X and Z be Banach spaces. L : DomL ⊂ X → Z be a linear mapping and
N : X → Z is a continuous mapping. The mapping L will be called a Fredholm
mapping of index zero if dimKerL = codimImL < ∞ and ImL is closed in Z.
If L is a Fredholm mapping of index zero, then there exist continuous projectors
P : X → X and Q : Z → Z such that ImP = KerL and KerQ = ImL =
Im(I − Q). It follows that L|DomL

⋂
KerP : (I − P )X → ImL is invertible and

its inverse is denoted by kp. If Ω is a bounded open subset of X,the mapping N
is called L−compact on Ω̄, if QN(Ω̄) is bounded and KP (I − Q)N : Ω̄ → X is
compact, where I is the identity.Because ImQ is isomorphic to KerL, there exits
an isomorphism J : ImQ→ KerL.

Lemma 2.1 (Continuation theorem). Let L be a Fredholm mapping of index zero
and let N be L−compact on Ω̄. Assume

(i) for each λ ∈ (0, 1),every solution x of Lx = λNx is such that x ∈ ∂Ω
⋂
Dom(L),

(ii) QNx 6= 0 for each x ∈ ∂Ω
⋂
Ker(L),

(iii) deg{JQN,Ω
⋂
Ker(L), 0} 6= 0.

Then Lx = Nx has at least one solution in Ω̄
⋂
Dom(L).

Theorem 2.1. If the coefficients in system (1.1) satisfies c � b and k > ea. And
the algebraic equations

r(t)− r(t)

k
eu1(t) − m(t)eu1(t)+u2(t)

1 + ceu1(t) + beu1(t)2
= 0,

sm(t)e2u1(t)

1 + ceu1(t) + beu1(t)2
− sd(t) = 0,

has a unique solution (u∗1, u
∗
2) ∈ intR2

+ = {(u∗1, u∗2)T |u∗i > 0}. Then the system
(1.1) has at least one positive T-periodic solution.

Proof. Make the change of variables

x(t) = eu1(t), y(t) = eu2(t)

in (1.1), we get a simplified system,
du1(t)

dt
= r(t)− r(t)

k
eu1(t) − m(t)eu1(t)+u2(t)

1 + ceu1(t) + be2u1(t)
,

du2(t)

dt
=

sm(t)e2u1(t)

1 + ceu1(t) + be2u1(t)
− sd(t).

(2.1)

Define

X = Z = {u(t) = (u1(t), u2(t))T ∈ C(R,R2) : ui(T + t) = ui(t), i = 1, 2}

with the norm ‖u‖ = ‖(u1(t), u2(t))T ‖ = max |u1(t)| + max |u2(t)|, u ∈ X, then it
is easy to prove that X and Z are Banach space.
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Let

Nu =

 r(t)− r(t)
k eu1(t) − m(t)eu1(t)+u2(t)

1+ceu1(t)+be2u1(t)

sm(t)e2u1(t)

1+ceu1(s)+be2u1(t) − sd(t)

 .
Lu =

du(t)

dt
, Pu =

1

T

∫ T

0

u(t)dt, u ∈ X, Qz =
1

T

∫ T

0

z(t)dt, z ∈ Z.

Then it follows that KerL = R2, ImL = {z ∈ Z :
∫ T

0
z(t)dt = 0} is closed in Z,

dimkerL = codimImL = 2 and P,Q are continuous projects such that

ImP = KerL and KerQ = ImL = Im(I −Q).

So, L can be proved a Fredholm mapping of index zero.
We find that the inverse Kp : ImL→ KerP

⋂
DomL exists and is given by

Kp(z) =

∫ T

0

z(s)ds− 1

T

∫ T

0

∫ t

0

z(s)dsdt.

Thus

QNu =

 1
T

∫ T
0

[r(t)− r(t)
k eu1(s) − m(t)eu1(s)+u2(s)

1+ceu1(s)+be2u1(s) ]ds

1
T

∫ T
0

[ sm(t)e2u1(s)

1+ceu1(s)+be2u1(s) − sd(t)]ds

 .
and

Kp(I −Q)Nu =

∫ T0 [r(t)− r
ke
u1(s) − m(t)eu1(s)+u2(s)

1+ceu1(s)+be2u1(s) ]ds∫ T
0

[ sm(t)e2u1(s)

1+ceu1(s))+be2u1(s) − sd(t)]ds


−

 1
T

∫ T
0

∫ t
0
[r(t)− r(t)

k eu1(s) − m(t)eu1(s)+u2(s)

1+ceu1(s)+be2u1(s) ]dsdt

1
T

∫ T
0

∫ t
0
[ sm(t)e2u1(s)

1+ceu1(s)+be2u1(s) − sd(t)]dsdt

 .
Clearly, QN and Kp(I −Q)N are continuous. By the Arzela-Ascoli theorem, it is
not difficult to show that Kp(I−Q)N(Ω̄) is compact for any open bounded Ω ⊂ X.
Moreover, QN(Ω̄) is clearly bounded.Thus, N is L−compact on Ω̄.

Now we are in the position of searching for an appropriate open, bounded subset
Ω for the application of the continuation theorem. Corresponding to the operator
equation Lu = λNu, λ ∈ (0, 1), we obtain

du1(t)

dt
= λ[r(t)− r(t)

k
eu1(t) − m(t)eu1(t)+u2(t)

1 + ceu1(t) + be2u1(t)
],

du2(t)

dt
= λ[

sm(t)e2u1(t)

1 + ceu1(t) + be2u1(t)
− sd(t)].

(2.2)

Assume that (u1(t), u2(t)) is a solution of (2.2) for a certain λ. Integrating (2.2)
over the interval [0, T ], we have∫ T

0

[r(t)− r

k
eu1(t) − m(t)eu1(t)+u2(t)

1 + ceu1(t) + be2u1(t)
]dt = 0,
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and ∫ T

0

[
sm(t)e2u1(t)

1 + ceu1(t) + be2u1(t)
− sd(t)]dt = 0,

Thus ∫ T

0

r(t)

k
eu1(t) +

m(t)eu1(t)+u2(t)

1 + ceu1(t) + be2u1(t)
dt = r̄T, (2.3)

and ∫ T

0

sm(t)e2u1(t)

1 + ceu1(t) + be2u1(t)
dt = sd̄T. (2.4)

From (2.2) and (2.3) we can get∫ T

0

|u′1(t)|dt = λ

∫ T

0

|r(t)− r

k
eu1(t) − m(t)eu1(t)+u2(t)

1 + ceu1(t) + be2u1(t)
|dt

<

∫ T

0

|r|dt+

∫ T

0

r

k
eu1(t) +

meu1(t)+u2(t)

1 + ceu1(t) + be2u1(t)
dt

= (γ + r̄)T.

From (2.2) and (2.4) we similar can have∫ T

0

|u′2(t)|dt = λ

∫ T

0

| sm(t)e2u1(t)

1 + ceu1(t) + be2u1(t)
− sd(t)|dt

< s(D + d̄)T.

In view of (2.4), we will find

sd̄T =

∫ T

0

sm(t)e2u1(t)

1 + ceu1(t) + be2u1(t)
dt ≤

∫ T

0

sm(t)e2u1(t)

ceu1(t)
dt =

∫ T

0

sm(t)eu1(t)

c
dt.

By mean value theorem, we know there exists ξ1 ∈ [0, T ] such that

eu1(ξ1) ≥ sd̄T × c

sm̄T
=
d̄c

m̄
,

then we have

u1(ξ1) ≥ ln
d̄c

m̄
,

thus

u1(t) ≥ u1(ξ1)−
∫ T

0

|u′1(t)|dt = ln
d̄c

m̄
− (γ + r̄)T , H11. (2.5)

Through the equation (2.4), we can easily get∫ T

0

m(t)e−u1(t)

b
≥
∫ T

0

m(t)e2u1(t)

c+ be3u1(t)
dt ≥

∫ T

0

m(t)e2u1(t)

ceu1(t) + be2u1(t)
dt ≥ d̄T,

Then the mean value theorem implies that there exists ξ2 ∈ [0, T ] such that

u1(ξ2) ≤ − ln
d̄b

m̄
.
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Hence

u1(t) ≤ u1(ξ2) +

∫ T

0

|u′1(t)|dt = (γ + r̄)T − ln
d̄b

m̄
, H12 = a, (2.6)

Thus, in view of (2.5) and (2.6) we obtain

max |u1(t)| ≤ max{|H11|, |H12|} := H1. (2.7)

Furthermore, from (2.3) we also have∫ T

0

m(t)eu1(t)+u2(t)

1 + ceu1(t) + be2u1(t)
dt =

∫ T

0

r(t)− r(t)

k
eu1(t)dt.

By the basic inequality, we will get∫ T

0

m(t)eu2(t)

2
√
b+ c

≥
∫ T

0

r(t)− r(t)

k
eu1(t)dt.

Then using the mean value theorem, there exists η1 ∈ [0, T ] Such that

u2(η1) ≥ ln[(r̄ − r̄

k
eH12)

2
√
b+ c

m̄
].

Thus

u2(t) ≥ u2(η1)−
∫ T

0

|u′2(t)|dt = ln[(r̄− r̄

k
eH12)

2
√
b+ c

m̄
]− s(D+ d̄)T , H21. (2.8)

From (2.3), we have ∫ T

0

m(t)eu1(t)+u2(t)

1 + ceu1(t) + be2u1(t)
dt ≤

∫ T

0

r(t)dt.

Then we make use of the equation (2.4), and the mean value theorem, we can get
that there exists η2 ∈ [0, 1] such that

eu2(η2)

∫ T

0

m(t)e2u1(t)

1 + ceu1(t) + be2u1(t)
dt ≤ eu2(η2)

∫ T

0

eu1(t)dt

∫ T

0

m(t)eu1(t)

1 + ceu1(t) + be2u1(t)
dt

≤ r̄T
∫ T

0

eu1(t)dt.

So we obtain

u2(η2) ≤ ln
r̄T eH12

d̄
.

Thus

u2(t) ≤ u2(η2) +

∫ T

0

|u′2(t)|dt = ln
r̄T eH12

d̄
+ s(D + d̄)T , H22. (2.9)

In view of (2.8) and (2.9) we have

max |u2(t)| ≤ max{|H21|, |H22|} := H2. (2.10)
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Under the assumptions in Theorem 2.1, it is easy to show that the algebraic equation
has a unique solution (u∗1, u

∗
2) ∈ intR2

+ = {(u∗1, u∗2)T |u∗i > 0}. Let H = H1+H2+H3,
where H3 > 0 is large enough that

‖(lg{u∗1(t)}, lg{u∗2(t)})T ‖ = | lg{u∗1(t)}|+ | lg{u∗2(t)}| < H3.

Define Ω = {u(t) = (u1(t), u2(t))T ∈ X : ‖u‖ < H}. Thus Ω satisfies the demand
in Lemma 2.1. When u ∈ ∂Ω

⋂
R2, that is ‖u‖ = H. Then

QNu =

 1
T

∫ T
0

[r(t)− r(t)
k eu1(s) − m(t)eu1(s)+u2(s)

1+ceu1(s)+be2u1(s) ]ds

1
T

∫ T
0

[ sm(t)e2u1(s)

1+ceu1(s)+be2u1(s) − sd(t)]ds

 6= 0.

Because of ImP = KerL, J can be the identity mapping,so

deg{JQN,Ω
⋂
KerL, 0}

=sgn

∣∣∣∣∣∣∣
A − m̄eu

∗
1+u∗

2

1+ceu
∗
1 +be2u

∗
1

2sm̄e2u
∗
1 (1+ceu

∗
1 +be2u

∗
1 )−sm̄e2u

∗
1 (ceu

∗
1 +2be2u

∗
1 )

(1+ceu
∗
1 +be2u

∗
1 )2

0

∣∣∣∣∣∣∣
=sgn(

sm̄2e3u∗
1+u∗

2 (2 + ceu
∗
1 )

(1 + ceu
∗
1 + be2u∗

1 )3
) 6= 0.

And there is no need to calculate the exact form of A. By now the conditions
in Lemma 2.1 are all satisfied. Hence the system (2.1) has at least one solution
(u∗1(t), u∗2(t))T in DomL

⋂
Ω̄. Then (x∗(t), y∗(t))T is a positive T-periodic solution

of (1.1).

3. The stability of the periodic solution

Definition 3.1. Let (x∗(t), y∗(t)) be a positive T-periodic solution of system (1.1).
We say that it is globally asymptotically stable if any other positive solution (x(t), y(t))

has the property

lim
t→+∞

|x(t)− x∗(t)| = 0 = lim
t→+∞

|y(t)− y∗(t)|.

Let (x∗(t), y∗(t)) be a positive T-periodic solution of system (1.1). under the
substitution

u(t) =
x(t)

x∗(t)
− 1, v(t) =

y(t)

y∗(t)
− 1.

system (1.1) turns into
du(t)

dt
= (1 + u){−r(t)

k
ux∗(t)− [

y∗(t)

x∗(t)
(
m(t)

η(t)
− m(t)(1 + u+ v + uv)

θ(t)
)]},

dv(t)

dt
= (1 + v)[

sm(t)(1 + 2u+ u2)

θ(t)
− sm(t)

η(t)
].

(3.1)

Where

θ(t) =
1

x∗(t)2
+ c(1 + u)

1

x∗(t)
+ b(1 + u)2, η(t) =

1

x∗(t)2
+ c

1

x∗(t)
+ b.
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Denote by x̃(t) the positive T-periodic solution of the equation

x′ = x[r(t)− r(t)

k
x], (3.2)

and by ỹ(t) the positive solution of the equation

y′ = y[
sm(t)x̃2(t)

1 + cx̃(t) + bx̃2(t)
− sd(t)], (3.3)

moreover, we can define the ¯x(t) is the positive periodic solution of the equation

x′ = x[r(t)− r(t)

k
x− m(t)xỹ(t)

1 + cx+ bx2
], (3.4)

and ȳ(t) is the periodic solution to

y′ = y[
sm(t)x̄2(t)

1 + cx̄(t) + bx̄2(t)
− sd(t)]. (3.5)

Then the system (1.1) has at least a positive, T-periodic solution (x∗(t), y∗(t)) such
that

x̄(t) ≤ x∗(t) ≤ x̃(t), y(t) ≤ y∗(t) ≤ ỹ(t), t ∈ [0, T ]

by using the comparison theorem and the Brouwer fixed-point theorem. Thus for
any positive solution (x(t), y(t)), for t > t̄, we get

ū(t) =
x̄(t)

x∗(t)
− 1 ≤ u(t) ≤ x̃(t)

x∗(t)
− 1 = ũ(t),

v̄(t) =
ȳ(t)

y∗(t)
− 1 ≤ v(t) ≤ ỹ(t)

y∗(t)
− 1 = ṽ(t),

and

(u(t), v(t)) ∈ Q(t), t > t̄,

where Q(t) is the rectangle that

Q(t) = [ū(t), ũ(t)]× [v̄(t), ṽ(t)].

Next we define µ = [θ(t)], ν = [η(t)], and α = max{µ, ν}.
Let G(t;u, v) be the function defined by

G(t;u, v) =u2(u+ 1 + α)[−r(t)
k
x∗u− y∗

x∗
(
m(t)

η(t)
− m(t)(1 + u)(1 + v)

θ(t)
)]

+ v2[
sm(t)(1 + u)

θ(t)
− sm(t)

(1 + u)η(t)
],

and a suitable Lyapunov function will be introduced through the following function

H(x, y) =

∫ 1+x

1

(1− 1

s
)(1 +

α

s
)(s− 1)ds+

∫ 1+y

1

(1− 1

t
)(t− 1)dt. (3.6)

It is easy to find H(0, 0) = 0 and H(u, v) is positive for all other value of (u, v).
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Theorem 3.1. Assume the conditions in Theorem 2.1 are hold and let (x∗(t), y∗(t))
be a positive periodic solution of (1.1) such the solution is globally asymptotically
stable if

Ψ(t) < 0,

where

Ψ(t) = max{ G(t;u, v)

(1 + u)H(u, v)
}, (u, v) ∈ Q(t), t ∈ [0, 1].

Proof. Let (x(t), y(t)) be a solution of (1.1), and (u(t), v(t)) be the corresponding
solution of system (3.1). Introduce the following Lyapunov function

V (t) = H(u(t), v(t)).

By the equation (3.6), we can get

V ′(t) =(1− 1

u+ 1
)(1 +

α

1 + u
)uu′(t) + (1− 1

1 + v
)vv′(t)

=(
u

1 + u
)(u+1+α)u{−r(t)

k
ux∗(t)− [

y∗(t)

x∗(t)
(
m(t)

η(t)
− m(t)(1 + u+ v + uv)

θ(t)
)]}

+ v2[
sm(t)(1 + 2u+ u2)

θ(t)
− sm(t)

η(t)
]

=
1

1 + u
{u2(u+ 1 + α)[−r(t)

k
x∗u− y∗

x∗
(
m(t)

η(t)
− m(t)(1 + u)(1 + v)

θ(t)
)]

+ v2[
sm(t)(1 + u)

θ(t)
− sm(t)

(1 + u)η(t)
}.

Thus we can easily find

V ′(t) =
G(t;u(t), v(t))

u(t) + 1
.

Let us investigate the behaviour of the ratio

G(t;u, v)

(1 + u)(H(u, v))

in a neighborhood of (0, 0).
Through Taylor expansion, we have H(u, v) = o(u2 + v2). Furthermore, we can

verify that
G(t; 0, v) < 0 for v 6= 0, G(t; 0, 0) = 0,

and for each n ∈ R,

lim
t→0

G(t;u, nu)

(u+ 1)H(u, nu)

is finite, this outcomes shows that G(t;u,v)
(1+u)H(u,v) is bounded near the origin. The

following is to consider the function Φ(t) defined above.

V ′(t)

V (t)
=

G(t;u(t), v(t))

(u(t) + 1)H(u(t), v(t))
≤ max

G(t;u, v)

(1 + u)H(u, v)
, (u, v) ∈ Q(t),

that is
V ′(t) ≤ Φ(t)V (t).
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Obviously, if Φ(t) < 0, we have lim
t→+∞

V (t) = 0, which suggests that

lim
t→+∞

|u(t)| = 0 = lim
t→+∞

|v(t)|.

Going back to the solution (x(t), y(t)), from the above we can deduce

lim
t→+∞

|x(t)− x∗(t)| = 0 = lim
t→+∞

|y(t)− y∗(t)|.

So the positive T-periodic solution (x∗(t), y∗(t)) of the system (1.1) is global asymp-
totically stable.
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