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Abstract This paper considers a completely integrable nonlinear wave equa-
tion which is called Qiao equation. The equation is reduced via Lie symmetry
analysis. Two classes of new exact group-invariant solutions are obtained
by solving the reduced equations. Specially, a novel technique is proposed
for constructing group-invariant solutions and non-group-invariant solutions
based on travelling wave solutions. The obtained exact solutions include a set
of traveling wave-like solutions with variable amplitude, variable velocity or
both. Nonlocal conservation laws of Qiao equation are also obtained with the
corresponding infinitesimal generators.
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1. Introduction

In applied mathematics and physics, nonlinear wave equations play an important
role in the study of nonlinear dynamics. Many researchers tried their best to find
analytical solutions to a wide class of nonlinear wave equations in order to give
a better description of dynamical properties to these equations. So far, there are
many powerful methods which are used to find exact solutions. For example, inverse
scattering method [8], Darboux transformation method [9], sine-cosine method [23],
double exp-function method [11], dynamical system method [13], and so on. As
a classic method, Lie symmetry analysis is an important tool to seek analytical
solutions to nonlinear wave equations [3]. However, the method was oblivious as it
is too complicated to manual computation for many equations. Until the fifties of
last century, Lie group analysis method was applied to study some partial differential
equations in fluid mechanics by Girkhoff et al [10]. A lot of valuable work has been
done during the past seventy years by Lie symmetry method. With the development
of computer algebra tools, Lie symmetry analysis has become a powerful tool for
finding analytical solutions of PDEs.

Variable amplitude solutions and variable velocity solutions are common in non-
linear wave problems. Solutions with those physical characteristics describe the
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physical phenomena more exactly. Many significative results have been obtained.
For instance, Yamashita investigated the multisolitons and soliton lattices in Sine-
Gordon system with variable amplitude [24]. Latyshev and Bedrikova obtained an-
alytical solutions of the second Stokes problem with variable amplitude [2]. Some
asymptotic solutions of 2D wave equations with variable velocity were obtained by
Dobrokhotov et al [7]. Allilueva and Shafarevich got localized asymptotic solutions
of a wave equation with variable velocity [1].

This paper considers a completely integrable nonlinear wave equation:

F = ut − utxx + 3u2ux − ux3 − (4u− 2uxx)uxuxx + (ux
2 − u2)uxxx = 0, (1.1)

where u is the fluid velocity and subscripts denote the partial derivatives. Eq. (1.1)
was derived from two dimensional Euler equation by Qiao [21], and was named Qiao
equation subsequently [22, 25]. Qiao proved that Eq. (1.1) has Lax pair and bi-
Hamiltonian structures, and found a new kind of soliton solutions which were called
as W/M-shape-peaks solitons [21]. Li and Dai distinguished two classes of singular
nonlinear traveling wave equations in their book [14]. Qiao equation belongs to the
second class. By using dynamical system approach, Li, Zhao and Chen not only
found W/M-shape-peaks solitons consisting of three breaking wave solutions, but
also investigated the dynamical behaviors of Qiao equation in details [15]. Recent
advances on the study of travelling wave solutions via dynamical system approach,
we refer to [16–20].

However, to our best knowledge, there are few papers discussing traveling wave-
like solutions with variable amplitude or variable velocity of Qiao equation (1.1). In
this paper, Lie symmetry analysis method is used to study Qiao equation. We de-
rive the classic Lie symmetries admitted by Qiao equation, and obtain some reduced
equations. Some new exact group-invariant solutions and non-group-invariant solu-
tions are obtained by solving reduced equations. These solutions are quite different
from those obtained by Li et al [15]. The exact expressions of these solutions indicate
some physical characters of variable amplitude, variable wave velocity or both. In
particular, a novel technique is proposed for constructing group-invariant solutions
and non-group-invariant solutions based on travelling wave solutions. Moreover, we
also get nonlocal conservation laws with the corresponding symmetries.

This paper is organized as follows. In Section 2, a few of necessary preliminar-
ies are stated. In Section 3, by using Lie symmetries, we deal with the similarity
reductions to Eq. (1.1) and obtain some new exact group-invariant solutions and
non-group-invariant solutions. Some figures are given to illustrate distinguishing
characteristics of those solutions. In Section 4, nonlocal conservation laws are ob-
tained with the corresponding symmetries. A comprehensive conclusion is given in
Section 5.

2. Preliminaries

In this section, some basic concepts and results are introduced briefly. For more
details, we refer to [12].

Consider sth-order system of k partial differential equations with n independent
variables x = (x1, x2, . . . , xn) and m dependent variables u = (u1, u2, . . . , um), reads

Fσ(x, u, u(1), u(2), . . . , u(s)) = 0, σ = 1, . . . , k, (2.1)
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where u(i) is the collection of ith order of partial derivatives, namely, u(1) =

{uαi }, u(2) = {uαij}, . . ., and uαi (x) = ∂uα(x)
∂xi , uαij(x) = ∂2uα(x)

∂xi∂xj , . . . .

The total differential operator with respect to xi is defined as

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ · · · , i, j = 1, . . . , n, α = 1, . . . ,m. (2.2)

So, uαi = Di(u
α), uαij = DjDi(u

α), . . . .
The Lie symmetry operator

X = ξi
∂

∂xi
+ ηα

∂

∂uα
(2.3)

is considered in the following, where ξi, ηα are described in [12].

Definition 2.1 ( [12]). A vector field C(x, u, u(1), ...) with n components,

C = (C1, C2, ..., Cn) (2.4)

is called a conserved vector if it satisfies the equation

divC = D1(C1) +D2(C2) + . . .+Dn(Cn) = 0 (2.5)

on each solution u = u(x) of Eqs. (2.1). Eq. (2.5) is termed a conservation equation,
or a conservation law for Eqs. (2.1).

Remark 2.1 ( [12]). Note that if

C1|(2.1) = C̃1 +D2(h2) + . . .+Dn(hn), (2.6)

the conservation equation (2.5) can be equivalently rewritten in the form

D1(C̃1) +D2(C̃2) + . . .+Dn(C̃n) = 0 (2.7)

with
C̃2 = C2 +D1(h2), . . . , C̃n = Cn +D1(hn).

Definition 2.2 ( [12]). The adjoint system to a system (2.1) is given by

F ∗σ (x, u, v, . . . , u(s), v(s)) = 0, σ = 1, . . . , k, (2.8)

where F ∗σ is defined by

F ∗σ (x, u, v, . . . , u(s), v(s)) =
δ(vβFβ)

δuα
, (2.9)

and
δ

δuα
=

∂

∂uα
+
∑
s≥1

(−1)sDi1 · · ·Dis

∂

∂uαi1···is
(2.10)

is the Euler-Lagrange operator.

Definition 2.3 ( [12]). The system (2.1) is said to be self-adjoint if the system
obtained by substituting v = u in the adjoint system (2.8) is equivalent to the
original system.
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Theorem 2.1 ( [12] ). For any system (2.1) admitting an operator (2.3), the fol-
lowing quantities provide a nonlocal conserved vector:

Ci = N i(L), i = 1 , . . . ,n. (2.11)

Here N i(i = 1 , 2 , . . . ,n) are infinite-order operators defined by

N i = ξi + W α δ

δuαi
+

∞∑
s=1

Di1 . . .Dis (W
α)

δ

δuαii1 ...is
, i = 1 , . . . ,n, α = 1 , . . . ,m.

(2.12)
where L = vβFβ is called the formal Lagrangian for the system (2.1), and Wα =
ηα − ξjuαj is the Lie characteristic function.

3. Symmetry reductions, exact group-invariant so-
lutions and non-group-invariant solutions

In this section, we deal with the symmetry reductions, exact group-invariant so-
lutions and non-group-invariant solutions for Eq. (1.1) based on the symmetry
analysis.

It is easy to obtain the following linearly independent infinitesimal symmetries
using Soft Package GEM v.032.02 developed by Cheviakov [4–6]:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂t
− u ∂

∂u
. (3.1)

Moreover, Eq. (1.1) has a 3-dimensional Lie algebra with the basis (3.1).

3.1. Symmetry reductions and group-invariant solutions

In this subsection, we consider symmetry reductions and seek exact group-invariant
solutions via linear combinations X of infinitesimal symmetries X1, X2 and X3.

Case (I). For the generator X1 + cX2 = ∂
∂t + c ∂∂x , where c is an arbitrary

constant, integrating the characteristic system

dt

1
=
dx

c
=
du

0
, (3.2)

we obtain the following similarity variables and group-invariant solution:

ξ = x− ct, ω = u(t, x) = f(ξ). (3.3)

Substituting (3.3) into Eq. (1.1), we obtain the following reduction equation:

− cf ′(ξ) + cf ′′′(ξ) + 3f(ξ)2f ′(ξ)− f ′(ξ)3 + (2f ′′(ξ)

− 4f(ξ))f ′(ξ)f ′′(ξ) + (f ′(ξ)2 − f(ξ)2)f ′′′(ξ) = 0.
(3.4)

Integrating Eq. (3.4), we can obtain:

f(ξ) = c1 exp(ξ) + c2 exp(−ξ), (3.5)

where c1 and c2 are arbitrary constants.
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So, Eq. (1.1) has the following traveling wave solutions

u(t, x) = c1 exp(x− ct) + c2 exp(−(x− ct)), (3.6)

where c, c1 and c2 are arbitrary constants.
Case (II). For the generator

αX1 + βX2 + γX3 = (2γt+ α)
∂

∂t
+ β

∂

∂x
− γu ∂

∂u
,

where α, γ and β are arbitrary constants, integrating the characteristic system

dt

2γt+ α
=
dx

β
=

du

−γu
, (3.7)

we obtain the following similarity variables:

ξ = x− β ln(2γt+ α)

2γ
, ω = u

√
2γt+ α, (3.8)

and the group-invariant solution is ω = f(ξ), that is

u(t, x) =
f(x− β ln(2γt+α)

2γ )
√

2γt+ α
. (3.9)

Substituting (3.9) into Eq. (1.1), we obtain the following reduction equation:

− f ′(ξ)3 + f ′(ξ)2f ′′′(ξ) + 3f(ξ)2f ′(ξ)− 4f ′(ξ)f ′′(ξ)f(ξ) + 2f ′(ξ)f ′′(ξ)2

− f(ξ)2f ′′′(ξ)− βf ′(ξ)− γf(ξ) + βf ′′′(ξ) + γf ′′(ξ) = 0.
(3.10)

It should be noted that the Eq. (3.10) is a higher-order nonlinear ordinary differ-
ential equation and difficult to be solved. However, Eq. (3.10) can be rewritten as
the following form

(f ′′(ξ)−f(ξ))(2f ′(ξ)f(ξ)−2f ′(ξ)f ′′(ξ)−γ)−(β+f ′(ξ)2−f(ξ)2)(f ′′′(ξ)−f ′(ξ)) = 0.
(3.11)

It is easy to see that f(ξ) = f ′′(ξ) satisfies Eq. (3.11). By solving the equation
f(ξ) = f ′′(ξ), we obtain

f(ξ) = c1 exp(ξ) + c2 exp(−ξ). (3.12)

So, Eq. (1.1) has the group-invariant solutions of the form

u(t, x) =
c1 exp(x− β ln(2γt+α)

2γ )) + c2 exp(−x+ β ln(2γt+α)
2γ ))

√
2γt+ α

, (3.13)

where α, β, γ, c1 and c2 are arbitrary constants.

3.2. Constructing group-invariant solutions and non-group-
invariant solutions via travelling wave solutions

In this subsection, we present a novel technique of constructing group-invariant
solutions and non-group-invariant solutions based on travelling wave solutions. The
steps of this technique is as follows:
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Step 1. Construct a class of solutions by transforming constant amplitude and
constant velocity in the analytic expression of given travelling wave solution into
variable amplitude and variable velocity respectively.

Step 2. Find appropriate variable amplitude and variable velocity based on
invariance condition so as to identify which solutions constructed in Step 1 are
group-invariant.

We give an example to illustrate this technique. Based on travelling wave solu-
tion (3.6), we construct solutions of the form

û(t, x) = g(t)(c1 exp(x− c(t)t) + c2 exp(−x+ c(t)t)), (3.14)

where g(t), c(t) are to be determined.
By a direct calculation, it is easy to verify that for arbitrary derivable functions

g(t), c(t), and arbitrary constants c1, c2, (3.14) is a solution of Eq. (1.1).
Next, we seek conditions which guarantee (3.14) is group-invariant.
Set

G(t, x, u) = −u+ g(t)(c1 exp(x− c(t)t) + c2 exp(−x+ c(t)t)).

It follows from Theorem 5.4 in [12] that (3.14) is a group-invariant solution of Eq.
(1.1) if and only if for some λ1, λ2 and λ3, the following invariance condition is
satisfied:

XG(t, x, u) |u=g(t)(c1 exp(x−c(t)t)+c2 exp(−x+c(t)t))= 0, (3.15)

where

X = λ1X1 + λ2X2 + λ3X3 = (2λ3t+ λ1)
∂

∂t
+ λ2

∂

∂x
− λ3u

∂

∂u
.

By a simple calculation, it is easy to see that (3.15) is equivalent to the following
conditions

− 2g(t)
dc(t)

dt
λ3t

2 − g(t)
dc(t)

dt
λ1t− 2g(t)c(t)λ3t+ 2

dg(t)

dt
λ3t

− g(t)c(t)λ1 +
dg(t)

dt
λ1 + g(t)λ2 + g(t)λ3 = 0,

(3.16)

and

2g(t)
dc(t)

dt
λ3t

2 + g(t)
dc(t)

dt
λ1t+ 2g(t)c(t)λ3t+ 2

dg(t)

dt
λ3t

+ g(t)c(t)λ1 +
dg(t)

dt
λ1 − g(t)λ2 + g(t)λ3 = 0.

(3.17)

Therefore, if g(t), c(t) satisfy Eqs. (3.16) and (3.17) for some λ1, λ2 and λ3, then
(3.14) is a group-invariant solution of Eq. (1.1). Otherwise, (3.14) is not invariant
under any transformation group admitted by Eq. (1.1).

Finally, we find g(t), c(t) which satisfy Eqs. (3.16) and (3.17).
Eq. (3.16) plus Eq. (3.17) gives

(2λ3t+ λ1)
dg(t)

dt
+ λ3g(t) = 0. (3.18)
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By solving Eq. (3.18), we obtain

g(t) =
C1√

2λ3t+ λ1
, (3.19)

where C1 is an arbitrary constant.

Eq. (3.16) minus Eq. (3.17) gives

g(t)(−2
dc(t)

dt
λ3t

2 − dc(t)

dt
λ1t− 2c(t)tλ3 − c(t)λ1 + λ2) = 0. (3.20)

For any g(t) 6= 0, by solving Eq. (3.20), we obtain

c(t) =


λ2 ln(2λ3t+λ1)+2λ3C2

2λ3t
, for λ3 6= 0,

λ2

λ1
+ C2

t , for λ3 = 0,
(3.21)

where C2 is an arbitrary constant.

It is easy to verify that (3.19) and (3.21) satisfy Eqs. (3.16) and (3.17).

According to above analysis, we have the following result.

Theorem 3.1. (i) Qiao equation (1.1) has group-invariant solutions of the form
(3.14), where g(t) is given in (3.19), and c(t) is given in (3.21).

(ii) Qiao equation (1.1) has non-group-invariant solutions of the form (3.14)
with arbitrary nonconstant derivable functions g(t) and c(t) satisfying

g(t) 6= C1√
2λ3t+ λ1

, (3.22)

or

c(t) 6=


λ2 ln(2λ3t+λ1)+2λ3C2

2λ3t
, for λ3 6= 0,

λ2

λ1
+ C2

t , for λ3 = 0,
(3.23)

where λi(i = 1, 2, 3), C1 and C2 are arbitrary constants.

Remark 3.1. Exact solutions of the form (3.14) are different from those solutions
obtained in [14,15,21,22,25]. Non-group-invariant solutions of the form (3.14) can
be seen as traveling wave-like solutions with variable amplitude, variable velocity
or both.

Remark 3.2. Based on traveling wave solutions (3.6), we not only obtain group-
invariant solutions (3.13), but also obtain a class of non-group-invariant solutions.

Finally, we give some figures to demonstrate the above exact solutions. Figure
1 depicts a group-invariant solution. Figure 2 depicts traveling wave-like solution
with unbounded variable amplitude or bounded variable amplitude respectively.
Figure 3 depicts traveling wave-like solution with variable velocity or both of variable
amplitude and variable velocity respectively. Figure 4 depicts two traveling wave-
like solutions with variable amplitude and variable velocity.
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Figure 1. A group-invariant solution u(t, x) =
c1 exp(x− β ln(2γt+α)

2γ
))+c2 exp(−x+ β ln(2γt+α)

2γ
))

√
2γt+α

with

c1 = 0.05, c2 = 0.2, α = 2, β = 1, γ = 1.

(a) (b)

Figure 2. Two traveling wave-like solutions with variable amplitude û(t, x) = g(t)(c1 exp(x − ct) +

c2 exp(−x + ct)) with c = 0.01, c1 = c2 = 0.05, and g(t) = t + sin2 t in (a), g(t) = 0.5 + 0.15 sin(2t) in
(b).

(a) (b)

Figure 3. Two traveling wave-like solutions with variable velocity û(t, x) = g(t)(c1 exp(x − c(t)t) +

c2 exp(−x+ c(t)t)) with c1 = c2 = 0.05, c(t) = 0.001 + sin2 t, and g(t) = 1 in (a), g(t) = 0.2 + 0.05 sin t
in (b).
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(a) (b)

Figure 4. Two traveling wave-like solutions with variable amplitude and variable velocity û(t, x) =
h(t)√
2γt+α

(c1 exp(x− β ln(2γt+α)
2γ )+c2 exp(−x+ β ln(2γt+α)

2γ )) with c1 = 0.05, c2 = 0.2, α = 2, β = 1, γ = 1,

and h(t) = 1 + sin2 t in (a), h(t) = exp( t10 ) in (b).

4. Conservation laws

In this section, we consider nonlocal conservation laws to Qiao equation.
According to Theorem 2.1, we have the formulae of the nonlocal conserved vector

to the aforementioned infinitesimal symmetry of Eq. (1.1):

Cx =ξxL+W

[
∂L

∂ux
−Dx

(
∂L

∂uxx

)
+DxDx

(
∂L

∂uxxx

)
+DxDt

(
∂L

∂uxxt

)
+DtDx

(
∂L

∂uxtx

)]
+Dx(W )

[
∂L

∂uxx
−Dx

(
∂L

∂uxxx

)
−Dt

(
∂L

∂uxxt

)]
+Dt(W )

[
−Dx

(
∂L

∂uxtx

)]
+DxDx(W )

(
∂L

∂uxxx

)
+DxDt(W )

(
∂L

∂uxxt

)
+DtDx(W )

(
∂L

∂uxtx

)
,

(4.1)

Ct =ξtL+W

[
∂L

∂ut
+DxDx

(
∂L

∂uxxt

)]
+Dx(W )

[
−Dx

(
∂L

∂utxx

)]
+DxDx(W )

(
∂L

∂utxx

)
,

(4.2)

where W = η − ξjuj , and ξj refers to the coefficients of infinitesimal symmetry:

X = ξx
∂

∂x
+ ξt

∂

∂t
+ ηu

∂

∂u
. (4.3)

For Eq. (1.1), the Lagrangian is

L = vF = v(ut − uxxt + 3u2ux − u3x + (2uxx − 4u)uxuxx + (u2x − u2)uxxx), (4.4)

and the adjoint equation has the form

F ∗ =
δ(L)

δu
=− vt + vxxt + vxu

2
x − 3vxu

2 − 2vxxuxuxx

+ 2vxxuux + 2vxuuxx − vxxxu2x + vxxxu
2,

(4.5)
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where v is a new dependent variable and the Euler-Lagrange operator is defined by
the formal sum

δ

δu
=

∂

∂u
−Dx

∂

∂ux
−Dt

∂

∂ut
+D2

x

∂

∂uxx
+DxDt

∂

∂uxt
+D2

t

∂

∂utt

+−D3
x

∂

∂uxxx
−D2

xDt
∂

∂uxxt
−DxD

2
t

∂

∂uxtt
−D3

t

∂

∂uttt
+ · · · .

(4.6)

Substitute v = u into Eq. (4.5), it is easy to verify that Eq. (1.1) is self-adjoint.
Next, we calculate the conservation laws of Eq. (1.1). It is noted that the

Lagrangian should be rewritten as following in calculations:

L = vF =v(ut −
1

3
uxxt −

1

3
uxtx −

1

3
utxx + 3u2ux − u3x

+ (2uxx − 4u)uxuxx + (u2x − u2)uxxx).
(4.7)

There are three cases to consider.
Case (I). For the generator X1 = ∂

∂t , we have

ξx = 0, ξt = 1, η = 0, W = η − ξxux − ξtut = −ut. (4.8)

From (4.1) and (4.2), we can obtain the nonlocal conserved vector of (1.1):

Cx1 =− ut
(

3vu2 − vu2x + vxxu
2
x − vxxu2 − 2vuuxx −

2

3
vxt

)
− uxt

(
2vuxuxx − 2vuux − vxu2x + vxu

2 +
1

3
vt

)
− 1

3
vxutt − uxxt(vu2x − vu2) +

2

3
vuxtt,

(4.9)

Ct1 =vuxxxu
2
x − vuxxxu2 − vu3x + 2vuxu

2
xx − 4vuuxuxx

+ 3vuxu
2 +

1

3
vxxut −

1

3
vxuxt −

2

3
vuxxt.

(4.10)

Substituting v = u into Eqs. (4.9) and (4.10), and transferring the terms of the
conserved vector according to Remark 2.1 in Sec. 2, we obtain

Cx1 = −3u3ut + u2uxuxt + uu2xut + u3xuxt

+Dt

(
−uxxuu2x + u3uxx +

2

3
uuxt −

1

3
utux

)
= C̃x1 +Dt(h1), (4.11)

where

C̃x1 = −3u3ut + u2uxuxt + uutu
2
x + u3xuxt,

h1 = −uxxuu2x + u3uxx +
2

3
uuxt −

1

3
utux. (4.12)

So we have

C̃t1 = Ct1 +Dx(h1) = −u3xu− u2uxuxx + 3u3ux − uxxu3x. (4.13)
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It is easy to verify that

Dx(C̃x1 ) +Dt(C̃t1) = 0. (4.14)

Therefore, (4.14) provides a nonlocal conservation law of Eq. (1.1).
Case (II). For the generator X2 = ∂

∂x , we have

ξx = 1, ξt = 0, η = 0, W = η − ξxux − ξtut = −ux. (4.15)

From (4.1) and (4.2), we can obtain the nonlocal conserved vector of (1.1):

Cx2 =− vxxu3x + vxu
2
xuxx + vxxuxu

2 − vxuxxu2 + vut

+
2

3
vxtux −

1

3
vtuxx −

1

3
vxuxt −

1

3
vuxxt,

(4.16)

Ct2 = −vux +
1

3
vxxux −

1

3
vxuxx +

1

3
vuxxx. (4.17)

Substituting v = u into Eqs. (4.16) and (4.17), and transferring the terms of the
conserved vector according to Remark 2.1 in Sec. 2, we obtain

Cx2 =
1

3
uxuxt +Dt

(
1

2
u2 − 1

3
uuxx

)
= C̃x2 +Dt(h2), (4.18)

where

C̃x2 =
1

3
uxuxt, h2 =

1

2
u2 − 1

3
uuxx. (4.19)

So we have

C̃t2 = Ct2 +Dx(h2) = −uxu+
1

3
uxxxu+Dx

(
1

2
u2 − 1

3
uuxx

)
= −1

3
uxuxx. (4.20)

It is easy to verify that

Dx(C̃x2 ) +Dt(C̃t2) = 0. (4.21)

Therefore, (4.21) provides a nonlocal conservation law of Eq. (1.1).
Case (III). For the generator X3 = 2t ∂∂t − u

∂
∂u , we have

ξ1 = 0, ξ2 = 2t, η = −u, W = η − ξ1ux − ξ2ut = −u− 2tut. (4.22)

From (4.1) and (4.2), we can obtain the nonlocal conserved vector of (1.1):

Cx3 =(−u− 2tut)(3vu
2 − vu2x + vxxu

2
x − vxxu2 − 2vuuxx −

2

3
vxt)

− (ux + 2tuxt)(2vuxuxx − 2vuux − vxu2x + vxu
2 +

1

3
vt)

− 1

3
(3ut + 2tutt)vx − (uxx + 2tuxxt)(vu

2
x − vu2) +

2

3
(3uxt + 2tuxtt)v,

(4.23)

Ct3 =2tv(ut − uxxt + 3u2ux − u3x + (2uxx − 4u)uxuxx + (u2x − u2)uxxx)

− (u+ 2tut)

(
v − 1

3
vxx

)
− 1

3
(ux + 2tuxt)vx +

1

3
(uxx + 2tuxxt)v.

(4.24)

Substituting v = u into Eqs. (4.23) and (4.24), and transferring the terms of the
conserved vector according to Remark 2.1 in Sec. 2, we obtain

Cx3 = u2u2x − 2uuxxu
2
x + 2u3uxx −

3

2
u4 +

1

2
u4x − 2utux
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+Dt

(
tu2u2x − 2tuuxxu

2
x + 2tu3uxx −

3

2
tu4 +

1

2
tu4x

−2

3
tutux +

4

3
uux +

4

3
tuuxt

)
= C̃x3 +Dt(h3), (4.25)

where

C̃x3 = u2u2x − 2uuxxu
2
x + 2u3uxx −

3

2
u4 +

1

2
u4x − 2utux,

h3 = tu2u2x − 2tuuxxu
2
x + 2tu3uxx −

3

2
tu4 +

1

2
tu4x

−2

3
tutux +

4

3
uux +

4

3
tuuxt. (4.26)

So we have

C̃t3 = Ct3 +Dx(h3) = −u2 + 2uuxx + u2x. (4.27)

Under the condition that

ut = uxxt − 3u2ux + u3x + 4uuxuxx − 2u2xxux − u2xuxxx + u2uxxx,

it is easy to verify that

Dx(C̃x3 ) +Dt(C̃t3) = 0. (4.28)

Therefore, (4.28) provides a nonlocal conservation law of Eq. (1.1).

By above analysis and computation, we get the following result.

Theorem 4.1. (i) For the generator X1 = ∂
∂t , Qiao equation has a nonlocal con-

versation law (4.14) with conversation vector (C̃x1 , C̃
t
1).

(ii) For the generator X2 = ∂
∂x , Qiao equation has a nonlocal conversation law

(4.21) with conversation vector (C̃x2 , C̃
t
2).

(iii) For the generator X3 = 2t ∂∂t − u
∂
∂u , Qiao equation has a nonlocal conver-

sation law (4.28) with conversation vector (C̃x3 , C̃
t
3).

5. Conclusions

In this paper, we use the infinitesimal symmetry to reduce Qiao equation. A few
of new exact group-invariant solutions are obtained by solving the reduced equa-
tions. The group-invariant solutions are different and more succinct than those
obtained in previous literature. A novel technique is also proposed for construct-
ing group-invariant solutions and non-group-invariant solutions based on travelling
wave solutions. The obtained non-group-invariant solutions can be seen as traveling
wave-like solutions with variable-amplitude, variable-velocity or both. Some figures
are given to illustrate the distinction of the obtained solutions by choosing some
exact expressions. Nonlocal conservation vectors of Qiao equation are also obtained
with the corresponding infinitesimal generators.

Acknowledgements. The authors thank the referees for their valuable sugges-
tions.
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