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WAVE SOLUTIONS OF (3+1)-DIMENSIONAL
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Abstract In this paper, a (3+1)-dimensional generalized shallow water equa-
tion is considered. New exact solutions in forms of the hyperbolic functions
and the trigonometric functions are obtained based on an extended (G′/G)-
expansion method and the variable separation method, which contain traveling
wave solutions and non-traveling wave solutions. The particular localized ex-
citations and the interactions between two solitary waves for these obtained
exact solutions are shown in some three-dimensional graphics.
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1. Introduction

Nonlinear evolution equations (NLEEs) have been used to represent various non-
linear phenomenas in fluid dynamics, plasma physics, nonlinear optics, solid state
physics, biological molecules and so on [5, 7, 9, 12, 13, 17–19, 30, 36, 37]. To under-
stand these physical phenomenas, searching for exact solutions of NLEEs is of great
important. Many methods to have been proposed [1–4,6,8,10,14,15,20–26,31,35].

Shallow water equations have applications in weather simulations, tidal waves,
river and irrigation flows, tsunami prediction and so on [27]. In this work, based
on the (G′/G)-expansion method and symbolic computation, we will consider the
following (3+1)-dimensional generalized shallow water equation [32]

uyt − uxz − 3ux uxy − 3uy uxx + uxxxy = 0, (1.1)

where u = u(x, y, z, t). Eq. (1.1) describes the propagation of long water waves in
oceans, estuaries, and impoundments. Tian [29] obtained the soliton-type solutions
to Eq. (1.1) by using the generalized tanh algorithm method. Zayed [33] con-
structed the traveling wave solutions of Eq. (1.1) by utilizing the (G′/G)-expansion
method. Tang [28] derived the Grammian and Pfaffian solutions of Eq. (1.1) by the
Hirota’s bilinear form. Multiple-soliton solutions were derived by Zeng [34]. Liu [11]
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presented new periodic solitary wave solutions. Meng [16] atudied the rational solu-
tions of Eq. (1.1). We will discuss the non-traveling wave exact solutions by using
an extended (G′/G)-expansion method, which are different from those presented in
Refs. [28, 29,33].

The organization of this paper is as follows. Section 2 proposes an extended
(G′/G)-expansion method and obtains new exact solutions for the (3+1)-dimensional
generalized shallow water equation. Some special soliton-structure excitations are
shown by some three-dimensional graphics. Section 3 lists the discussion and sum-
mary.

2. The extended (G′/G)-expansion method and ex-
act non-traveling wave solutions

Considering the following NLEE

F (u, ux, uy, uz, ut, uxy, uxz, uxt, uyt, uxx, utt, . . .) = 0. (2.1)

For finding the exact solutions of Eq. (2.1), we suppose

u =

m∑
i=−m

ai (
G′

G
)i, (2.2)

where G = G(ϑ), ϑ = ϑ(x, y, z, t), ai(i = −m, · · · ,m) is unknown constant. Eq.
(2.2) contains more arbitrary parameters than previous work [28, 29, 33]. The G
satisfies the second-order linear ordinary differential equation

G′′ + λG′ + ρG = 0. (2.3)

The general solutions of Eq. (2.3) are presented as follows

G′

G
=


−%2 + ζ1

C1 cosh(ζ1ϑ)+C2 sinh(ζ1ϑ)
C1 sinh(ζ1ϑ)+C2 cosh(ζ1ϑ)

, %2 − 4ρ > 0, ζ1 =

√
%2−4ρ
2 ,

−%2 + ζ2
−C1 sin(ζ2ϑ)+C2 cos(ζ2ϑ)
C1 cos(ζ2ϑ)+C2 sin(ζ2ϑ)

, %2 − 4ρ < 0, ζ2 =

√
−%2+4ρ

2 ,

−%2 + C2

C1+C2ϑ
, %2 − 4ρ = 0,

 (2.4)

where %, ρ, C1 and C2 are arbitrary constants.
Using the homogenous balance principle, we have m = 1. Thus Eq. (2.2) can

be changed into

u = a−1 (
G

G′
) + a0 + a1 (

G′

G
). (2.5)

Supposing ϑ(x, y, z, t) = f(y + c z) + a x + h(t), substituting Eq. (2.5) into Eq.
(1.1) and setting the coefficients of all terms with the same powers of (G′/G)k(k =
−5, · · · ,−2,−1, 1, 2, · · · , 5) to zero, we have

Case 1:

a1 = 0, a−1 = 2aρ, h(t) = At+B,
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a0 = cy +
[
(
%2 − 4ρ

)
a3 − 4ca+A]f

3a2
+W (z, t), (2.6)

where W (z, t) and f = f(y+cz) are arbitrary functions, a, c, A and B are arbitrary
constants.

Substituting Eq. (2.6) and the general solutions of Eq. (2.3) into Eq. (2.5), we
can present new non-traveling wave solutions for Eq. (1.1).

(1): When %2−4ρ > 0, the first non-traveling wave solutions of Eq. (1.1) can
be written as

u1 =cx+
f [
(
%2 − 4ρ

)
a3 − 4ca+A]

3a2
+W (z, t) + [4aρC1 sinh[ζ1(B + ax+At+ f)]

+ 4aρC2 cosh[ζ1(B+ax+At+f)]]/[(2ζ1C1 − %C2) cosh[ζ1(B+ax+At+f)]

+ (2ζ1C2 − %C1) sinh[ζ1(B + ax+At+ f)]]. (2.7)

The physical structures of the solution (2.7) are shown in Figs.1-4.

(2): When %2 − 4ρ < 0, we have the second non-traveling wave solutions of
Eq. (1.1)

u2 =cx+
f [
(
%2 − 4ρ

)
a3 − 4ca+A]

3a2
+W (z, t) + 4aρ[C1 cos ((B + f +At+ ax)ζ2)

+ C2 sin ((B + f +At+ ax)ζ2)]/[(2C2ζ2 − %C1) cos[(B + f +At+ ax)ζ2]

− (%C2 + 2C1ζ2) sin[(B + f +At+ ax)ζ2]]. (2.8)
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Figure 1. Solution (2.7) at f = 1 + sech2(y + cz), W (z, t) = sech(z2 + t2), C1 = 1, C2 = 2, % = 3,
ρ = 0.1, c = 2, x = 1, a = A = 1, B = 0.

Case 2:

a1 = −2a, a−1 = 2aρ, h(t) = At+B, % = 0,

a0 = cx+
[
(
%2 − 16ρ

)
a3 − 4ca+A]f

3a2
+W (z, t), (2.9)

where W (z, t) and f = f(y+cz) are arbitrary functions, a, c, A and B are arbitrary
constants.

Substituting Eq. (2.9) and the general solutions of Eq. (2.3) into Eq. (2.5), we
can present another new non-traveling wave solutions for Eq. (1.1) as follows
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Figure 2. Solution (2.7) at W (z, t) = cos
√
z2 − t2, B = 0, C1 = 1, C2 = 2, f = coth2(y + cz) +

csch2(y + cz), % = 3, ρ = 0.1, c = 2, t = 1, a = A = 1.
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Figure 3. Solution (2.7) at c = 2, f = 1
1+0.2sech2(y+cz)+0.2 tanh2(y+cz)

−sech2(y+cz), % = 3, ρ = 0.1,

C2 = 2, a = A = 1, B = 0, W (z, t) = tanh(z2 + t2) + sech(t2 − z2), x = 1.
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Figure 4. Solution (2.7) at c = 2, f = 1
1+0.2sech2(y+cz)+0.2tanh2(y+cz)

−sech2(y+cz), % = 3, ρ = 0.1,

C2 = 2, a = A = 1, B = 0, W (z, t) = tanh(z2 + t2) + sech(t2 − z2), y = 1.
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Figure 5. Ssolution (2.10) at W (z, t) = cos
√
z2 − t2, C1 = 1, % = 3, ρ = −1, c = 2,

f = 1
coth2(y+cz)+csch2(y+cz)

, C2 = 2, x = 1, B = 0, a = A = 1.
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(1): When ρ < 0, the third non-traveling wave solutions of Eq. (1.1) can be
obtained as

u3=cx+
f [A− 4a

(
4ρa2 + c

)
]

3a2
+W (z, t)

− 2a
√
−ρ[C1 sinh[

√
−ρ(B +At+ ax+ f)] + C2 cosh[

√
−ρ(B +At+ ax+ f)]]

/[C1 cosh[
√
−ρ(B +At+ ax+ f)] + C2 sinh[

√
−ρ(B +At+ ax+ f)]]

− 2a
√
−ρ[C1 cosh[(B + f +At+ ax)

√
−ρ] + C2 sinh[(B + f +At+ ax)

√
−ρ]]

/[C1 sinh[(B + f +At+ ax)
√
−ρ] + C2 cosh[(B + f +At+ ax)

√
−ρ]]. (2.10)

The physical structures of the solution (2.10) are shown in Figs. 5-7.
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Figure 6. Solution (2.10) at % = 3, f = 1
1+0.2sech2(y+cz)+0.2 tanh2(y+cz)

− sech2(y + cz),ρ = −1,
c = 2, C2 = 2, a = A = 1, B = 0, W (z, t) = tanh(z2 + t2) + sech(t2 − z2), x = 1.
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Figure 7. Solution (2.10) at % = 3, f = 1
1+0.2sech2(y+cz)+0.2 tanh2(y+cz)

− sech2(y + cz), ρ = 0.1,

c = 2, C2 = 2, a = A = 1, B = 0, W (z, t) = tanh(z2 + t2) + sech(t2 − z2), y = 1.

(2): When ρ > 0, the fourth non-traveling wave solutions of Eq. (1.1) can be
expressed as

u4 =cx+
f [A− 4a

(
4ρa2 + c

)
]

3a2
+W (z, t)

+ 2a
√
ρ[C1 sin[

√
ρ(B +At+ ax+ f)]− C2 cos[

√
ρ(B +At+ ax+ f)]]

/[C1 cos[
√
ρ(B +At+ ax+ f)] + C2 sin[

√
ρ(B +At+ ax+ f)]]

+ 2a
√
ρ[C1 cos[(B + f +At+ ax)

√
−ρ] + C2 sin[(B + f +At+ ax)

√
ρ]]

/[−C1 sin[(B + f +At+ ax)
√
ρ] + C2 cos[(B + f +At+ ax)

√
ρ]]. (2.11)
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In Figs.1-7, we research the excitation process of a special dromion soliton struc-
ture of solutions (2.7) and (2.10) for Eq. (1.1). The variation of solutions (2.7) and
(2.10) with time and the interactions between two solitary waves are also described.
It is obviously that other choices of f(y + cz) and W (z, t) in solutions (2.7) and
(2.10) may form rich localized soliton structures. In other words, solutions (2.8)
and (2.11) may also be employed to excite abundant soliton structures.

3. Discussion and summary

In this paper, we have obtained some new exact non-traveling wave solutions for Eq.
(1.1) by using an extended (G′/G)-expansion method. Furthermore, by selecting
the different values for ϑ(x, y, z, t) in the solutions (2.7) and (2.10), we can see
various interesting localized soliton excitations. Also, the models proposed in this
article describe important applications in physics and engineering.

Acknowledgements. We would like to thank the Editor and the Referee for their
timely and valuable comments.
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